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The specific research activities in the 2022 stage of the project were materialized through a

number of 6 scientific articles; 3 of them are submitted for publication and 3 are in an advanced

development stage.

[1] D. Bulacu, B. Torrecillas, 1-Homology for coalgebras in Yetter-Drinfeld categories, sub-

mitted for publication.

[2] D. Bulacu, D. Popescu, B. Torrecillas, Double wreath quasi-Hopf algebras, advanced de-

velopment stage.

[3] S. Dăscălescu, C. Năstăsescu, L. Năstăsescu, Graded Frobenius rings, submitted for pub-

lication.

[4] M. Joiţa, Finsler locally C∗-modules, advanced development stage.

[5] L. Liu, A. Makhlouf, C. Menini, F. Panaite, BiHom-NS-algebras, twisted Rota-Baxter

operators and generalized Nijenhuis operators, submitted for publication.

[6] A. Makhlouf, D. S, tefan, Deformations of algebraic structures in monoidal categories, ad-

vanced development stage.

The scientific description of the results in the 2022 stage and the degree of

achievement of the specific scientific objectives

Each • refers to results connected to one of the three scientific activities considered in the

stage 2022 of the project.

• The paper [1] relates to the objectives assumed in activity 1.1 of the realization plan of the

grant. Namely, the defining and the study of the 1-cycles associated to a coalgebra in a category

of Yetter-Drinfeld modules over a quasi quantum group (qQG for short) and the description of

them in the case of Yetter-Drinfeld coalgebras obtained from the so called symplectic-fermionic

qQGs, as well as their connections with the structure of the qQGs with a coalgebra projection.

The objectives assumed at 1.1 were realized 100%. For short, the results obtained in [1] are the

following.

The 1-cycles are the formal dual version of the 1-cocycles. The latter are defined for module

algebras, so the former are defined for comodule coalgebras over Hopf algebras. Although the

comodule coalgebra notion does not make sense in the quasi-Hopf algebra setting, we were able

in [1] to introduce the 1-homology but for coalgebras in Yetter-Drinfeld categories (instead of

coalgebras in categories of corepresentations) with coefficients in a given quasi-Hopf algebra;

actually this is the framework that suits to the quasi-Hopf case and appeared naturally in [2].

We have obtained in this way the notion of alternative 1-cycle for a Yetter-Drinfeld coalgebra.
1
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We added the term ”alternative” because the H-linearity of ζ (with respect to the adjoint action

▷) is broken when we pass from Hopf to quasi-Hopf algebras. But we can deform an alternative

1-cycle ζ by a special element of H ⊗H in order to produce an H-linear map, and the new map

obtained in this way from ζ is denoted by ζ. The map ζ, called in what follows a 1-cycle for C,

satisfies new relations deduced form the correspondence ζ 7→ ζ. In the Hopf case AZ1
H(C,H)

(the space of alternative 1-cycles) and Z1
H(C,H) (the set of 1-cycles of H) are equal; in the

quasi-Hopf case the correspondence ζ 7→ ζ is one to one. We should stress the fact that the

H-linearity is essential for the definition of an invertible (alternative) 1-cycle: H with ▷ gives

an algebra (denoted by H0) in the monoidal category HM of left H-modules, and since C is a

coalgebra in HM one can consider the convolution monoid HomH(C,H0); then ζ is (convolution)

invertible if it is an invertible element of this monoid. As ζ 7→ ζ is bijective, one can consider

invertible alternative 1-cycles, too. Furthermore, we show that any 1-cycle is invertible, and

therefore so is any alternative 1-cycle.

The algebra H0 in HM is, moreover, an algebra in H
HYD, so we expect a 1-cycle ζ to be not

only left H-linear, but to be a morphism in H
HYD between C and H0. This is not always the case;

in turn, to any left H-linear morphism ζ : C → H0 one can associate a new left H-coaction λζ
C on

C and if we denote by Cζ theH-module coalgebra C equipped with this new leftH-coaction then

ζ is a 1-cycle if and only if Cζ is an object in H
HYD, in which case ζ becomes a morphism between

Cζ andH0 in
H
HYD. Furthermore, Cζ is a right C-comodule within H

HYD and the correspondence

ζ 7→ λζ
C produces a bijective map between Z1

H(C,H0) and Comr
H
HYD

(C,∆C); Z
1
H(C,H0) is a new

notation for Z1
H(C,H), justified by the above considerations, while Comr

H
HYD

(C,∆C) is the set of

left H-coactions on the left H-module coalgebra C that turns C into a right C-comodule in H
HYD

via the comodule structure morphism equals ∆C . Consequently, one can define homologous 1-

cycles: ζ1 ∼ ζ2 (our notation for being homologous) if and only if ζ1 ∼ ζ2, if and only if Cζ1 , Cζ2

are isomorphic as right C-comodules in H
HYD, if and only if ζ1, ζ2 are related somehow through a

convolution invertible morphism ς ∈ HomH(C, k). As a byproduct, we obtain a characterization

for AH1
H(C,H) ≃ H1

H(C,H0), the set of equivalence classes of alternative 1-cycles (resp. 1-

cycles) modulo ∼.

The coalgebras in H
HYD define a category Coalg(HHYD) that is isomorphic to the category

H −BimCoalg(π); the latter has as objects couples (D,π) consisting of a coalgebra D in HMH

and an H-bimodule coalgebra morphism π : D → H. To a coalgebra C in H
HYD one associates

the coalgebraD = C >◁ H, the so called smash product coalgebra of C andH, and the morphism

π = εC ⊗ IdH . A natural problem that arises is the following: for (D,π) ∈ H − BimCoalg(π)

determine all the coalgebras C in H
HYD that realizes D; that is, for ϱ : C >◁ H → H a morphism

of coalgebras in HMH , (C >◁ H, ϱ) and (C >◁ H, εC ⊗ IdH) are isomorphic objects in H −
BimCoalg(π). To find the couples (C, ϱ) that realize a given D (or C) we must first describe the

morphisms between two smash product coalgebras over a given quasi-Hopf algebra H. Inspired
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by the work of Schauenburg we showed that a morphism F : C >◁ H → C ′ >◁ H of coalgebras in

HMH identifies to a pair (Ω, ζ) consisting of a morphism Ω : C → C ′ of coalgebras in HM and

an alternative 1-cycle ζ of C that are compatible in a certain way. Then a brute characterization

for AutH(C >◁ H), the group of coalgebra automorphisms of C >◁ H in HMH , is provided;

the group of coinner automorphisms of the H-bimodule coalgebra C >◁ H, CoinnH(C >◁ H),

is characterized, too. A nicer description for the elements of AutH(C >◁ H) is given latter one,

after the study of invertible (alternative) 1-cycles of a Yetter-Drinfeld coalgebra. But the true

meaning of an element of AutH(C >◁ H) is uncovered after the solving of the problem mantioned

above. More precisely, giving a coalgebra morphism ϱ : C >◁ H → H in HMH is equivalent to

giving an alternative 1-cycle for C; then, in terms of ζ, there exists a Yetter-Drinfeld coalgebra

C(ζ) derived from C and ζ such that (C >◁ H, ϱ) and (C(ζ) >◁ H, εC(ζ) ⊗ IdH) are isomorphic

objects in H −BimCoalg(π). We deduce from here that (C, ϱ) realizes D if and only if C(ζ) and

C are isomorphic as coalgebras in H
HYD, where ζ is the alternative 1-cycle of C that defines ϱ,

if and only if C×H and C ×H are isomorphic coalgebras in HMH . Therefore, AutH(C >◁ H)

is described by pairs (Ω, ζ) consisting of Ω ∈ AutH(C), an automorphism of the coalgebra C in

HM, and an alternative 1-cycle ζ for C such that Ω is, moreover, a Yetter-Drinfeld coalgebra

isomorphism between C(ζ) and C.

An element ζ of AZ1
H(C,H) is called good if C(ζ) and C are isomorphic as coalgebras in H

HYD.

If AZ1,g
H (C,H) stands for the set of good alternative 1-cycles of C, it follows that AZ1,g

H (C,H)

identifies to the set of left cosets of AutCoalgH
HYD(C) (the group of coalgebra automorphisms

of C in H
HYD) in AutH(C >◁ H). More generally, we proved that AutH(C >◁ H) acts on

the set AZ1
H(C,H) from the left and that the orbits of this group action gives the types of

the Yetter-Drinfeld coalgebras C(ζ): C(ζ1) and C(ζ2) are isomorphic as coalgebras in H
HYD if

and only if ζ1, ζ2 belong to the same orbit. Note that, the alternative 1-cycles that realize the

same coalgebra as C in H −BimCoalg(π) are precisely the good ones, and they define the orbit

of the trivial alternative 1-cycle of C, namely C ∋ c 7→ εC(c)1H ∈ H; 1H is the unit of H.

Furthermore, this group action induces a group action of OutH(C >◁ H) (the group of outer

coalgebra automorphisms of C in HM, defined as the quotient of AutH(C >◁ H) by the normal

subgroup CoinnH(C >◁ H)) on AH1
H(C,H) and the orbits corresponding to this new action are

in a one to one correspondence to those produced by the group action of AutH(C >◁ H) on

AZ1
H(C,H). This new description of the orbits is used in the case when AutH(C >◁ H) and

AH1
H(C,H) are finite sets, when we determined the number N of the orbits, that is the number

of types of Yetter-Drinfeld coalgebras of the from C(ζ).

In [1], we have also computed the alternative 1-cycles of the Yetter-Drinfeld coalgebras that

describe the symplectic fermion quasi-Hopf algebras as what we called a double wreath quasi-

quantum group. The symplectic fermion quasi-Hopf algebra A contains a 4-dimensional quasi-

Hopf subalgebra H and C has a coalgebra structure in H
HYD given by a certain morphism of
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H-bimodule coalgebras π : A → H; thus A identifies to C >◁ H as a coalgebra in HMH . We

showed that an alternative 1-cycle ζ of C with coefficients in H is determined by a certain value

of ζ on the unit of A and a family of complex scalars (a part of them arbitrary and the other

part defined inductively). Although AZ1
H(C,H) is an infinite set, AH1

H(C,H) has 4 elements

and this fact allowed to show that any alternative 1-cycle of C is good. Consequently, for our

coalgebra C in HM its comultiplication ∆C determines 4 non-isomorphic C-comodule structures

for C in H
HYH and C(ζ) ≃ C as coalgebras in H

HYD, for any ζ ∈ AZ1
H(C,H). Hence N = 1 and

the group action is transitive.

The main results of [1] were presented at the international conference ”New trends in Hopf

algebras and Monoidal categories”, 6-9 september, Turin, Italy (see https://www.hopf-turin-

22.it/speakers/bulacu).

• For continuity, we will explain now how the results obtained in [2, 5] realize the objectives

of the activity 1.3 of the stage 2022 of the project in the percent of 90% (and shortly in percent

of 100%, by submitting [2] for publication).

By [2] all the objectivies of the activity 1.3 are realized: the description of a qQG with a

weak projection, the defining of a 2-cocycle for a qQG, a deformation theory by 2-cocycles for

qQGs, examples. Below we describe all these results of [2].

As far as we know, there is no natural way to define, in general, 2-cocycles for a quasi-Hopf

algebra. Nevertheless, there are situations when we can do this for Hopf like objects lying in

suitable categories. Such a situation occurs for instance when we deal with Hopf algebras in

braided categories. Another one, which fits perfectly to our case, is when we deal with the

so-called bimonoids in duoidal categories. To be more concise, if A is a bimonoid in a duoidal

category C, the Hopf case adapted to a certain categorical monoidal setting leads us naturally

to the concept of a normalized (invertible) 2-cocycle σ for A; and also to the deformation of

A by σ (denoted in what follows by Aσ), which is as well a bimonoid in C. Our problem is

then solved by taking C equals HMH , the category of bimodules over a quasi-bialgebra H.

Consequently, for a biproduct quasi-Hopf algebra R×H we have a categorical way to introduce

normalized (invertible) 2-cocycles (over H), as well to perform a deformation theory for them.

The latter gives rise to quasi-Hopf algebras with a weak projection which are not, in general,

biproduct quasi-Hopf algebras. Their structure is described in [2] in terms of what we called

a pre-Hopf algebra with 1-cycle in a category of Yetter-Drinfeld modules. Alternatively, up

to isomorphism, a quasi-Hopf algebra with a weak projection is a wreath algebra in kM, the

category of vector spaces, that is at the same time an op-wreath coalgebra within the category

of bimodules defined by a quasi-Hopf algebra H. Again, there is a natural way that leads to this

result. Namely, conceptually, a quasi-bialgebra is an associative algebraH such that the category

of H-bimodules is monoidal and H has a natural coalgebra structure within this category. Now,
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for a given quasi-bialgebra H, one can consider wreath algebras R#γH determined by wreath

algebras R in #
HT (kM) and, dually, op-wreath coalgebras R >◁δ H if R is a op-wreath coalgebra

in E(HMH)H# , too. Both R#γH and R >◁δ H are build on the vector space R⊗H, the former

is an associative k-algebra and the latter is a coalgebra in HMH . Thus, it is natural to ask

when the two structures afford a quasi-bialgebra (resp. quasi-Hopf algebra) structure on R⊗H

such that the natural embedding ι : H → R ⊗H becomes a quasi-bialgebra (resp. quasi-Hopf

algebra) morphism. We proved that this happens if and only if R is a pre-Hopf algebra with

1-cycle in H
HYD.

In [2], we also completed the Yetter-Drinfeld coalgebra structure of the symplectic fermion

quasi-Hopf algebras Oq(N) up to a double wreath quasi-Hopf algebra structure, by comput-

ing explicitly the multiplication and the 1-cycle corresponding to the diagram R of Oq(N).

Secondly, for some 8-dimensional quasi-Hopf algebras we found coalgebra projections onto the

unique 2-dimensional quasi-Hopf algebra H(2) which is not twist equaivalent to a Hopf algebra,

determined their double wreath quasi-Hopf algebra structure and then the 2-cocycles on them

and the deformed quasi-Hopf algebras corresponding to them.

The results obtained in [2] will be presented at the international conference UMA-RMA,

Ronda (Spain), 12-16/12/2022 (http://www.rsmeuma2022.uma.es/index.php/programa-general/).

Another objective of the activity 1.3 is the study of some Rota-Baxter operators and den-

driform algebras and their generalizations, in connection to shuffle algebras. By submitting [5]

for publication, this objective was achieved in percent of 100%. For short, the content of [5] is

the following.

NS-algebras (corresponding to associative algebras) have been introduced by Leroux and

independently by Uchino as algebras with three operations ≺, ≻ and ∨ satisfying certain axioms

that imply that the new operation ∗ =≺ + ≻ +∨ is associative. NS-algebras generalize both

Loday’s dendriform and Loday-Ronco’s tridendriform algebras. Examples are obtained via so-

called twisted Rota-Baxter operators, which are a generalization of O-operators involving a

Hochschild 2-cocycle, and via Nijenhuis operators. We recall that a Nijenhuis operator N : A →
A on an associative algebra (A,µ) with multiplication denoted by µ(x ⊗ y) = xy, for x, y ∈ A,

is a linear map satisfying

N(x)N(y) = N(N(x)y + xN(y)−N(xy)), ∀ x, y ∈ A.(0.1)

As discovered by Leroux, if one defines x ≺ y = xN(y), x ≻ y = N(x)y and x ∨ y = −N(xy),

then (A,≺,≻,∨) is an NS-algebra, and in particular the new multiplication defined on A by

x ∗ y = xN(y) +N(x)y −N(xy) is associative. Basic examples are obtained by taking a fixed

element a ∈ A and defining N1, N2 : A → A by N1(x) = ax and N2(x) = xa, for all x ∈ A;

it turns out that N1, N2 are Nijenhuis operators and in each case the new multiplication ∗ as

above boils down to x ∗ y = xay, for all x, y ∈ A. This property can be regarded also in the
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following (converse) way: the fact that the new multiplication on A given by x ∗ y = xay is

associative (usually, this new operation ∗ is said to be a ”perturbation” of the old multiplication

of A via the element a) can be obtained as a consequence of a property of Nijenhuis operators

(or, alternatively, that it can be given a Nijenhuis operator interpretation).

Hom-type and BiHom-type algebras are certain algebraic structures (of growing interest in

recent years) whose study began in some early papers by Makhlouf and Silvestrov and more

recently in the paper G. Graziani, A. Makhlouf, C. Menini, F. Panaite, BiHom-associative

algebras, BiHom-Lie algebras and BiHom-bialgebras, Symmetry Integrability Geom. Methods

Appl. (SIGMA) 11 (2015), 086, and can be roughly described as being defined by some identities

obtained by twisting a classical algebraic identity (such as associativity) by one or two maps. For

instance, a BiHom-associative algebra (A,µ, α, β) is an algebra (A,µ), with notation µ : A⊗A →
A, µ(x⊗ y) = xy, together with two (multiplicative with respect to µ) commuting linear maps

(called structure maps) α, β : A → A such that α(x)(yz) = (xy)β(z) for all x, y, z ∈ A. There

exist BiHom analogues of many types of algebras, in particular of (tri)dendriform algebras,

infinitesimal bialgebras etc. Examples of (Bi)Hom-type algebras can be obtained from classical

types of algebras by a procedure called ”Yau twisting”.

The BiHom analogue of the ”perturbations” mentioned above has been introduced in the

paper L. Liu, A. Makhlouf, C. Menini, F. Panaite, Tensor products and perturbations of BiHom-

Novikov-Poisson algebras, J. Geom. Phys. 161 (2021), 104026 as follows. Let (A,µ, α, β) be

a BiHom-associative algebra and let a ∈ A be such that α2(a) = β2(a) = a. Define a new

operation on A by x ∗ y = α(x)(α(a)y); then (A, ∗, α2, β2) is a BiHom-associative algebra.

The starting point of the paper [5] was to look for a ”Nijenhuis operator interpretation” of this

fact. One can notice that Nijenhuis operators defined by the relation (0.1) can be considered on

any type of algebra (not necessarily associative), so we were trying to find a Nijenhuis operator on

(A,µ, α, β) depending on the given element a and that would lead to the operation ∗, but this did
not work. It turns out that the solution to this problem was to consider a generalized version of

Nijenhuis operators on BiHom-associative algebras. And indeed, the operators N1, N2 : A → A,

N1(x) = α(a)x and N2(x) = xα(a), for x ∈ A, are such generalized Nijenhuis operators from

which one can obtain the multiplication ∗ in a certain way.

We were then led to introduce the concept of BiHom-NS-algebra, the BiHom analogue of Ler-

oux’s and Uchino’s NS-algebras. They generalize BiHom-(tri)dendriform algebras, and it turns

out that the generalized Nijenhuis operators that we introduced lead to BiHom-NS-algebras.

We defined as well the BiHom analogue of twisted Rota-Baxter operators and proved that they

also lead to BiHom-NS-algebras and that, moreover, just as in the classical case, there is an

adjunction between BiHom-NS-algebras and twisted Rota-Baxter operators.

The last objectives of activity 1.3 refer to the initiation of a study regarding the relationship

between almost dual pairs in Yetter-Drinfeld module categories and 2-cocycles in certain braided
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categories. This study was indeed initiated, in the sense that we have defined almost dual pairs

in Yetter-Drinfeld module categories and described, in a particular case, the structure of a 2-

cocycle on a quasi-quantum group of biproduct type (a particular case of a quasi-quantum group

with weak projection). Thus, we can say that this objective has been achieved in percent of

100%.

• We mention now the results that are related to the activity 1.2 of the stage 2022 of the

project. In this direction, the first objective, the description of the braided tensor Hopf algebra

associated to a vector space V (considered as Yetter-Drinfeld module over a Hopf group algebra

deformed by a 3-cocycle) was realized in percent of 100%. Furthermore, we have described

2-dimensional braided Hopf algebras in a category of Yetter-Drinfeld modules over a qQG and

we have obtained concrete examples of this type. Also, we have initiated the description of

their tensor algebras. Another objective of activity 1.2 was the defining of a class of braided

Hopf algebras that are not just vector spaces. More precisely, they are Frobenius algebras in

categories of corepresentations over a (q)QG; and that in this direction a structure theorem for

them is essential for our study. This problem is solved in [3], whose content we will detail in

what follows. We would like to mention that, by submitting [3] for publication, this objective

of activity 1.2 was achieved in percent of 100%.

Originated in the work of Frobenius on group representations, Frobenius algebras and their

relatives, quasi-Frobenius algebras, have been objects of intense study after the influential work

of Brauer, Nesbitt and Nakayama around 1940. The initial interest was algebraic, but Frobe-

nius algebras occurred, sometimes unexpectedly, in topology, differential geometry, knot theory,

homological algebra, topological quantum field theory, Hopf algebra theory, etc. A step towards

a deeper understanding of Frobenius algebras from a ring theoretical perspective was the study

of (quasi-)Frobenius rings.

There are certain Frobenius algebras equipped with more structure that occur in a natural

way, for example Frobenius algebras endowed with a grading. Inspired by an equivalent char-

acterization of Frobenius algebras given by Abrams, one can consider Frobenius algebras in an

arbitrary monoidal category as algebras A, endowed with a coalgebra structure whose comulti-

plication is a morphism of A-bimodules. In particular, one can look at Frobenius algebras in the

monoidal category of G-graded vector spaces, where G is a group; these are called graded Frobe-

nius algebras, and they were investigated in previous work of the authors, as well as a version

modified by a shift, called σ-graded Frobenius algebras. Such objects occur in noncommutative

geometry, where certain connected graded algebras are n-graded Frobenius for a positive integer

n. For example, if A is a connected Noetherian graded algebra which is Artin-Schelter regular

and Koszul, of global dimension n, then the Koszul dual algebra A! of A is n-graded Frobenius.
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The structure and representation theory of graded Frobenius algebras have been used to classi-

fication results for certain algebras playing a role in non-commutative geometry, and for proving

a non-commutative Bernstein-Gelfand-Gelfand correspondence.

In order to understand the structure of graded Frobenius algebras, our initial aim was to fill

in a missing piece of the Frobenius puzzle, by defining and investigating graded quasi-Frobenius

algebras. In developing the theory, we realized that it is interesting to consider ring theoretical

versions of the concepts. The aim of the paper is to introduce graded quasi-Frobenius rings and

(σ-)graded Frobenius rings, and to investigate them and their representations. As expected,

a finite dimensional graded algebra turns out to be (σ-)graded Frobenius if and only if it is

(σ-)graded Frobenius as a ring.

Some results about graded rings and graded modules may give the impression that graded

theory is a simple extension of the un-graded one. This is true up to a point, and a reason is that

the category of modules over a ring and the category of graded R-modules over a graded ring

R are both Grothendieck categories. However, the category of graded R-modules is equipped

with a family of category isomorphisms, the shifts by group elements, and this adds an extra

level of complexity to the structure of this category and its objects. As an example in support

of this idea, we mention the theory of the graded Grothendieck group of an algebra graded

by an abelian group. On the other hand, even in the case where the category of graded R-

modules is equivalent to the category of modules over a ring A, this ring has usually a much

more complicated structure than R.

In Section Section 2 of [3] we discussed the structure of a graded ring A = Mn(∆)(g1, . . . , gn)

associated with a graded division ring ∆, and some group elements g1, . . . , gn. A is graded

simple and graded Artinian, so any two graded simple left A-modules are isomorphic up to a

shift. We count the isomorphism types of graded simple left A-modules, and how many of them

embed into A. In Section 3 of [3] we considered the graded versions of the Jacobson radical

and the singular radical, and we prove some of their properties related to finiteness conditions

and to injectivity. We also give an alternative proof of the structure theorem for graded simple

graded left Artinian rings, which says that any such ring is isomorphic to Mn(∆)(g1, . . . , gn) for

some n,∆ and g1, . . . , gn. In Section 4 of [3] we considered the decomposition of a graded left

Artinian ring into a sum of graded indecomposable left modules, and obtain some consequences

on the graded simple modules when we factor by the graded Jacobson radical. A structure

result for projective objects in the category of graded modules is derived. In Section 5 of [3]

we defined graded quasi-Frobenius rings by proving several equivalent characterizations. In the

case of a graded ring R of finite support, we show that R is graded quasi-Frobenius if and only

if it is quasi-Frobenius. More properties of graded quasi-Frobenius rings were investigated in

Section 6 of [3], where we also associated a certain set of data with a graded quasi-Frobenius

ring, including a version of the Nakayama permutation. This set of data is used in Section
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7 of [3] to introduce graded Frobenius rings and to give equivalent characterizations. In fact,

we define the more general version of a σ-graded Frobenius ring, which matches with the shift-

modified version of graded Frobenius algebra mentioned above. At this point it will be clear that

there is a higher degree of complexity of the concept, compared to the un-graded one. In the

un-graded case, the Nakayama permutation and the multiplicities of the isomorphism types of

principal indecomposable modules is all that we need for deciding whether a quasi-Frobenius ring

is Frobenius, while in the graded case it turns out that one needs more information, related to

the inertia groups of the graded simple modules and certain shifts. We note that for developing

the theory of graded (quasi-)Frobenius rings, we need many times to work not with isomorphism

types of graded modules, but with isoshift types.

The last objective of activity 1.2 refers to balanced structures and twists on categories of

Yetter-Drinfeld modules and their connections to pivotal, sovereign and/or spherical ones. Here,

we have described the balanced and ribbon structures of a category of Yetter-Drinfeld modules

over a quasi-quantum group. At first sight, they are extremely complicated and, therefore, diffi-

cult to work with them; in what follows we will try to refine them making their connections with

the pivotal, sovereign and/or spherical structures natural. For this reason, this last objective

was achieved in percent of 90%. We expect the problem to be completely solved in the near fu-

ture (these results are viewed as support for certain assumed objectives in the two coming years).

We conclude this part of the report with the description of the scientific content of the papers

[4, 6]. The results from [4, 6] are related to assumed objectives for the following years, but we

will include them here because they were obtained in this stage of the project.

An objective of the project (from the following years) is to get concrete examples of shuffle

quasi-quantum groups by using the study of certain functors between categories of Hilbert

modules over C∗-local algebras; the paper [4] fits under this topic.

Finsler C∗-modules are right modules over a C∗-algebra A equipped with a map with values

in A which has the properties of a norm. In the commutative case, Finsler C∗-modules are a

natural generalization of Hilbert C∗-modules. Indeed, let X be a Hausdorff compact space. If B

=
⋃
t∈X

Ht is a bundle of Hilbert spaces over X satisfying appropriate continuity properties, then

the set E of continuous sections (that is, continuous maps f : X → B such that f(t) ∈ Ht for

t ∈ X) has a natural structure of Hilbert C∗-module over C(X), the C∗-algebra of all complex

continuous functions on X, with the inner product given by (f, g) ∈ E × E → ⟨f, g⟩ ∈ C(X)

with ⟨f, g⟩ (t) = ⟨f (t) , g (t)⟩Ht
. Moreover, any Hilbert C∗-module over a unital commutative

C∗-algebra is of this form. If B =
⋃
t∈X

Bt is a bundle of Banach spaces over X, then E is a

Finsler C∗-module with the map ρC(X) : E → C(X) given by ρC(X) (f) (t) = ∥f (t)∥Bt
, and

any Finsler C∗-module over a commutative unital C∗-algebra is isomorphic to one of this form.
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Therefore, if the Hilbert C∗-modules serve as basis for ”noncommutative Hilbert bundles”, the

Finsler C∗-modules serves as basis for ”noncommutative Banach bundles”.

The notion of locally C∗-algebra is a generalization of the notion of C∗-algebra. A locally C∗-

algebra is a complete Hausdorff complex topological ∗-algebra A whose topology is determined

by an upward filtered family {pλ}λ∈Λ of C∗-seminorms. If X is a direct limit of a countable

family of Hausdorff compact spaces {Xn}n, then C(X) is a unital locally C∗-algebra with respect

to the family of C∗-seminorms {pn}n, where pn (f) = sup{|f (x)| ;x ∈ Xn}. Moreover, any unital

Frechét locally C∗-algebra is of this form.

An element a ∈ A is bounded if sup{pλ (a) ;λ ∈ Λ} < ∞. Then b (A) := {a ∈ A; sup{pλ (a) ;λ ∈
Λ} < ∞} is a C∗-algebra with respect to the C∗-norm ∥·∥∞ = sup{pλ (·) ;λ ∈ Λ}. Moreover,

b (A) is dense in A.

Let (Υ,≤) be a directed poset. A quantized domain in a Hilbert spaceH is a triple {H; E ;DE},
where E = {Hι; ι ∈ Υ} is an upward filtered family of closed subspaces with dense union

DE =
⋃
ι∈Υ

Hι in H. Put

C∗(DE) := {T ∈ L(DE);T (Hι) ⊆ Hι, T (H⊥
ι ∩ DE) ⊆ H⊥

ι ∩ DE , T |Hι
∈ B(Hι), ∀ι ∈ Υ}.

If T ∈ C∗(DE), then there exists T⋆ :Dom(T⋆) → H, Dom(T⋆) ⊃ DE . Let T
∗ := T⋆

∣∣
DF

∈
C∗(DE). Then, C∗(DE) has a natural structure of a unital ∗-algebra. For each ι ∈ Υ, the map

p
C∗(DE)
ι : C∗(DE) → [0,∞) defined by p

C∗(DE)
ι (T ) =

∥∥T |Hι

∥∥ is a C∗-seminorm, and C∗(DE) is a

locally C∗-algebra with respect to the family of C∗-seminorms {pC
∗(DE)

ι }ι∈Υ.
A local ∗-representation of A on the the quantized domain {H, E = {Hι}ι∈Υ, DE} is a ∗-

morphism φ : A → C∗(DE) with the property that for each ι ∈ Υ, there exists λ ∈ Λ such that

p
C∗(DE )
ι (φ (a)) ≤ pλ (a) for all a ∈ A. For every locally C∗-algebra A there is a quantized domain

{H, E ,DE} and a local isometric ∗-homomorphism π : A→C∗(DE). This result can be regarded

as an unbounded analog of the Gelfand-Naimark theorem. So, the concrete models for locally

C∗-algebras are ∗-subalgebras of unbounded linear operators on a Hilbert space, which satisfy

some properties.

A Finsler locally C∗-module over A is a right A-module equipped with a map ρA : E → A+

satisfying the following conditions:

(1) For each λ ∈ Λ, the map pEλ : E → R+ given by pEλ (x) = pλ (ρA (x)) is a seminorm on

E;

(2) E is complete with respect to the topology defined by the family of seminorms {pEλ }λ∈Λ;
(3) ρA (xa)2 = a∗ρA (x)2 a for all x ∈ E and for all a ∈ A.

Let {H, E = {Hι}ι∈Υ,DE} and {K,F = {Kι}ι∈Υ,DF} be two quantized domains. Put

C∗(DE ,DF ) := {T ∈ L(DE ,DF );T (Hι) ⊆ Kι, T (H⊥
ι ∩DE) ⊆ K⊥

ι ∩DF , T |Hι
∈ B(Hι,Kι),∀ι ∈

Υ}.
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If T ∈ C∗(DE ,DF ), then there exists T⋆ :Dom(T⋆) → H, Dom(T⋆) ⊃ DF and T ∗ :=

T⋆
∣∣
DF

∈ C∗(DF ,DE). Moreover, C∗(DE ,DF ) has a natural structure of Hilbert locally C∗-

module over C∗(DE) with the action of C∗(DE) on C∗(DE ,DF ) given by (T, S) ∈ C∗(DE ,DF )×
C∗(DE) → TS ∈ C∗(DE ,DF ) and the inner product given by (T1, T2) ∈ C∗(DE ,DF )×C∗(DE ,DF ) →
⟨T1, T2⟩ = T ∗

1 T2 ∈ C∗(DE). Therefore, C∗(DE ,DF ) is a Finsler locally C∗-module over C∗(DE)

with the map ρC∗(DE) : C∗(DE ,DF ) → C∗(DE) defined by ρC∗(DE) (T ) = (T ∗T )
1
2 .

The notion of Finsler locally C∗-modules was introduced by A. Khosravi and M. Azhini

(2004). In a series of papers, they and others investigated some properties of Finsler locally

C∗-modules. In this paper, we present other properties of Finsler locally C∗-modules. We show

that the bounded part b(E) of a Finsler locally C∗-module E over A has a canonical structure

of Finsler C∗-module over b(A). Moreover, b(E) is dense in E.

We introduce the notion of local quasi-representations of a Finsler locally C∗-module on

Hilbert spaces. A local quasi-representation of a Finsler locally C∗-module over A, (E, ρA) , on

the Hilbert spaces H and K with the quantized domains DE =
⋃
ι∈Υ

Hι, respectively DF =
⋃
ι∈Υ

Kι,

is a map Φ : E → C∗(DE ,DF ), with the property that there exists a local ∗-representation φ of

A on H such that (Φ (x)∗Φ (x))
1
2 = φ (ρA (x)) for all x ∈ E. We show that every Finsler locally

C∗-module has a local quasi-representation.

Also, we show that a Finsler locally C∗-module can be realized as an inverse limit of Finsler

C∗-modules. As an application of this result, we show that, under some conditions, a derivation

of a locally C∗-algebra in a Finsler locally C∗-module is approximately inner. In addition,

we show that the derivations of the Frechét locally C∗-algebra C∗(DE), where DE =
⋃
n
Ck(n)

and (k(n))n is an increasing sequence of positive integers, in Finsler locally C∗-modules are

approximately inner.

Another objective of the project (from the coming years) aims to develop a theory of de-

formations for (co)algebras in monoidal categories and to construct such objects that verify,

moreover, a certain universal property. The final aim is to obtain new classes of braided Hopf

tensorial algebras and to describe the quotients of them. In [6], we initiated the investigation of

deformation of algebras in a monoidal category (M,⊗, 1), extending a part of the work from the

article On the Deformation of Rings and Algebras (Annals of Mathematics 79(1064), 59-103), by

M. Gerstenhaber. In our approach, for a K-coalgebra C we construct a new monoidal category

(MC ,⊗, 1) in such a way that M and MC have the same objects, but the hom-sets in MC

depend on C as well. Moreover, every morphism of coalgebras σ : C → D induces a monoidal

functor σ∗ : MD → MC . Since the categories that we work with are monoidal, we can talk

about algebras (aka monoids) in MC and MD. The functor σ∗ maps an algebra in MD to an

algebra in MC , inducing another functor σ∗ : Alg(MD) → Alg(MC) between the categories

of algebras in MD and MC , respectively. Let us remark that the setting from Gerstenhaber’s
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work can be recovered taking σ to be the inclusion of C = K into the coalgebra D = K[q] of

polynomials in one variable q. Of course, in this particular case, M is the category of K-linear

spaces.

Given σ as above, a σ-deformation of A ∈ Alg(MC) is, by definition, an algebra in the fiber

of σ∗ over A. Two deformations can be identified via a canonical equivalence relation. In one of

our main results, one shows that there is a one-to-one correspondence between the set of equiva-

lence classes of σ-deformations of A and the set of coalgebra maps from D to a certain coalgebra

Defσ(A), which satisfies a suitable universal property. As application, one proves that certain

types of deformations (e.g. infinitesimal ones) corresponds to some distinguished elements in

Defσ(A), such as group-like or skew-primitive elements. We also related σ-deformations with a

Hochschild-type cohomology, and discussed several examples.

II. Summary of progress

- The objectives assumed within the 3 activities of the stage 2022 of the project were achieved

in percentage of 100%, 95% a̧nd 95%, respectively. Until the end of this stage (31.12.2022), the

second and the third activity will be fuflfilled in percentage of 100%, so all the objectives of the

stage 2022 will be realized in percentage of 100% . Moreover, two other objectives corresponding

to the forthcoming stages of the grant were initiated.

- 3 articles were submitted for publication, all to journals from Q2.

- 3 other articles are in an advanced stage of preparation, and will be submitted for publication

in the near future.

- The results we have obtained were presented at 5 international conferences, all of them being

well appreciated.

- We developed the local network and improved the equipment by purchasing routers and

high-performance laptops.

- We have ensured a good environment for the realization and the dissemination of our scien-

tific papers.

- The budget allocated to this stage was spent in full.

Date, Project leader,

November 2022 Prof. dr. Daniel Bulacu


