PARA-HYPERHERMITIAN STRUCTURES ON TANGENT BUNDLES

GABRIEL EDUARD VÎLCU

ABSTRACT. In this paper we construct a family of almost para-hyperhermitian structures on the tangent bundle of an almost para-hermitian manifold and study its integrability. Also, necessary and sufficient conditions are provided in order that these structures to become para-hyper-Kähler.

AMS Mathematics Subject Classification: 53C15.

Key Words and Phrases: para-hyperhermitian structure, tangent bundle, paracomplex space form.

1. INTRODUCTION

The almost paraquaternionic structures, also named almost para-hypercomplex structures or almost quaternionic structures of second kind, have been introduced by P. Libermann in 1954 under the latter name [30] as a triple of endomorphisms of the tangent bundle $\{J_1, J_2, J_3\}$, in which J_1 is almost complex and J_2, J_3 are almost product structures satisfying relations of anti-commutation. Then the paraquaternionic structures were studied under various contexts by many authors (see, e.g., [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 17, 21, 23, 24, 28, 31, 42, 43]). An almost parahyperhermitian structure on a manifold consists in an almost para-hypercomplex structure and a compatible semi-Riemannian metric necessarily of neutral signature. If all three structures involved in the definition of an almost para-hyperhermitian structure are parallel with respect to the Levi-Civita connection of the compatible metric, one arrives to the concept of para-hyper-Kähler structure, which is also referred in literature as neutral hyper-Kähler or hypersymplectic structure [8, 12, 13, 17, 21].

The paraquaternionic structures are of great interest in theoretical physics, because they arise in a natural way both in string theory and integrable systems

[6, 11, 16, 22, 32, 35] and, consequently, to find new classes of manifolds endowed with such a kind of structures is an interesting topic. Kamada [29] proves that any primary Kodaira surface admits para-hyper-Kähler structures, whose compatible metrics can be chosen to be flat or nonflat. On the other hand, an integrable para-hyperhermitian structure has been constructed in [27] on Kodaira-Thurston properly elliptic surfaces and also on the Inoe surfaces modeled on Sol_4^1 . In higher dimensions, para-hyperhermitian structures on a class of compact quotients of 2-step nilpotent Lie groups was found in [19]. A procedure to construct para-hyperhermitian structures on R^{4n} with complete and not necessarily flat associated metrics is given in [5]. Also, some examples of integrable almost para-hyperhermitian structures which admit compatible linear connections with totally-skew symmetric torsion are given in [28]. Recently, in [25], a natural parahyperhermitian structure has been constructed on the tangent bundle of an almost para-hermitian manifold and on the circle bundle over a manifold with a mixed 3-structure. The main purpose of this paper is to generalize this construction to obtain an entire class of such structures; we also investigate its integrability and obtain necessary and sufficient conditions for these structures to become parahyper-Kähler.

2. Preliminaries on almost para-hyperhermitian manifolds

An almost product structure on a smooth manifold M is a tensor field P of type (1,1) on M, $P \neq \pm Id$, such that:

(1)
$$P^2 = Id$$

where Id is the identity tensor field of type (1,1) on M.

An almost para-hermitian structure on a differentiable manifold M is a pair (P,g), where P is an almost product structure on M and g is a semi-Riemannian metric on M satisfying:

(2)
$$g(PX, PY) = -g(X, Y),$$

for all vector fields X, Y on M.

In this case, (M, P, g) is said to be an almost para-hermitian manifold. It is easy to see that the dimension of M is even. Moreover, if $\nabla P = 0$, then (M, P, g) is said to be a para-Kähler manifold.

An almost complex structure on a smooth manifold M is a tensor field J of type (1,1) on M such that:

$$J^2 = -Id.$$

An almost para-hypercomplex structure on a smooth manifold M is a triple $H = (J_{\alpha})_{\alpha = \overline{1,3}}$, where J_1 is an almost complex structure on M and J_2 , J_3 are almost product structures on M, satisfying:

(4)
$$J_2 J_1 = -J_1 J_2 = J_3.$$

In this case (M, H) is said to be an almost para-hypercomplex manifold.

A semi-Riemannian metric g on (M, H) is said to be compatible or adapted to the almost para-hypercomplex structure $H = (J_{\alpha})_{\alpha = \overline{1,3}}$ if it satisfies:

(5)
$$g(J_{\alpha}X, J_{\alpha}Y) = \epsilon_{\alpha}g(X, Y), \forall \alpha = \overline{1,3}$$

for all vector fields X, Y on M, where $\epsilon_1 = 1, \epsilon_2 = \epsilon_3 = -1$. Moreover, the pair (g, H) is called an almost para-hyperhermitian structure on M and the triple (M, g, H) is said to be an almost para-hyperhermitian manifold. It is clear that any almost para-hyperhermitian manifold is of dimension $4m, m \ge 1$, and any adapted metric is necessarily of neutral signature (2m, 2m). If $\{J_1, J_2, J_3\}$ are parallel in respect to the Levi-Civita connection of g, then the manifold is called para-hyper-Kähler.

An almost para-hypercomplex manifold (M, H) is called a para-hypercomplex manifold if each J_{α} , $\alpha = 1, 2, 3$, is integrable, that is, if the corresponding Nijenhuis tensors:

(6)
$$N_{\alpha}(X,Y) = [J_{\alpha}X, J_{\alpha}Y] - J_{\alpha}[X, J_{\alpha}Y] - J_{\alpha}[J_{\alpha}X, Y] - \epsilon_{\alpha}[X, Y]$$

 $\alpha = 1, 2, 3$, vanish for all vector fields X, Y on M. In this case H is said to be a para-hypercomplex structure on M. Moreover, if g is a semi-Riemannian metric adapted to the para-hypercomplex structure H, then the pair (g, H) is said to be a

para-hyperhermitian structure on M and (M, g, H) is called a para-hyperhermitian manifold. We note that the existence of para-hyperhermitian structures on compact complex surfaces has been recently investigated in [15].

3. A NATURAL ALMOST PARA-HYPERHERMITIAN STRUCTURE ON THE TANGENT BUNDLE OF AN ALMOST PARA-HERMITIAN MANIFOLD

Let (M, P, g) be an almost para-hermitian manifold and TM be the tangent bundle, endowed with the Sasakian metric:

$$G(X,Y) = (g(KX,KY) + g(\pi_*X,\pi_*Y)) \circ \pi$$

for all vector fields X, Y on TM, where π is the natural projection of TM onto Mand K is the connection map (see [18]).

We remark that for each $u \in T_x M$, $x \in M$, we have a direct sum decomposition:

$$T_uTM = T_u^hTM \oplus T_u^vTM$$

where $T_u^h TM = KerK|_{T_uTM}$ is called the horizontal subspace of T_uTM and $T_u^v TM = Ker\pi_*|_{T_uTM}$ is called the vertical subspace of T_uTM . Moreover, the elements of $T_u^h TM$ are called horizontal vectors at u and the elements of $T_u^v TM$ are said to be vertical vectors at u.

We can see that if $u, X \in T_x M$ and X_u^h (resp. X_u^v) denotes the horizontal lift (resp. vertical lift) of X to $T_u TM$ then:

$$\pi_* X_u^h = X, \ \pi_* X_u^v = 0, \ K X_u^h = 0, \ K X_u^v = X.$$

Remark 3.1. If A is a vector field along π (i.e. a map $A: TM \to TM$ such that $\pi \circ A = \pi$) and A^h (resp. A^v) denotes the horizontal lift (resp. vertical lift) of A (that is: $A^h: u \mapsto A^h_u = A(u)^h_u$ and $A^v: u \mapsto A^v_u = A(u)^v_u$), then any horizontal (vertical) vector field X on TM can be written as $X = A^h$ ($X = A^v$) for a unique vector A along π . If A, B are vector fields along π , then, by generalizing the well-known Dombrowski's lemma [18], Ii [26] has shown that the brackets of the horizontal and vertical lifts are given by:

(7)
$$[A^h, B^h]_u = (\nabla_{A^h} B)^h_u - (\nabla_{B^h} A)^h_u - (R(A(u), B(u))u)^v_u,$$

PARA-HYPERHERMITIAN STRUCTURES ON TANGENT BUNDLES

(8)
$$[A^h, B^v] = (\nabla_{A^h} B)^v - (\nabla_{B^v} A)^h,$$

(9)
$$[A^{v}, B^{v}] = (\nabla_{A^{v}}B)^{v} - (\nabla_{B^{v}}A)^{v}$$

where the covariant derivative of a vector field C along π in the direction of $\xi \in T_u TM$, $u \in TM$, is defined as the tangent vector to M at $x = \pi(u)$ given by:

$$\nabla_{\xi} C = (K \circ dC)(\xi).$$

We can also remark that every tensor field T of type (1,1) on M is a vector field along π . Moreover we have:

(10)
$$\nabla_{A^v} T = T \circ A,$$

and, if T is parallel,

(11)
$$\nabla_{A^h} T = 0.$$

We note that the identity map $id : u \mapsto u$ on TM is a parallel tensor field of type (1,1) on M. Moreover, if $|| \cdot ||^2$ is the function $u \mapsto ||u||^2 = g(u, u)$ on TM, then we have:

(12)
$$A^{h}||\cdot||^{2} = 0, \ A^{v}||\cdot||^{2} = 2g(A, id).$$

Remark 3.2. If (M, P, g) is an almost para-hermitian manifold, then we can define three tensor fields J_1, J_2, J_3 on TM by the equalities:

(13)
$$\begin{cases} J_1 X^h = X^v \\ J_1 X^v = -X^h \end{cases}$$

(14)
$$\begin{cases} J_2 X^h = (PX)^v \\ J_2 X^v = (PX)^h \end{cases},$$

(15)
$$\begin{cases} J_3 X^h = (PX)^h \\ J_3 X^v = -(PX)^v \end{cases}$$

It is easy to see that J_1 is an almost complex structure and J_2, J_3 are almost product structures. We also have the following result (see [25]).

.

Theorem 3.3. Let (M, P, g) be an almost para-hermitian manifold. Then $H = (J_{\alpha})_{\alpha=\overline{1,3}}$ is an almost para-hypercomplex structure on TM which is para-hyperhermitian with respect to the Sasakian metric G. Moreover H is integrable if and only if (M, P) is a flat para-Kähler manifold.

In the next Section, following the same techniques as in [7, 33, 34, 36, 37, 38, 39, 40, 41], we deform the almost para-hyperhermitian structure given above in order to obtain an entire family of structures of this kind on the tangent bundle of an almost para-hermitian manifold.

4. A family of almost para-hyperhermitian structure on the tangent bundle of a para-hermitian manifold

Lemma 4.1. Let (M, P, g) be an almost para-hermitian manifold and let J_1 be a tensor field of type (1,1) on TM, defined by:

(16)
$$\begin{cases} J_1 X_u^h = a(t) X_u^v + b(t) g(X, u) u^v + c(t) g(X, Pu) (Pu)^v \\ J_1 X_u^v = m(t) X_u^h + n(t) g(X, u) u^h + p(t) g(X, Pu) (Pu)^h \end{cases}$$

for all vectors $X \in T_{\pi(u)}M$, $u \in T_xM$, $x \in M$, where $t = ||u||^2$ and a, b, c, m, n, pare differentiable real functions. Then J_1 defines an almost complex structure if and only if

(17)
$$am + 1 = 0, an(a + tb) - b = 0, ap(a - tc) - c = 0.$$

Proof. The conditions follows from the property $J_1^2 = -Id$.

Lemma 4.2. Let (M, P, g) be an almost para-hermitian manifold and let J_2 be a tensor field of type (1,1) on TM, defined by:

(18)
$$\begin{cases} J_2 X_u^h = a(t)(PX)_u^v - b(t)g(X, Pu)u^v - c(t)g(X, u)(Pu)^v \\ J_2 X_u^v = q(t)(PX)_u^h - r(t)g(X, Pu)u^h - s(t)g(X, u)(Pu)^h \end{cases}$$

for all vectors $X \in T_{\pi(u)}M$, $u \in T_xM$, $x \in M$, where $t = ||u||^2$ and a, b, c, q, r, sare differentiable real functions. Then J_2 defines an almost product structure if and only if

(19)
$$aq - 1 = 0, \ ar(a - tc) - c = 0, \ as(a + tb) - b = 0.$$

Proof. The conditions follows from the property $J_2^2 = Id$.

Proposition 4.3. Let (M, P, g) be an almost para-hermitian manifold. Then there exists an infinite class of almost para-hypercomplex structures on TM.

Proof. We define a tensor field J_3 of type (1,1) on TM by $J_3 = J_2J_1$, where J_1, J_2 are given by (16) and (18), such that (17) and (19) are satisfied. We can easily see now that $H = (J_\alpha)_{\alpha=\overline{1,3}}$ is an almost para-hypercomplex structure on TM.

Proposition 4.4. Let (M, P, g) be an almost para-hermitian manifold, let $H = (J_{\alpha})_{\alpha=\overline{1,3}}$ be the almost para-hypercomplex structure on TM given above and let \tilde{G} be a semi-Riemannian metric on TM defined by:

(20)
$$\begin{cases} \widetilde{G}(X^{h}, Y^{h}) = \alpha(t)g(X, Y) + \beta(t)g(X, u)g(Y, u) + \gamma(t)g(X, Pu)g(Y, Pu) \\ \widetilde{G}(X^{v}, Y^{v}) = \delta(t)g(X, Y) + \varepsilon(t)g(X, u)g(Y, u) + \theta(t)g(X, Pu)g(Y, Pu) \\ \widetilde{G}(X^{h}, Y^{v}) = 0 \end{cases}$$

for all vectors $X, Y \in T_{\pi(u)}M$, $u \in T_xM$, $x \in M$, where $t = ||u||^2$ and $\alpha, \beta, \gamma, \delta, \varepsilon, \theta$ are smooth real functions. Then \widetilde{G} is adapted to the almost para-hypercomplex structure $H = (J_{\alpha})_{\alpha=\overline{1,3}}$ if only if:

(21)
$$\begin{cases} \beta + \gamma = 0\\ \delta a^2 - \alpha = 0\\ a^2 \varepsilon (a + tb)^2 + b\alpha (2a + tb) - \beta a^2 = 0\\ a^2 \theta (a - tc)^2 + c\alpha (2a - tc) + \beta a^2 = 0 \end{cases}$$

Proof. The conditions (21) are obtained by direct computations using the property (5).

Corollary 4.5. There exists an infinite class of almost para-hyperhermitian structures on the tangent bundle of an almost para-hermitian manifold.

5. The study of the integrability

Let (M, P, g) be a para-Kähler manifold. A plane $\Pi \subset T_p M$, $p \in M$, is called para-holomorphic if it is left invariant by the action of P, that is $P\Pi \subset \Pi$. The para-holomorphic sectional curvature is defined as the restriction of the sectional

curvature to para-holomorphic non-degenerate planes. A para-Kähler manifold is said to be a paracomplex space form if its para-holomorphic sectional curvatures are equal to a constant, say k. It is well-known that a para-Kähler manifold (M, P, g)is a paracomplex space form, denoted M(k), if and only if its curvature tensor is:

$$R(X,Y)Z = \frac{k}{4} \{g(Y,Z)X - g(X,Z)Y + g(Y,PZ)PX - g(X,PZ)PY - 2g(X,PY)PZ]\}$$
(22)
$$-g(X,PZ)PY - 2g(X,PY)PZ]\}$$

for all vector fields X, Y, Z on M.

From the above section we deduce that the tangent bundle of a paracomplex space form M(k) can be endowed with a class of almost para-hypercomplex structure $H = (J_{\alpha})_{\alpha = \overline{1,3}}$ given by:

(23)
$$\begin{cases} J_1 X_u^h = a X_u^v + bg(X, u)u^v + cg(X, Pu)(Pu)^v \\ J_1 X_u^v = -\frac{1}{a} X_u^h + \frac{b}{a(a+tb)}g(X, u)u^h + \frac{c}{a(a-tc)}g(X, Pu)(Pu)^h \end{cases}$$

(24)
$$\begin{cases} J_2 X_u^h = a(PX)_u^v - bg(X, Pu)u^v - cg(X, u)(Pu)^v \\ J_2 X_u^v = \frac{1}{a}(PX)_u^h - \frac{c}{a(a-tc)}g(X, Pu)u^h - \frac{b}{a(a+tb)}g(X, u)(Pu)^h \end{cases}$$

(25)
$$\begin{cases} J_3 X_u^h = (PX)_u^h \\ J_3 X_u^v = -(PX)_u^v + \frac{b+c}{a-tc}g(X, Pu)u^v + \frac{b+c}{a+tb}g(X, u)(Pu)^v, \end{cases}$$

where a, b, c are differentiable real functions such that $\frac{1}{a}, \frac{b}{a(a+tb)}, \frac{c}{a(a-tc)}$ are well defined and also differentiable real functions.

Theorem 5.1. Let M(k) be a paracomplex space form. Then the almost parahypercomplex structure $H = (J_{\alpha})_{\alpha = \overline{1,3}}$ given above is integrable if and only if

(26)
$$4b(a - 2ta') - 8aa' + k = 0, \ 4ac + k = 0.$$

Proof. First of all we remark that if two of the structures J_1, J_2, J_3 are integrable, then the third structure is also integrable because the corresponding Nijenhuis tensors are related by:

$$2N_{\alpha}(X,Y) = N_{\beta}(J_{\gamma}X,J_{\gamma}Y) + N_{\gamma}(J_{\beta}X,J_{\beta}Y) - J_{\beta}N_{\gamma}(J_{\beta}X,Y) -J_{\beta}N_{\gamma}(X,J_{\beta}Y) - J_{\gamma}N_{\beta}(J_{\gamma}X,Y) - J_{\gamma}N_{\beta}(X,J_{\gamma}Y) +\epsilon_{\gamma}N_{\beta}(X,Y) + \epsilon_{\beta}N_{\gamma}(X,Y)$$

$$(27)$$

for any even permutation (α, β, γ) of (1,2,3), where $\epsilon_1 = 1, \epsilon_2 = \epsilon_3 = -1$.

Secondly, is well-known that an almost complex structure on a manifold is integrable if and only if the distribution of the complex tangent vector fields of type (1,0), denoted by $\mathcal{X}^{(1,0)}$, is involutive, i.e. it satisfies $[\mathcal{X}^{(1,0)}, \mathcal{X}^{(1,0)}] \subset \mathcal{X}^{(1,0)}$. Now, using (6), (7)-(12) and (22), we obtain for any vector fields A, B along π , satisfying $g(A, id) = g(B, id) = g(A, P \circ id) = g(B, P \circ id) = 0$ on TM:

(28)
$$[A^h - iaA^v, B^h - iaB^v]_u = (\nabla_{A^h} B - \nabla_{B^h} A)^h_u - ia(\nabla_{A^h} B - \nabla_{B^h} A)^v_u,$$

(29)

$$[A^{h} - iaA^{v}, (id)^{h} - i(a+tb)(id)^{v}]_{u} = -[(\nabla_{(id)^{h}}A)^{h}_{u} - ia(\nabla_{(id)^{h}}A)^{v}_{u}] + i(a+tb)[(\nabla_{(id)^{v}}A)^{h}_{u} - ia(\nabla_{(id)^{v}}A)^{v}_{u}] - ia[A^{h}_{u} - i\frac{kt}{4} + a(a+tb) - 2a't(a+tb)) - aA^{v}_{u}],$$

$$[A^{h} - iaA^{v}, (P \circ id)^{h} - i(a - tc)(P \circ id)^{v}]_{u} = -[(\nabla_{(P \circ id)^{h}}A)_{u}^{h} - ia(\nabla_{(P \circ id)^{h}}A)_{u}^{v}] + i(a - tc)[(\nabla_{(P \circ id)^{v}}A)_{u}^{h} - ia(\nabla_{(P \circ id)^{v}}A)_{u}^{v}] - ia[(PA)_{u}^{h} - i\frac{-\frac{kt}{4} + a(a - tc))}{a}(PA)_{u}^{v}],$$
(30)

$$[(id)^{h} - i(a+tb)(id)^{v}, (P \circ id)^{h} - i(a-tc)(P \circ id)^{v}]_{u} = i(a-tc)[(P \circ id)^{h}_{u} - i\frac{kt + (a+tb)(a-tc) - 2t(a+tb)(a-tc)'}{a-tc}(P \circ id)^{v}_{u}]$$
(31)
$$-i(a+tb)[(\nabla_{(id)^{v}}P \circ id)^{h} - i(a-tc)(\nabla_{(id)^{v}}P \circ id)^{v}],$$

(32)
$$[(id)^h - i(a+tb)(id)^v, (id)^h - i(a+tb)(id)^v]_u = 0,$$

(33)
$$[(P \circ id)^h - i(a - tc)(P \circ id)^v, (P \circ id)^h - i(a - tc)(P \circ id)^v]_u = 0.$$

Consequently, J_1 is integrable if and only if the next three relations are satisfied:

(34)
$$\frac{\frac{k}{4}t + a(a+tb) - 2a't(a+tb)}{a} = a,$$

(35)
$$\frac{-\frac{k}{4}t + a(a-tc)}{a} = a,$$

(36)
$$\frac{kt + (a+tb)(a-tc) - 2t(a+tb)(a-tc)'}{a-tc} = a - tc.$$

Thirdly, an almost product structure on a manifold is integrable if and only the eigendistributions \mathcal{X}^+ and \mathcal{X}^- corresponding to the eigenvalues 1 and -1 respectively, are integrable. We similarly obtain that J_2 is integrable if and only if the same three relations hold.

Finally, because the last of the above three relations is involved by the first two, the conclusion follows immediately. $\hfill \Box$

Example 5.2. If M is a flat paracomplex space form, then we set

$$a = A, \ b = 0, \ c = 0,$$

where A is an arbitrary non-zero real constant, and we can easily see that the conditions (26) are satisfied and $a, b, c, \frac{1}{a}, \frac{b}{a(a+tb)}, \frac{c}{a(a-tc)}$ are clearly differentiable, being constants. Consequently, the almost para-hypercomplex structure $H = (J_{\alpha})_{\alpha=\overline{1,3}}$ given above is integrable.

Example 5.3. If M(k) is a non-flat paracomplex space form, then we set

$$a = \sqrt[4]{k^2(t^2 + A^2 + 1)},$$

$$b = \frac{\sqrt[4]{k^2(t^2 + A^2 + 1)}(4t - sgn\{k\}\sqrt{t^2 + A^2 + 1})}{4(A^2 + 1)},$$

10

$$c=\frac{-k}{4\sqrt[4]{k^2(t^2+A^2+1)}}$$

where A is an arbitrary real constant, and we can easily verify that the conditions (26) are satisfied and the functions $a, b, c, \frac{1}{a}, \frac{b}{a(a+tb)}, \frac{c}{a(a-tc)}$ are differentiable. Consequently, the almost para-hypercomplex structure $H = (J_{\alpha})_{\alpha=\overline{1,3}}$ given above is integrable.

Remark 5.4. From Proposition 4.4 we have a class of compatible semi-Riemannian metric on the tangent bundle of a paracomplex space form M(k), given by

$$(37) \qquad \begin{cases} \widetilde{G}(X^{h}, Y^{h}) = \alpha g(X, Y) + \beta g(X, u)g(Y, u) - \beta g(X, Pu)g(Y, Pu) \\ \widetilde{G}(X^{v}, Y^{v}) = \frac{\alpha}{a^{2}}g(X, Y) + \frac{\beta a^{2} - b\alpha(2a + tb)}{a^{2}(a + tb)^{2}}g(X, u)g(Y, u) \\ + \frac{-\beta a^{2} - c\alpha(2a - tc)}{a^{2}(a - tc)^{2}}g(X, Pu)g(Y, Pu) \\ \widetilde{G}(X^{h}, Y^{v}) = 0 \end{cases}$$

where α, β are differentiable real functions. From Theorem 5.1 we may state now the following result.

Corollary 5.5. There exists an infinite class of para-hyperhermitian structures on the tangent bundle of a paracomplex space form.

Theorem 5.6. Let M(k) be a paracomplex space form. Then the almost parahyperhermitian structure $(\tilde{G}, H = (J_{\alpha})_{\alpha = \overline{1,3}})$ on TM defined by (23), (24), (25) and (37) is para-hyper-Kähler if and only if M is flat and

(38)
$$a = C_1, \ \alpha = C_2, \ b = c = \beta = 0,$$

where C_1, C_2 are real constants, $C_1 \neq 0$.

Proof. If M is flat and the relations (38) hold, then it is clear that $(TM, \tilde{G}, H = (J_{\alpha})_{\alpha = \overline{1,3}})$ is a para-hyper-Kähler manifold.

Conversely, if $(TM, \tilde{G}, H = (J_{\alpha})_{\alpha = \overline{1,3}})$ is a para-hyper-Kähler manifold then each J_{α} is integrable and the fundamentals 2-forms ω_{α} , given by:

(39)
$$\omega_{\alpha}(X,Y) = \widetilde{G}(J_{\alpha}X,Y),$$

for all vector fields X, Y on TM, are closed for all $\alpha \in \{1, 2, 3\}$.

For any vector fields A and B along π , satisfying $g(A, id) = g(B, id) = g(A, P \circ id) = g(B, P \circ id) = 0$ on TM, using (7)-(12), we obtain:

(40)

$$(d\omega_{1})(A^{h}, B^{v}, id^{v}) = A^{h}\widetilde{G}(J_{1}B^{v}, id^{v}) - B^{v}\widetilde{G}(J_{1}A^{h}, id^{v}) + id^{v}\widetilde{G}(J_{1}A^{h}, B^{v}) + \widetilde{G}(J_{1}id^{v}, [A^{h}, B^{v}]) - \widetilde{G}(J_{1}B^{v}, [A^{h}, id^{v}]) + \widetilde{G}(J_{1}A^{h}, [B^{v}, id^{v}]) = \left[2\left(\frac{\alpha}{a}\right)'t + \left(\frac{\alpha}{a} - \frac{\alpha + t\beta}{a + tb}\right)\right]g(X, Y)$$

and

$$(d\omega_{1})(A^{h}, B^{v}, (P \circ id)^{v}) = A^{h}\widetilde{G}(J_{1}B^{v}, (P \circ id)^{v}) - B^{v}\widetilde{G}(J_{1}A^{h}, (P \circ id)^{v}) + (P \circ id)^{v}\widetilde{G}(J_{1}A^{h}, B^{v}) + \widetilde{G}(J_{1}(P \circ id)^{v}, [A^{h}, B^{v}]) - \widetilde{G}(J_{1}B^{v}, [A^{h}, (P \circ id)^{v}]) + \widetilde{G}(J_{1}A^{h}, [B^{v}, (P \circ id)^{v}]) = \left(\frac{\alpha}{a} - \frac{\alpha + t\beta}{a - tc}\right)g(X, PY).$$

But, because ω_1 is closed, from (40) and (41) we obtain:

(42)
$$\frac{\alpha}{a} = \frac{\alpha + t\beta}{a + tb} = \frac{\alpha + t\beta}{a - tc} = C,$$

where C is a real constant.

On another hand J_1, J_2, J_3 being integrable, from Theorem 5.1 we deduce that the functions a, b, c also satisfy the conditions (26). The conclusion follows now easily since $a, b, c, \alpha, \beta, \frac{1}{a}, \frac{b}{a(a+tb)}, \frac{c}{a(a-tc)}$ must be differentiable functions satisfying (26) and (42).

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to Professors Stere Ianuş and Liviu Ornea for carefully reading this paper and offering me helpful suggestions. This work was partially supported by a PN2-IDEI grant, no. 525.

12

References

- D.V. Alekseevsky, N. Blažić, V. Cortés and S. Vukmirović, A class of Osserman spaces, J. Geom. Phys. 53(3) (2005) 345–353.
- [2] D. Alekseevsky and V. Cortés, The twistor spaces of a para-quaternionic Kähler manifold, Osaka J. Math. 45(1) (2008) 215–251.
- [3] D. Alekseevsky and Y. Kamishima, Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds, *Central European J. Math.* 2(5) (2004) 732–753.
- [4] D. Alekseevsky, C. Medori and A. Tomassini, Homogeneous para-Kähler Einstein manifolds, Russ. Math. Surv. 64(1) (2009) 3–50.
- [5] A. Andrada and G.I. Dotti, Double products and hypersymplectic structures on R⁴ⁿ, Commun. Math. Phys. 262(1) (2006) 1–16.
- [6] J. Barret, G.W. Gibbons, M.J. Perry, C.N. Pope and P. Ruback, Kleinian geometry and the N = 2 superstring, Int. J. Mod. Phys. A 9 (1994) 1457-1494.
- [7] C.L. Bejan and V. Oproiu, Tangent bundles of quasi-constant holomorphic sectional curvatures, Balkan J. Geom. Appl. 11(1) (2006) 11–22.
- [8] D.E. Blair, J. Davidov and O. Muškarov, Hyperbolic twistor space, Rocky Mt. J. Math. 35(5) (2005) 1437–1465.
- [9] N. Blažić, Para-quaternionic projective spaces and pseudo Riemannian geometry, Publ. Inst. Math. 60(74) (1996) 101–107.
- [10] N. Blažić and S. Vukmirović, Para-hypercomplex structures on a four-dimensional Lie group, in: N. Bokan (Ed.), Contemporary geometry and related topics, Proceedings of the workshop, Belgrade, Yugoslavia, May 15-21, 2002, River Edge, NJ: World Scientific, 2004, pp. 41–56.
- [11] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of euclidean supersymmetry II. Hypermultiplets and the c-map, J. High Energy Phys. 6 (2005) 1–25.
- [12] A. Dancer, H.R. Jørgensen and A. Swann, Metric geometries over the split quaternions, Rend. Sem. Mat. Univ. Pol. Torino 63(2) (2005) 119–139.
- [13] A. Dancer and A. Swann, Hypersymplectic manifolds, in: D. Alekseevsky (Ed.), Recent developments in pseudo-Riemannian geometry, European Mathematical Society, ESI Lectures in Mathematics and Physics, 2008, pp. 97–148.
- [14] J. Davidov, J.C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov and R. Vázquez-Lorenzo, Hermitian-Walker 4-manifolds, J. Geom. Phys. 58(3) (2008) 307–323.
- [15] J. Davidov, G. Grantcharov, O. Mushkarov and M. Yotov, Para-hyperhermitian surfaces, eprint arXiv:0906.0546.
- [16] M. Dunajski, Hyper-complex four-manifolds from Tzitzeica equation, J. Math. Phys. 43 (2002) 651–658.

- [17] M. Dunajski and S. West, Anti-self-dual conformal structures in neutral signature, in: D. Alekseevsky (Ed.), Recent developments in pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics, 2008, 113–148.
- [18] P. Dombrowski, On the geometry of the tangent bundle, J. Reine und Angew. Math. 210 (1962) 73–88.
- [19] A. Fino, H. Pedersen, Y.-S. Poon and M.W. Sørensen, Neutral Calabi-Yau structures on Kodaira manifolds, *Commun. Math. Phys.* 248(2) (2004) 255–268.
- [20] E. García-Río, Y. Matsushita and R. Vázquez-Lorenzo, Paraquaternionic Kähler manifolds, Rocky Mt. J. Math. 31(1) (2001) 237–260.
- [21] N. Hitchin, Hypersymplectic quotients, Acta Acad. Sci. Tauriensis 124 (1990) 169-180.
- [22] C.M. Hull, Actions for (2,1) Sigma Models and Strings, Nucl. Phys. B 509 (1998) 252–272.
- [23] S. Ianuş, Sulle strutture canoniche dello spazio fibrato tangente di una varieta riemanniana, Rend. Mat. 6 (1973) 75–96.
- [24] S. Ianuş, R. Mazzocco and G.E. Vîlcu, Real lightlike hypersurfaces of paraquaternionic Kähler manifolds, *Mediterr. J. Math.* 3 (2006) 581–592.
- [25] S. Ianuş and G.E. Vîlcu, Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles, Int. J. Geom. Methods Mod. Phys. 5(6) (2008) 893–903.
- [26] K. Ii and T. Morikawa, Kähler structures on the tangent bundle of Riemannian manifolds of constant positive curvature, *Bull. Yamagata Univ.*, *Nat. Sci.* 14(3) (1999) 141–154.
- [27] S. Ivanov and S. Zamkovoy, Para-hermitian and para-quaternionic manifolds, Differential Geom. Appl. 23 (2005) 205–234.
- [28] S. Ivanov, V. Tsanov and S. Zamkovoy, Hyper-para-Hermitian manifolds with torsion, J. Geom. Phys. 56(4) (2006) 670–690.
- [29] H. Kamada, Neutral hyper-Kähler structures on primary Kodaira surfaces, *Tsukuba J. Math.*23 (1999) 321–332.
- [30] P. Libermann, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. Purra Appl. 36 (1954) 27–120.
- [31] M. Manev, Tangent bundles with Sasaki metric and almost hypercomplex pseudo-Hermitian structure, in: Y. Matsushita (Ed.), Topics in almost Hermitian geometry and related fields, Proceedings in honor of Prof. K. Sekigawa's 60th birthday, Niigata, Japan, November 1-3, 2004, Hackensack, NJ: World Scientific, 2005, pp. 170–185.
- [32] T. Mohaupt, Special geometry, black holes and Euclidean supersymmetry, in: V. Cortés (Ed.), Handbook on Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, European Mathematical Society, to appear.
- [33] Y. Nakashima and Y. Watanabe, Some constructions of almost Hermitian and quaternion metric structures, Math. J. Toyama Univ. 13 (1990) 119–138.

- [34] Z. Olszak, On almost complex structures with Norden metrics on tangent bundles, Period. Math. Hung. 51(2) (2005) 59–74.
- [35] H. Ooguri and C. Vafa, Geometry of N = 2 strings, Nucl. Phys. B 361 (1991) 469–518.
- [36] V. Oproiu, Some new geometric structures on the tangent bundles, Publ. Math. Debrecen 55(3-4) (1999) 261–281.
- [37] V. Oproiu and N. Papaghiuc, A Kaehler structure on the nonzero tangent bundle of a space form, *Differ. Geom. Appl.* 11(1) (1999) 1–12.
- [38] V. Oproiu and N. Papaghiuc, General natural Einstein Kähler structures on tangent bundles, Differ. Geom. Appl. 27(3) (2009) 384–392.
- [39] M. Tahara, S. Marchiafava and Y. Watanabe, Quaternionic Kähler structures on the tangent bundle of a complex space form, *Rend. Ist. Mat. Univ. Trieste* 31(1-2) (1999) 163–175.
- [40] M. Tahara, L. Vanhecke, Y. Watanabe, New structures on tangent bundles, Note Mat 18(1) (1998) 131–141.
- [41] M. Tahara, Y. Watanabe, Natural almost Hermitian, Hermitian and Khler metrics on the tangent bundles, *Math. J. Toyama Univ.* 20 (1997) 149–160.
- [42] S. Vukmirović, Para-quaternionic reduction, eprint arXiv:0304.4424.
- [43] S. Zamkovoy, Geometry of paraquaternionic Kähler manifolds with torsion. J. Geom. Phys. 57(1) (2006) 69–87.

Gabriel Eduard Vîlcu^{1,2}

¹Petroleum-Gas University of Ploieşti, Department of Mathematics and Computer Science, Bulevardul Bucureşti, Nr. 39, Ploieşti, Romania ²University of Bucharest Faculty of Mathematics and Computer Science Research Center in Geometry, Topology and Algebra Str. Academiei, Nr. 14, Sector 1, Bucureşti-Romania e-mail: gvilcu@mail.upg-ploiesti.ro