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2 YOSHINOBU KAMISHIMA AND LIVIU ORNEA1. IntrodutionLet (M; g; J) be a onneted, omplex Hermitian manifold of omplex dimension n � 2.We denote its fundamental 2-form by !; it is de�ned by !(X; Y ) = g(X; JY ). If thereexists a real 1-form � satisfying the integrability onditiond! = � ^ ! with d� = 0then g is said to be a loally onformally K�ahler (l..K.) metri. A omplex manifold Mendowed with a l..K. metri is alled a l..K. manifold. The onformal lass of a l..K.metri g is said to be a l..K. struture on M . The losed 1-form � is alled the Lee formand it enodes the geometri properties of suh a manifold. The vetor �eld �℄, de�nedby �(X) = g(X; �℄), is alled the Lee �eld.The purpose of this paper is to study two kinds of transformation groups of a ompatl..K. manifold (M; g; J). We �rst onsider Autl::K:(M), the group of all onformal,holomorphi di�eomorphisms. We disuss its properties in x2. A holomorphi vetor �eldZ on (M; g; J) generates a 1-dimensional omplex Lie group C. (The universal overinggroup of C is C .) We all C a holomorphi ow on M .De�nition 1.1. If a holomorphi ow C (resp. holomorphi vetor �eld Z) belongs toAutl::K:(M) (resp. Lie algebra of Autl::K:(M)), then C (resp. Z) is said to be a holomorphil..K. ow (resp. holomorphi l..K. vetor �eld).A nontrivial sublass of l..K. manifolds is formed by those (M; g; J) having parallelLee form with respet to the Levi-Civita onnetion rg (i:e: rg� = 0). We observethat a ompat non-K�ahler l..K. manifold (M; g; J) with parallel Lee form � supportsa holomorphi vetor �eld Z = �℄ � iJ�℄ whih generates holomorphi isometries of g.(Compare [18℄, [19℄, [6℄.) We shall prove that the onverse is also true:Theorem A. Let (M; g; J) be a ompat, onneted, l..K. non-K�ahler manifold, of om-plex dimension at least 2. If Autl::K:(M) ontains a holomorphi l..K. ow, then thereexists a metri with parallel Lee form in the onformal lass of g.Corollary A1. With the same hypothesis, M admits a l..K. metri with parallel Leeform if and only if it admits a holomorphi l..K. ow.In x3, we disuss the existene of l..K. metris with parallel Lee form on the Hopfmanifold. (Compare with [7℄). Let � = (�1; : : : ; �n) with the �i's omplex numberssatisfying 0 < j�nj � � � � � j�1j < 1. By a primary Hopf manifold M� of type � wemean the ompat quotient manifold of C n � f0g by a subgroup �� generated by thetransformation (z1; : : : ; zn) 7! (�1z1; : : : ; �nzn). Note that a primary Hopf manifold oftype � of omplex dimension 2 is a primary Hopf surfae of K�ahler rank 1. We prove thefollowing:



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 3Theorem B. The primary Hopf manifold M� of type � supports a l..K. metri withparallel Lee form.See x3 whih is devoted to onstrut suh a metri. More generally, we prove theexistene of a l..K. metri with parallel Lee form on the Hopf manifold (f. Theorem3.1).In the seond half of the paper we adopt the viewpoint of G-struture theory in or-der to study a non-ompat, non-holomorphi, transformation group of a ompat l..K.manifold (M; g; J) with parallel Lee form. Loally, the 2-form ! de�nes the real 1-forms �, � Æ J and n � 1 omplex 1-forms �� and their onjugates ���, where � Æ J isalled the anti-Lee form and is de�ned by � Æ J(X) = �(JX). We onsider the groupAutLCR(M) of transformations of M preserving the struture of unitary oframe �eldsF = f�; � Æ J; �1; : : : ; �n�1; ��1; : : : ; ��n�1g. More preisely, an element f of AutLCR(M) isalled a Lee-Cauhy-Riemann (LCR) transformation if it satis�es the equations:f �� = �;f �(� Æ J) = � � (� Æ J);f ��� = p� � ��U�� + (� Æ J) � v�;f ���� = p� � ���U�� + (� Æ J) � v�:Here �, v�, U�� are smooth funtions with values, respetively, in R+ , C and U(n � 1).Obviously, if I(M; g; J) is the group of holomorphi isometries, then both Autl::K:(M)and AutLCR(M) ontain I(M; g; J).As the main result of this part we exhibit the rigidity of ompat l..K. manifolds underthe existene of a non-ompat LCR ow:Theorem C. Let (M; g; J) be a ompat, onneted, l..K. non-K�ahler manifold of om-plex dimension at least 2, with parallel Lee form �. Suppose that M admits a losedsubgroup C � = S1 � R+ of Lee-Cauhy-Riemann transformations whose S1 subgroup in-dues the Lee �eld �℄. Then M is holomorphially isometri, up to salar multiple of themetri, to the primary Hopf manifold M� of type � endowed with anonial l..K. metrias stated in Theorem B.Aknowledgement. The authors are grateful to the anonymous referee for useful ri-tiism. L.O. thanks JSPS for �nanial support and the Department of Mathematis ofTokyo Metropolitan University for hospitality during the preparation of this work.2. Loally onformally K�ahler transformationsProposition 2.1. Let (M; g; J) be a ompat l..K. manifold with dimC M � 2. ThenAutl::K:(M) is a ompat Lie group.



4 YOSHINOBU KAMISHIMA AND LIVIU ORNEAProof. Note that Autl::K:(M) is a losed Lie subgroup in the group of all onformaldi�eomorphisms of (M; g). If Autl::K:(M) were nonompat, then by the elebrated resultof Obata and Lelong-Ferrand ([15℄, [14℄), (M; g) would be onformally equivalent with thesphere S2n, n � 2. Hene M would be simply onneted. It is well known that a ompatsimply onneted l..K. manifold is onformal to a K�ahler manifold (f. [6℄), whih isimpossible beause the sphere S2n has no K�ahler struture. �From now on, we shall suppose that the l..K. manifold we work with is ompat, non-K�ahler and, moreover, the Lee �eld is nowhere vanishing. In partiular, suh a manifoldis not simply onneted (f. [6℄). Given a l..K. manifold (M; g; J), let ~M be the universalovering spae ofM , let p : ~M !M be the anonial projetion and denote also by J thelifted omplex struture on ~M . We an assoiate to the fundamental 2-form ! a anonialK�ahler form on ~M as follows. Sine the Lee form � is losed, its lift to ~M is exat, henep�� = d� for some smooth funtion � on ~M . We put h = e�� � p�g (resp. 
 = e�� � p�!):It is easy to hek that d
 = 0, thus h is a K�ahler metri on ( ~M;J). In partiular g isloally onformal to the K�ahler metri h (ompare with [6℄ and the bibliography therein).Let f 2 Autl::K:(M). By de�nition, f �! = e� �! for some funtion � on M . Di�erentiatethis equality to yield that (f �����d�)^! = 0. As ! is nondegenerate and dimC M > 1,f �� = � + d�. Sine p�� = d� , for any lift ~f of f to ~M we have d ~f �� = d(� + p��), thus� ~f �� + p�� = �� +  for some onstant . We an write ~f �
 = e � 
: If  6= 0, ~f is aholomorphi homothety with respet to h; when  = 0, ~f will be an isometry.We denote by H( ~M;
; J) the group of all holomorphi, homotheti transformations of~M with respet to the K�ahler struture (h; J). If f1; f2 2 H( ~M;
; J), there exist someonstants �(fi) (i = 1; 2) satisfying f �i 
 = �(fi) � 
 as above. It is easy to hek that�(f1 Æ f2) = �(f1) � �(f2). We obtain a ontinuous homomorphism:(2.1) � : H( ~M;
; J)�!R+ :Let �1(M) be the fundamental group of M . Then we note that �1(M) � H( ~M;
; J).For this, if  2 �1(M), then �
 = e��� � �p�! = e��� � p�! = e���+� �
. Sine 
 is aK�ahler form (n � 2), e���+� must be onstant �().Let C be a holomorphi l..K. ow on M . If we denote by ~C a lift of C to ~M , then~C � H( ~M;
; J). If V is a vetor �eld whih generates a one-parameter subgroup of ~C,then so does JV with V and JV together generating ~C. We de�ne a smooth funtions : ~M ! R to be s(x) = 
(JVx; Vx). Sine ~C entralizes eah element  of �1(M),it follows that s(x) = 
(JVx; Vx) = 
(�JVx; �Vx) = �()s(x): If every element satis�es �() = 1, i:e: �
 = 
, then �1(M) ats as holomorphi isometries of h so that
 would indue a K�ahler metri on M . By our hypothesis, this does not our. Thereexists at least one element  suh that �() 6= 1. In partiular, we note that:(2.2) The funtion s is not onstant on ~M:



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 5On the other hand, we prove the following lemma. (The proof of the lemma is almost thesame as that of [10℄.)Lemma 2.1. �( ~C) = R+ , i:e: the group ~C ats by holomorphi, non-trivial homothetieswith respet to the K�ahler metri h on ~M .Proof. Sine ~C is onneted, if �( ~C) 6= R+ , it must be trivial. By absurd, suppose that�( ~C) = f1g. Then ~C leaves 
 invariant. As fV; JV g generates ~C, it follows that LV
 =LJV
 = 0. In partiular, V s = (JV )s = 0. For any distribution D on ~M , denote by D?the orthogonal omplement toD with respet to the metri h where h( ~X; ~Y ) = 
(J ~X; ~Y ).Sine 0 = (LV
)(JV; ~X) = V 
(JV; ~X)�
([V; JV ℄; ~X)�
(JV; [V; ~X℄), if ~X 2 fV; JV g?,then 
(JV; [V; ~X ℄) = 0, similarly 
(V; [JV; ~X ℄) = 0. The equality0 = 3d
( ~X; V; JV ) = ~X
(V; JV )� V 
( ~X; JV ) + JV 
( ~X; V )� 
([ ~X; V ℄; JV )� 
([V; JV ℄; ~X)� 
([JV; ~X ℄; V )implies that ~X
(V; JV ) = 0, i:e: ~Xs = 0 for any ~X 2 fV; JV g?. Therefore, s beomesonstant, being a ontradition to (2.2). �2.1. The submanifold W and its pseudo-Hermitian struture. As Ker� has onedimension, denote by �J� the vetor �eld whose one-parameter subgroup f tgt2R ats asholomorphi isometries on ~M .(2.3)  �t
 = 
; t 2 R:Sine �J� and � together generate the group ~C, the 1-parameter subgroup f'tgt2R gener-ated by � ats as nontrivial holomorphi homotheties with respet to 
 by Lemma 2.1. Inpartiular, the group f'tgt2R is isomorphi to R. Sine '�t
 = �('t) � 
 (t 2 R; �('t) 2R+) from (2.1) and � is a ontinuous homomorphism, �('t) = eat for some onstant a 6= 0.We may normalize a = 1 so that:(2.4) '�t
 = et � 
; t 2 R:Lemma 2.2. The group f'tgt2R ats properly and hene freely on ~M . In partiular, � 6= 0everywhere on ~M .Proof. Reall that C lies in Autl::K:(M) by de�nition. As Autl::K:(M) is a ompat Liegroup, its losure C in Autl::K:(M) is also ompat and so isomorphi to a k-torus (k � 2).Therefore, the lift H of C to ~M ats properly on ~M . The lift H is isomorphi to Rl � Tmwhere l+m = k. Note that l � 1 beause � maps any ompat subgroup of H to f1g, butthe group f'tgt2R � H satis�es �(f'tg) = R+ . Hene the group f'tgt2R has a nontrivialsummand in Rl whih implies that f'tgt2R is losed in H. Thus, the group f'tgt2R atsproperly on ~M . If we note that f'tgt2R is isomorphi to R, then it ats freely on ~M .



6 YOSHINOBU KAMISHIMA AND LIVIU ORNEA �Proposition 2.2. Let s : ~M ! R be the smooth map de�ned as s(x) = 
(J�x; �x). Then1 is a regular value of s, hene s�1(1) is a odimension one, regular submanifold of ~M .Proof. As 't is holomorphi, s('tx) = 
(J�'tx; �'tx) = 
('t�J�x; 't��x) = et�s(x). Hene,L�s = limt!0 '�t s� st = s:We also note that(2.5) L�
 = 
:By Lemma 2.2, notie that � 6= 0 everywhere on ~M . Sine s(x) 6= 0, s�1(1) 6= ;. Forx 2 s�1(1), ds(�x) = (L�s)(x) = s(x) = 1: This proves that ds : Tx ~M ! R is onto and sos�1(1) is a odimension one smooth regular submanifold of ~M . �Let now W = s�1(1). We an prove:Lemma 2.3. The submanifold W is onneted and the map H : R �W ! ~M , de�ned byH(t; w) = 'tw is an equivariant di�eomorphism.Proof. Let W0 be a omponent of s�1(1) and R � W0 the set f'tw ; w 2 W0; t 2 Rg.As R = f'tg ats freely and s('tx) = ets(x), we have 'tW0 \ W0 = ; for t 6= 0.Thus R � W0 is an open subset of ~M . We prove that it is also losed. Let R �W0 bethe losure of R � W0 in ~M . We hoose a limit point p = lim'tiwi 2 R �W0. Thens(p) = lim s('tiwi) = lim etis(wi) = lim eti . Put t = log s(p). Then t = lim ti, so'�1t (p) = lim'�1ti (lim'tiwi) = limwi. Sine s�1(1) is regular (i.e. losed with respet tothe relative topology indued from ~M), its omponentW0 is also losed. Hene '�1t p 2 W0.Therefore p = 't('�1t p) 2 R �W0, proving that R � W0 is losed in ~M . In onlusion,R � W0 = ~M . Now, if W1 is another omponent of s�1(1), the same argument showsR �W1 = ~M . As R �W0 = R �W1 and s(W1) = 1, this implies W0 = W1, in other wordsW is onneted. �Let i : W ! ~M be the inlusion and � : ~M ! W the anonial projetion. De�ne a1-form � on W to be(2.6) � = i���
:Here �� denotes the interior produt with �. From the de�nition of f tgt2R (see thebeginning of x 2.1) we have(2.7) d tdt (x)jt=0 = �J�x:



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 7By (2.3), s( tw) = s(w) = 1 (w 2 W ) so that the group f tgt2R leaves W invariant.Hene, the vetor �eld �J� restrits to a vetor �eld A to W . If f 0tgt2R is the one-parameter subgroup generated by A, then(2.8)  t = i Æ  0t:Lemma 2.4. The 1-form � is a ontat form on W for whih A is the harateristivetor �eld (Reeb �eld).Proof. First note that �(Aw) = ��
(�J�w) = 
(J�w; �w) = s(w) = 1 (w 2 W ):Moreover,from (2.5), d� = i�d��
 = i�(d��
 + ��d
) = i�L�
 = i�
. Hene, � ^ d�n�1 6= 0 on Wshowing that � is a ontat form. Noting (2.3), (2.8) and that both 't and  � ommuteswith eah other, it is easy to see that 0�t ��
 = ��
 on ~M: 0�t � = � on W:(2.9)Let Null � = fX 2 TW j �(X) = 0g be the ontat subbundle. Sine LA�(X) =A�(X)� �([A;X℄) and LA� = 0 from (2.9), if X 2 Null �, then �([A;X℄) = 0. Moreover,d�(A;X) = (A�(X)�X�(A)� �([A;X℄))=2 = 0, whih implies that d�(A;X) = 0 for allX 2 TW , showing that A is the harateristi vetor �eld. �Reall that R ! ~M �! W is a prinipal �ber bundle with TR = h�i. By Lemma 2.3,eah point x 2 ~M an be desribed uniquely as x = 'tw. By (2.8),� Æ  �(x) = � Æ  �('tw) = � Æ 't( �w)= � Æ i 0�(w) =  0�(w) =  0� Æ �(x);(2.10)hene, ��(�J�) = A. As i���Xx � Xx = a � �x for some funtion a, by (2.6), � mapsf�; J�g? isomorphially onto Null �. Sine f�; J�g? is J-invariant, there exists an almostomplex struture J on Null � suh that the following diagram is ommutative:(2.11) f�; J�g? �����! Null �??yJ ??yJf�; J�g? �����! Null �:Proposition 2.3. The pair (�; J) is a stritly pseudoonvex, pseudo-Hermitian strutureon W .Proof. Let 	 : Null � � Null �!R be the bilinear form de�ned by 	(X; Y ) = d�(JX; Y ).There exist ~X; ~Y 2 f�; J�g? suh that �� ~X = X, �� ~Y = Y . Then it is easy to seethat i�JX � J ~X; i�Y � ~Y mod �: Using d� = i�
 as above, 	(X; Y ) = i�
(JX; Y ) =
(J ~X; ~Y ) = h( ~X; ~Y ); hene 	 is positive de�nite. By de�nition, � is stritly pseudo-onvex. Let f�; J�g? 
 C = B1;0 � B0;1 be the anonial splitting of J . Then we prove



8 YOSHINOBU KAMISHIMA AND LIVIU ORNEAthat [B1;0; B1;0℄ � B1;0. Let ~X; ~Y 2 B1;0. Sine T 1;0 ~M = f� � iJ�g � B1;0 (wherei = p�1) and J is integrable on ~M , [ ~X; ~Y ℄ 2 T 1;0 ~M . Put [ ~X; ~Y ℄ = a(� � iJ�) + ~Z forsome funtion a and ~Z 2 B1;0. As ��(�J�) = A from (2.10), ��([ ~X; ~Y ℄) = aiA + �� ~Z.By de�nition, 2d�(�� ~X; �� ~Y ) = ��([�� ~X; �� ~Y ℄) = �ai. On the other hand, sine 
 isJ-invariant, 
( ~X; ~Y ) = 0 for 8 ~X; ~Y 2 B1;0. As above, i��� ~X � ~X mod �, similarly for~Y , we obtain that d�(�� ~X; �� ~Y ) = 
(i��� ~X; i��� ~Y ) = 
( ~X; ~Y ) = 0: Hene, a = 0 andso [ ~X; ~Y ℄ = ~Z 2 B1;0. If we note that �� : f�; J�g? 
 C!Null � 
 C is J-isomorphi by(2.11), then Null � 
 C = ��B1;0 � ��B0;1 is the splitting for J , in whih we have shown[��B1;0; ��B1;0℄ � ��B1;0. Therefore J is a omplex struture on Null �. �Consider the group of pseudo-Hermitian transformations on (W; �; J):(2.12) PSH(W; �; J) = ff 2 Di�(W ) j f �� = �; f� Æ J = J Æ f� onNull �g:Corollary 2.1. The harateristi vetor �eld A generates the subgroup f 0tgt2R onsis-ting of pseudo-Hermitian transformations.Proof. By (2.3) and (2.9),  t (resp.  0t) preserves f�; J�g? (resp. Null �). Then theequality � Æ  � =  0� Æ � from (2.10) with diagram (2.11) implies that  0t�J = J 0t� onNull �. Therefore(2.13) f 0tgt2R � PSH(W; �; J): �Proof of Theorem A.2.2. Parallel Lee form. Let again 't be the 1-parameter subgroup generated by �.Aording to the notation in Lemma 2.3, let Y'tw 2 T'tw ~M be any vetor. We have��Y'tw 2 TwW , hene i���Y'tw � '�t�Y'tw = ��w for some number �. Then,��
(i���Y'tw) = 
(�w; i���Y'tw) = 
(�w; '�t�Y'tw) + 
(�w; ��w)= '��t
('t��w; Y'tw) = e�t
(�'tw; Y'tw) = e�t��
(Y'tw):By the de�nition (2.6),(2.14) ��� = ��i���
 = e�t��
; equivalently, et��� = ��
:As 
 = L�
 = d��
 from (2.5), we obtain that(2.15) d(et���) = 
 on ~M:For the given l..K. metri g, the K�ahler metri h is obtained as h = e�� � p�g whered� = ~�. As ! is the fundamental 2-form of g, note that 
 = e�� � p�!.



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 9We now onsider on ~M the 2-form:(2.16) �� = 2e�t � d(et���) (= 2e�t � 
):Then �g(X; Y ) = ��(JX; Y ) is a l..K. metri. Put �� = �dt. Then, as d�� = �2e�tdt ^d(et���) = �dt ^ ��, we see that �� is the Lee form of �g.Lemma 2.5. �� is parallel with respet to �g (r�g�� = 0).Proof. First we determine the Lee �eld ��℄ (where ��(X) = �g(X; ��℄):) We start from:�g(�; Y ) = ��(J�; Y ) = 2e�t(etdt ^ ��� + etd���)(J�; Y )= 2(dt ^ ��� + d���)(J�; Y ) = 2(dt ^ ���)(J�; Y )beause A = ���J� is the harateristi vetor �eld of the ontat form �. As before,a point x 2 ~M an be desribed uniquely as 'tw for some w 2 W . In partiular, byLemma 2.3, the t-oordinate of x is t. Noting that  �(x) = 't �w and  �w 2 W , by theuniqueness of the t-oordinate of  �(x), t( �(x)) = t. From (2.7),(2.17) dt(�J�x) = dt(d �d� (x)j�=0) = dtd� j�=0 = 0:The above formula beomes:�g(�; Y ) = 2(dt ^ ���)(J�; Y ) = �dt(Y )�(�A)= dt(Y ) = ���(Y ) = ��g(Y; ��℄)(2.18)proving that ��℄ = ��. Next we observe that the ow f'sgs2R ats by isometries withrespet to �g. As 's is holomorphi, it is enough to prove that eah 's leaves �� invariant,but '�s �� = 2e�'�std(e'�st'�s���) = 2e�(s+t)d(es+t���) = 2e�td(et���) = ��:Thus L�℄�g = �L��g = 0. Now we put � = �� in the equality (L�℄�g)(X; Y ) + 2d�(X; Y ) =2�g(r�gX�℄; Y ), valid for any 1-form �, take into aount d�� = 0 and obtain r�g��℄ = 0 whihis equivalent with r�g�� = 0, so �� is parallel with respet to �g as announed. �By the equation (2.16), �g is onformal to the lifted metri p�g:(2.19) �� = � � p�! (equivalently �g = � � p�g);where � = 2e�(t+�) : ~M!R+ is a smooth map. We �nally prove:Lemma 2.6. �1(M) ats by holomorphi isometries of �g. In partiular, �1(M) leaves ��invariant.Proof. We prove the following two fats:1. ���� = ��� for every  2 �1(M).2. �et = �() � et, where � : �1(M)!R+ is the restrition of the homomorphismde�ned in (2.1).



10 YOSHINOBU KAMISHIMA AND LIVIU ORNEAFirst note that as R = f'tg entralizes �1(M), �� = � for  2 �1(M). As  is holomor-phi, �J� = J�. Sine �1(M) ats on ~M as holomorphi homotheti transformations,(i:e: �
 = �() � 
), �1(M) preserves f�; J�g?. If we reall that �� : f�; J�g? ! Null �is isomorphi, then for X 2 f�; J�g?, ����(X) = �(���X) = 0. As ���J� = A is theharateristi �eld of �, it follows that ����(J�) = �(���J�) = �(��J�) = �1. Thisshows that ���� = ��� on ~M . On the other hand, if we note �� = �, then�(��
)(X) = 
(�; �X) = 
(��; �X) = �
(�;X)= �() �
(�;X) = �() � ��
(X)where �() is a positive onstant. Applying � to ��� = e�t � ��
 from (2.14), we obtain�e�t � �() = e�t. Equivalently, �et = �() � et. This shows 1 and 2. From (2.16),� �� = �(2e�t � d(et���)) = 2�()�1 � e�td(�() � et����)= 2e�t � d(et���) = ��:Sine �g(X; Y ) = ��(JX; Y ), �1(M) ats through holomorphi isometries of �g. We havethat ��(Y ) = �g(Y; ��℄) = ��g(Y; �) (Y 2 T ~M) from (2.18). Then,���(Y ) = ��g(�Y; �) = ��g(�Y; ��) = ��g(Y; �) = ��(Y ): �From this lemma, the overing map p : ~M!M indues a l..K. metri ĝ with parallelLee form �̂ on M suh that p�ĝ = �g and p��̂ = �� with rĝp�X �̂(p�Y ) = r�gX ��(Y ). Applying� to both sides of (2.19), we derive��g = �g = � � p�g:�� � �p�g = �� � p�g:Therefore �� = � whih implies that � fators through a map �̂ : M!R+ so thatp�ĝ = p�(�̂ � g). We have �̂ � g = ĝ. The onformal lass of g ontains a l..K. metri ĝwith parallel Lee form �̂. This ends the proof of Theorem A. 2As to Corollary A1 in the Introdution, we reall the following. (Compare [18℄, [6,p.37℄.) Let (M; g; J) be a ompat, onneted, non-K�ahler, l..K. manifold with parallelLee form �. Then the following results hold: g(�℄; �℄) =onst.,L�℄J = LJ�℄J = 0;L�℄g = LJ�℄g = 0:Then Z = �℄ � iJ�℄ is a holomorphi vetor �eld beause [�℄; J�℄℄ = 0 (f. [12℄). ByDe�nition 1.1, Z = �℄ � iJ�℄ is a holomorphi l..K. vetor �eld.



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 11Proposition 2.4. The real vetor �elds �℄ and J�℄ satisfy the following:(1) A ow generated by the Lee �eld �℄ lifts to a one-parameter subgroup of nontrivialhomotheti holomorphi transformations with respet to 
.(2) A ow generated by the anti-Lee �eld �J�℄ lifts to a one-parameter subgroup on-sisting of holomorphi isometries with respet to 
.Proof. Let f'̂tgt2R be the ow generated by �℄ onM and f'tgt2R its lift to ~M . Denote by� the vetor �eld on ~M indued by f'tg. Then, p�� = �℄. Beause � is parallel, f'̂tg (resp.f'tg) ats by holomorphi isometries with respet to g (resp. p�g). In partiular, f'tgpreserves p�!. Then, for 
 = e��p�!, we have '�t
 = e�('�t ���)
. As � : f'tgt2R!R+ isa homomorphism and �('t) = e�('�t ���) is a onstant for eah t 2 R (dimC M � 2), wean desribe as �('�t � � �) =  � t for some onstant : Reall that h is the K�ahler metriassoiated to 
. If f'tg ats as holomorphi isometries with respet to h, then the aboveequation implies that  = 0, i:e: '�t � � � = 0 for every t, and so L�� = 0. On the otherhand, as d� = p��, we have:0 = L�� = d�(�) = �(p��) = �(�℄) = onst: > 0;a ontradition. Thus, '�t
 = �('t)
 = e�t
 with  6= 0. Hene, f'tgt2R is a group ofnontrivial homotheti holomorphi transformations isomorphi to R. On the other hand,let f ̂tgt2R (resp. f tgt2R) be the ow generated by -J�℄ on M (resp. -J� on ~M). Asp�(J�) = Jp�� = J�℄,LJ�� = d�(J�) = p��(J�) = �(J�℄) = g(J�℄; �℄) = 0;and hene  �t � = � for every t 2 R. By the fat that LJ�℄g = 0, LJ�℄! = 0. This impliesthat  �t
 =  �t e�� �t p�! = e��p� ̂�t ! = e��p�! = 
: �Let R! ~M ��! W be the prinipal bundle where R = f'tgt2R (f. Lemma 2.2). De�nethe entralizer of R in H( ~M;
; J) to be:De�nition 2.1. CH(R) = ff 2 H( ~M;
; J) j f Æ 't = 't Æ f for 8t 2 Rg.As ~C entralizes the fundamental group �1(M), noting the remark below (2.1), we have(2.20) �1(M) � CH(R):Lemma 2.7. There exists a homomorphism � : CH(R)!PSH(W; �; J) for whih � :~M!W beomes �-equivariant. Moreover, there exists a splitting homomorphism q :PSH(W; �; J)!CH(R).Proof. By de�nition, any element f 2 CH(R) satis�es f�� = �. As f �
 = �(f)
, hoosinges = �(f), put  = '�s Æ f . Then, �
 = 
. In partiular,  leaves W invariant. Let0 be the restrition of  to W (i:e: i Æ 0 = ). Using (2.6) and �� = �, we have that



12 YOSHINOBU KAMISHIMA AND LIVIU ORNEA0�� = �L�
 = L�
 = �: Hene 0 2 PSH(W; �; J). If we de�ne �(f) = 0, then it iseasy to see that � is a well de�ned homomorphism. Let x = 'tw be a point in ~M . As�(x) = w, �(fx) = �('s('tw)) = �('s'ti0w) = �(i0w) = 0w = �(f)�(x), so � is�-equivariant.For  2 PSH(W; �; J), we de�ne a di�eomorphism ~ : ~M! ~M to be(2.21) ~(x) = ~('tw) = 'tw:By de�nition, � Æ ~ =  Æ � and the t-oordinate satis�es that ~�t = t. By (2.15) and�� = �, it follows that ~�
 = d(e�t����) = d(et���) = 
: To see that ~ : ~M! ~M isholomorphi, notie that ~�� = �. As ~( �x) = ~( �'tw) = ~('ti 0�w) = 'ti 0�w, and�A = A, ~�(�J�x) = ~�(d �d� (x)j�=0) = (d'ti( 0�w)d� j�=0)= 't�i��(d 0�d� (w)j�=0) = 't�i��Aw = 't�i�Aw= 't�(�J�w) = �J�~x:(2.22)Hene, ~ preserves f�; J�g?. Sine the omplex struture J : Null �!Null � is de�ned bythe ommutative diagram (2.11), J�(��X) = �J(��X) for X 2 f�; J�g? by de�nition.Then ��~�J(X) = J���(X) = J��~�(X) = ��J~�(X). As a onsequene, ~� Æ J = J Æ ~�on ~M . Hene, ~ 2 CH(R). It is easy to hek that q() = ~ is a homomorphism ofPSH(W; �; J) into CH(R) suh that � Æ q = id. �Remark 2.1. From this lemma, there is an isomorphism CH(R) � R � PSH(W; �; J)where eah element of CH(R) is desribed as 's � q(�) for s 2 R; � 2 PSH(W; �; J). Itats on ~M as 's � q(�)('t � w) = 's+t � �w;for whih there is an equivariant prinipal bundle:R!(CH(R); ~M ) (�;�)�! (PSH(W; �; J);W ):2.3. Central group extension. The material in this subsetion and, in partiular,Proposition 2.5, will be needed in Setion 4.Consider the exat sequene:(2.23) 1!R!CH(R) ��! PSH(W; �; J)!1:Suppose that R \ �1(M) is nontrivial. Then it is an in�nite yli subgroup Z suh thatthe quotient group R=Z is a irle S1. Put Q = �(�1(M)) � PSH(W; �; J). We have aentral group extension:(2.24) 1!Z!�1(M) ��! Q!1:



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 13The above prinipal bundle restrits to the following one:(2.25) (Z;R)!(�1(M); ~M) (�;�)�! (Q;W ):As both R and �1(M) at properly on ~M , Q ats also properly disontinuously (but notneessarily freely) on W suh that the quotient Hausdor� spae W=Q is ompat. Sine�(Z) � �(R) = R+ from x 2.1, �(Z) is an in�nite yli subgroup of R+ . We need thefollowing lemma. (Compare [10℄, [5℄.)Lemma 2.8. Let 1!Z!�1(M) ��! Q!1 be the entral extension as given in (2.24).Then, �1(M) has a splitting subgroup �0 of �nite index:1!Z!�0 ��! Q0!1In partiular, there exists a subgroup H 0 of �0 whih maps isomorphially onto a subgroupQ0 of �nite index in Q.Proof. Consider the homomorphism �0 = �j�1(M) : �1(M)�!R+ from (2.1). Then,�0(�1(M)) is a free abelian group of rank k � 1. If we note that �0(Z) is an in�nite ylisubgroup of �0(�1(M)), then we an hoose a subgroup G of �nite index in �0(�1(M))suh that �0(Z) is a diret summand in G; G = �0(Z) � Zk�1. Put �0 = �0�1(G) andH 0 = �0�1(Zk�1). Then, �0 has �nite index in �1(M). Obviously � maps H 0 isomorphi-ally onto �(H 0) = Q0 whih is of �nite index in Q. �Proposition 2.5. The subgroup Q0 ats freely on W so that the orbit spae W=Q0 is alosed stritly pseudoonvex pseudo-Hermitian manifold indued from the pseudo-Hermitianstruture (�; J) on W .Proof. Let f = � 0�1 : Q0!H 0 be the inverse isomorphism. For eah �0 2 Q0 there exists aunique element �(�0) 2 R suh that f(�0) = '�(�0) �q(�0). As we know that Q ats properlydisontinuously on W from the remark below (2.25), the stabilizer at eah point is �nite.Suppose that �0w = w for some point w 2 W . As �0 2 Qw, (�0)l = 1 for some l. Sine 'tis a entral element and q is a homomorphism, 1 = f((�0)l) = 'l�(�0) � q((�0)l) = 'l�(�0).Thus, �(�0) = 0, i:e: f(�0) = q(�0). By the de�nition of the ation (�0; ~M), f(�0)('tw) =q(�0)('tw) = 't�0w = 'tw. As �0 ats freely on ~M , f(�0) = 1 and so �0 = 1. If wenote that Q0 � PSH(W; �; J), then (�; J) indues a pseudo-Hermitian struture (�̂; J) onW=Q0. Here we use the same notation J for the omplex struture on Null �̂. �3. Examples of l..K. manifolds with parallel Lee formIn this setion we present an expliit onstrution for the Hopf manifolds.Let S2n�1 = f(z1; : : : ; zn) 2 C n j jz1j2 + � � �+ jznj2 = 1g be the sphere endowed with its



14 YOSHINOBU KAMISHIMA AND LIVIU ORNEAstandard ontat struture(3.1) �0 = nXj=1(xjdyj � yjdxj); where zj = xj +p�1 yj:Let J0 be the restrition of the standard omplex struture of C n to C n � f0g. It isknown that the group of pseudo-Hermitian transformations, PSH(S2n�1; �0; J0) is isomor-phi with U(n) (see [21℄, for example). We de�ne a 1-parameter subgroup f tgt2R �PSH(S2n�1; �0; J0) by the formula: t(z1; : : : ; zn) = (eita1z1; : : : ; eitanzn);where i = p�1 and a1; : : : ; an 2 R. The vetor �eld indued by this ation isA = nXj=1 aj(xj ddyj � yj ddxj )and satis�es �0(A) = a1jz1j2 + � � �+ anjznj2:Now we require that �0(A) > 0 everywhere on S2n�1. Then the numbers ak must satisfy(up to rearrangement):(3.2) 0 < a1 � � � � � an:De�ne a new ontat form �A on the sphere by�A = 1Pnj=1ajjzjj2 � �0:The ontat distributions of �0 and �A oinide, but the harateristi �eld of �A is A:�A(A) = 1, �Ad�A = 0. As A generates the ow f tgt2R � PSH(S2n�1; �0; J0), note that t� Æ J0 = J0 Æ  t� on Null �A. De�ne a 2-form on the produt R � S2n�1 by:
A = 2d(etpr��A); (t 2 R):Here pr : R � S2n�1!S2n�1 is the projetion. If R = f'sgs2R ats on R � S2n�1 byleft translations: 's(t; z) = (s + t; z), then the group R � PSH(S2n�1; �A; J0) ats byhomotheti transformations with respet to 
A:(3.3) ('s � �)�
A = es � 
A; (� 2 PSH(S2n�1; �A; J0)):In general, PSH(S2n�1; �A; J0) is the entralizer of f tgt2R in U(n). In view of the formulaof  t, PSH(S2n�1; �A; J0) ontains the maximal torus of U(n) at least:(3.4) T n � PSH(S2n�1; �A; J0):(For example, if all aj are distint, PSH(S2n�1; �A; J0) = T n).



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 15Let N = d=dt be the vetor �eld indued on R � S2n�1 by the R-ation. Taking intoaount that T (R �S2n�1) = N �A�Null �A, we de�ne an almost omplex struture JAon R � S2n�1 by: JAN = �A; JAA = N;JAjNull�A = J0and show its integrability. Indeed, letT (R � S2n�1)
 C = fT 1;0 + (A� iN)g � fT 0;1 + (A+ iN)gbe the splitting orresponding to JA (here T 1;0 + T 0;1 = Null �A 
 C ). As JAjNull �A =J0, [T 1;0; T 0;1℄ � T 1;0. Realling that A is the harateristi �eld of �A, we see that[X;A℄ 2 Null �A for any X 2 Null �A. If X 2 T 1;0, then [X;A � iN ℄ = [X;A℄ =limt!0(X �  �t�X)=t. Noting that  t 2 PSH(S2n�1; �A; J0) (i:e:  t�J0 = J0 t�),JA[X;A� iN ℄ = J0[X;A℄ = limt!0 J0X �  �t�J0Xt = [J0X;A℄= [iX;A℄ = i[X;A℄ = i[X;A� iN ℄:Thus [X;A � iN ℄ 2 fT 1;0 + (A � iN)g. Hene JA is integrable. By the de�nition ofJA, it is easy to hek that the elements of R � PSH(S2n�1; �A; J0) are holomorphi withrespet to JA. Moreover, 
A is JA-invariant. Hene, 
A is a K�ahler form on the omplexmanifold (R�S2n�1 ; JA) on whih R�PSH(S2n�1; �A; J0) ats as the group of holomorphihomotheti transformations. De�ne a Hermitian metri ~gA and its fundamental 2-form~!A by setting ~!A = 2e�t � 
A:~gA(X; Y ) = ~!A(JAX; Y ); 8 X; Y 2 T (R � S2n�1):(3.5)(Compare (2.16).) By (3.3), R � PSH(S2n�1; �A; J0) ats as holomorphi isometries of(~gA; JA). When we hoose a properly disontinuous group � � R � PSH(S2n�1; �A; J0)ating freely on R � S2n�1, ~gA (resp. ~!A) indues a Hermitian metri gA (resp. the fun-damental 2-form !A) on the quotient omplex manifold (R � S2n�1=�; ĴA), where theomplex struture ĴA is indued from JA. We have to hek that gA is a l..K. met-ri with parallel Lee form. Let p : R � S2n�1!R � S2n�1=� be the projetion so thatp�!A = ~!A. Sine ~!A = e�t �
A, we have d~!A = �dt^ ~!A. Thus ~gA is a l..K. metri withLee form d(�t) on R � S2n�1. If we note that the group R � PSH(S2n�1; �A; J0) leavesd(�t) invariant, i:e: ('s � �)�d(�t) = d(�(s + t)) = d(�t), then d(�t) indues a 1-form� on R � S2n�1=� suh that p�� = d(�t). The equation d~!A = �dt ^ ~!A implies thatd!A = � ^ !A on R � S2n�1=�. As d� = 0, gA is a l..K. metri with Lee form �. For therest, the same argument as in the proof of Lemma 2.5 an be applied to show that � is theparallel Lee form of gA. Finally, we examine the omplex struture ĴA on R � S2n�1=�.



16 YOSHINOBU KAMISHIMA AND LIVIU ORNEALet H : R � S2n�1 ! C n � f0g be the di�eomorphism de�ned by:H(t; (z1; : : : ; zn)) = (e�a1tz1; : : : ; e�antzn);where fa1; : : : ; ang satis�es the ondition (3.2). We shall show that H is (JA; J0)-biholo-morphi. We have:H�(N(s;z)) = dH(t+ s; z)dt jt=0 = (�a1 � e�a1s � z1; : : : ;�an � e�ans � zn);H�(JAN(s;z)) = H�(�A(s;z)) = �H�((s; ddt(eita1z1; : : : ; eitanzn)jt=0)= �(ia1e�a1sz1; : : : ; iane�anszn) = J0H�(N(s;z)):From H�(A(s;z)) = �J0H�(N(s;z)), we derive J0H�(A(s;z)) = H�(N(s;z)) = H�(JAA): Nowlet X 2 Null �A � TS2n�1 and let �(t) be an integral urve of X on S2n�1: _�(t) = X,_�(0) = Xz. We an view X as a pair: X(s;z) = (s; _�(0)). Then:H�(X(s;z)) = ddtH(s; �(t))jt=0 = (e�a1s _�1(0); : : : ; e�ans _�n(0)):From this we obtain:H�(JAX(s;z)) = H�((s; J0 _�(0))) = H�((s; (i _�1(0); : : : ; i _�n(0))))= (ie�a1s _�1(0); : : : ; ie�ans _�n(0))= J0(e�a1s _�1(0); : : : ; e�ans _�n(0)) = J0H�(X(s;z)):Therefore H : (R � S2n�1; JA)! (C n � f0g; J0) is biholomorphi.Let Hol(C n�f0g; J0) be the group of all biholomorphi transformations. We an obtaina faithful homomorphism R � PSH(S2n�1; �A; J0)�!Hol(C n � f0g; J0) by assoiating toeah  2 R � PSH(S2n�1; �A; J0) the biholomorphi map H Æ  Æ H�1. Let �H be theimage of � in Hol(C n � f0g; J0).De�nition 3.1. The quotient omplex manifold (C n�f0g)=�H is alled a Hopf manifold.Sine our map H indues a holomorphi di�eomorphism Ĥ : (R � S2n�1)=� ! (C n �f0g)=�H, letting Ĥ�g = gA for the l..K. metri gA on (R � S2n�1)=�, we have shown:Theorem 3.1. The Hopf manifold (C n � f0g)=�H admits a l..K. metri g with parallelLee form �.By (3.4), T n � PSH(S2n�1; �A; J0). Choose s 2 R � f0g and n omplex numbers1; : : : ; n 2 S1. Let (s; (1; : : : ; n)) 2 R � PSH(S2n�1; �A; J0) and onsider an in�niteyli subgroup Z generated by this element. Then the orresponding group ZH is gener-ated by the element (e�a1s � 1; : : : ; e�ans � n) ating on C n � f0g. Let � = (�1; : : : ; �n),with �j = e�ajs � j and so ZH = h(�1; : : : ; �n)i. The ondition (3.2) ensures that theomplex numbers �j satisfy 0 < j�nj � � � � � j�1j < 1:



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 17Put M� = (C n � f0g)=ZH. We all M� a primary Hopf manifold of type �. Indeed, forn = 2, one reovers the primary Hopf surfaes of K�ahler rank 1. In partiular, we deriveTheorem B in the Introdution.Remark 3.1. Note that the manifoldsM� are all di�eomorphi with S1�S2n�1 and thatfor 1 = � � � = n = 1 and a1 = � � � = an, we obtain the standard Hopf manifold, the �rstknown example of a l..K. manifold with parallel Lee form, f. [18℄.In [7℄ a l..K. metri with parallel Lee form is onstruted on the primary Hopf surfaeM�1;�2 = (C 2�f0g)=�, � �= Z generated by (z1; z2) 7! (�1z1; �2z2), j�1j � j�2j > 1. Therethe di�eomorphism between M�1;�2 and S1 � S3 is used to onstrut a potential for theK�ahler metri h (in the notation of the present paper) on the universal over. The samedi�eomorphism is then used to transport the l..K. struture on S1�S3 and to show thatthe indued Sasakian struture on S3 is a deformation of the standard Sasakian strutureof the 3-sphere. See also [1℄ where a omplete list of ompat, omplex surfaes admittingl..K. metris with parallel Lee form is provided.4. Lee-Cauhy-Riemann transformationsIn this setion, we onsider the group AutLCR(M) desribed in the Introdution.Let f�; �ÆJ; ��; ���g�=1;��� ;n�1 be a unitary, loal oframe �eld adapted to a l..K. manifold(M; g; J) with parallel Lee form. Consider the subgroup G of GL(2n;R) onsisting of thefollowing elements:8>>><>>>:0BBB� 1 0 0 00 u v� �v�0 0 puU�� 00 0 0 pu �U��
1CCCA j u 2 R+ ; v� 2 C ; U�� 2 U(n� 1)9>>>=>>>; :Let G!P!M be the prinipal bundle of the G-struture onsisting of the aboveoframes f�; � Æ J; ��; ���g. If we note that G is isomorphi to the semidiret produtC n�1o (U(n�1)�R+), then the Lie algebra g is isomorphi to C n�1ou(n�1)+R. Notethat the subgroup C n�1 is of even rank, while u(n � 1) + R is of order 2. In partiular,the matrix group g � gl(2n;R) has no element of rank 1, i.e. it is ellipti (f. [11℄). AsM is assumed to be ompat, it is known that the group of automorphisms U of P is a�nite dimensional Lie group.De�nition 4.1. The group of all di�eomorphisms of M onto itself whih preserve theabove G-struture is denoted by AutLCR(M; g; J; �) (or simply by AutLCR(M)). Weall AutLCR(M) the group of Lee-Cauhy-Riemann transformations on a l..K. manifold(M; g; J) adapted to the parallel Lee form �.



18 YOSHINOBU KAMISHIMA AND LIVIU ORNEABy de�nition, if f 2 AutLCR(M), then f � : P!P is a bundle automorphism satisfyingf �� = �;f �(� Æ J) = � � (� Æ J); for some positive, smooth funtion �;f ��� = p� � ��V �� + (� Æ J) �w�;f ���� = p� � ��� �V �� + (� Æ J) � �w�;(4.1)for funtions V �� , w� with values in U(n � 1), respetively in C . Note that the groupof holomorphi isometries I(M; g; J) is ontained in AutLCR(M). In fat, an elementf 2 I(M; g; J) satis�es f �� = �, f �(� Æ J) = (� Æ J) and f �! = !. Let f�℄; J�℄g? bethe orthogonal omplement of the omplex plane �eld f�℄; J�℄g with respet to g. Itis obviously J-invariant. If we observe that !jf�℄; J�℄g? = �iP�;� Æ���� ^ ���, thenf ��� = ��U�� , f ���� = ��� �U�� for some U(n� 1)-valued funtion U�� .Lemma 4.1. Any element f 2 AutLCR(M) preserves f�℄; J�℄g? and is holomorphi on it.Proof. Let X 2 f�℄; J�℄g?. The equations f �� = �, f �(� Æ J) = � � (� Æ J) show thatg(f�X; �℄) = �(f�X) = �(X) = g(X; �℄) = 0;g(f�X; J�℄) = �g(Jf�X; �℄) = ��(Jf�X) = �� Æ J(f�X)= �� � � Æ J(X) = �g(X; (� Æ J)℄) = g(X; J�℄) = 0:(4.2)Thus f� applies f�℄; J�℄g? onto itself. Moreover, if �℄� is a dual frame �eld to �� (similarlyfor ���), then the frame f�℄�; ��℄�g�=1;��� ;n�1 spans f�℄; J�℄g? 
 C . The equation f ��� =p� � ��V �� + (� Æ J) � w� implies that f��℄� = p� � �℄�V �� (similary for f���℄�). Thereforef� Æ J = J Æ f� on f�℄; J�℄g?. �When a nonompat LCR ow exists on a ompat l..K. manifoldM with parallel Leeform, we shall prove a rigidity similar to the one implied by a nonompat CR-ow on aompat CR-manifold (f. [15℄, [9℄).Proof of Theorem C.4.1. Existene of spherial CR-struture on W=Q0. Let 1!Z!�0 ��! Q0!1 be thesplit entral group extension from Lemma 2.8. Put M 0 = ~M=�0. Then it is easy tosee that the Lee form �, the LCR-ation C � lift to those of M 0, so we retain the samenotation for M 0. We put C � = S1 � R+ where R+ = f�̂tgt2R is a LCR ow on M 0. Byhypothesis, S1 = f'̂tgt2R indues the Lee �eld �℄. From (1) of Proposition 2.4, S1 liftsto a nontrivial holomorphi homotheti ow R = f'tgt2R on ~M with respet to 
. Weobtain a LCR-ation of R � R+ on ~M for whih R ats properly as before. Consider the



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 19ommutative diagram of prinipal bundles:
(4.3) Z ���! �0 ����! Q0??y ??y ??yR ���! (R � R+ ; ~M) (~�;�)���! (R+ ;W )??y ??yp ??ypS1 ���! (S1 � R+ ;M 0) (�̂;�̂)���! (R+ ;W=Q0)From the bottom line, the projetion �̂ maps the group R+ = f�̂tgt2R onto a groupR+ = f��tgt2R ating on W=Q0.Lemma 4.2. The group R+ = f��tgt2R ats by CR-transformations on W=Q0 with respetto the CR-struture indued from the stritly pseudoonvex, pseudo-Hermitian struture(�̂; J).Proof. As � generates the ow R = f'tgt2R, p�� = �℄ on M 0 by hypothesis and sop : ~M!M 0 maps the omplex plane �eld f�; J�g onto f�℄; J�℄g. By Lemma 4.1, eah�̂t 2 AutLCR(M 0) preserves f�℄; (� Æ J)℄g?. So its lift �t preserves the J-invariant distri-bution f�; J�g?. Sine �� : (f�; J�g?; J)!(Null �; J) is J-isomorphi and eah �t is holo-morphi on f�; J�g?, �̂� : (f�℄; (� Æ J)℄g?; J)�!(Null �̂; J) is also J-isomorphi throughthe ommutative diagram and thus eah ��t is holomorphi on Null �̂; ( ��t� Æ J = J Æ ��t�).Therefore, R+ = f��tgt2R is a losed, nonompat subgroup of CR-transformations ofW=Q0 with respet to (Null �̂; J). �By this lemma, we obtain a ompat stritly pseudoonvex CR-manifold W=Q0 admit-ting a losed, nonompat CR-transformations R+ . Then we apply the result of [9℄ toshow that W=Q0 is CR-equivalent to the sphere S2n�1 with the standard CR-struture.In partiular Q0 = f1g and thus Q is a �nite subgroup of PSH(W; �; J) from Lemma 2.8.By the de�nition of spherial CR-struture (f. [13℄, [8℄), there exists a developing pair:(�; dev) : (AutCR(W );W )!(PU(n; 1); S2n�1)for whih dev is a CR-di�eomorphism and � : AutCR(W )!PU(n; 1) is the holonomyisomorphism. Here PU(n; 1) = AutCR(S2n�1) and AutCR(W ) is the group of all CR-automorphisms of W ontaining the groups R+ and PSH(W; �; J) � Q.As S1 (� C �) ats on M without �xed points (but not neessarily freely, i.e. withpossible exeptional orbits S1x for whih the stabilizer S1x is a non-trivial yli subgroupof S1; f. [3℄), the quotient spae M=S1 = W=Q(� S2n�1=�(Q)) is an orbifold, so suh a�nite subgroup Q may exist.On the other hand, we reall some fats from the theory of hyperboli groups (f. [4℄).The nonompat losed �(R+)-ation on S2n�1 is haraterized as whether it is either



20 YOSHINOBU KAMISHIMA AND LIVIU ORNEAloxodromi (= R+) or paraboli (= R) for whih R+ has exatly two �xed points f0;1gor R has the unique �xed point f1g on S2n�1. Moreover, the entralizer CPU(n;1)(�(R+))of �(R+) in PU(n; 1) is one of the following groups up to onjugay:(4.4) R� U(n� 1) or R+ � U(n� 1):Sine �1(M) entralizes R � R+ , note that Q entralizes R+ (f. (2.24)). The holonomygroup �(Q) belongs to CPU(n;1)(�(R+)). As �(Q) is a �nite subgroup, (4.4) implies that(4.5) �(Q) � U(n� 1):4.2. Rigidity of (M; g; J) under the LCR ation of R+ . Let (�0; J0) be the standardstritly pseudoonvex pseudo-Hermitian struture on S2n�1 (f. (3.1)). By de�nition,there exists a positive funtion u on W suh that(4.6) dev��0 = u � �:By Lemma 2.4, we know that A is the harateristi CR-vetor �eld on W for (�; J).If f 0tg is the ow generated by A, then note from (2.13) that f 0tg � PSH(W; �; J).Beause W is ompat, PSH(W; �; J) is ompat. As PSH(W; �; J) � AutCR(W ), thelosure of the holonomy image �(f 0tg) (whih is a onneted abelian group) lies in themaximal torus T n of the maximal ompat subgroup U(n) in PU(n; 1) up to onjugay.We an desribe it as �( 0t) = (eia1�t; � � � ; eian�t) (8t 2 R)for some ai 2 R (i = 1; : : : ; n). On the other hand, let A = dev�(A). Sine dev isequivariant, dev( 0tw) = �( 0t)dev(w) on S2n�1 = fz = (z1; z2; � � � ; zn) 2 C n j jz1j2 +jz2j2 + � � �+ jznj2 = 1g, we have:(4.7) Az = d�( 0t)dt = nXj=1 aj(xj ddyj � yj ddxj ) (z = dev(w); zj = xj + iyj):As �(A) = 1, we have(4.8) u(w) = dev��0(A) = �0(Az) = nXj=1 aj � jzjj2:Sine u > 0 from (4.6), we an assume that, up to rearranging the order of indies(4.9) 0 < a1 � � � � � an:As dev�1 maps the pseudo-Hermitain struture (�; J) on W to (dev�1� �; J0) on S2n�1,we put(4.10) �A = dev�1��:



GEOMETRIC FLOW ON COMPACT L.C.K. MANIFOLDS 21Using (4.8), we obtain:(4.11) �A = 1Pnj=1 aj � jzjj2 � �0 on S2n�1:When we note that �0 = u0 � �A where u0 = u Æ dev�1, and T (R � S2n�1) = fd=dt;Ag �Null �0, denote the omplex struture JA on R � S2n�1 byJA ddt = �A; JAA = ddtJAjNull �0 = J0:(4.12)(Compare x3.) Let Pr : R � S2n�1!S2n�1 be the anonial projetion. In view of (3.5),setting 
A = d(et � Pr��A); ~!A = 2e�t � 
A;~gA(X; Y ) = ~!A(JAX; Y );(4.13)we obtain a l..K. struture (
A; JA) on the produt R � S2n�1 endowed with the groupR � PSH(S2n�1; �A; J0) of holomorphi homotheti transformations.Proposition 4.1. There exists an equivariant holomorphi isometry between the l..K.manifolds (CH(R); ~M;
; J) and (R � PSH(S2n�1; �A; J0);R � S2n�1;
A; JA).Proof. Let G : ~M!R�S2n�1 be a di�eomorphism de�ned by G('tw) = (t; dev(w)). Notethat Pr Æ G = dev Æ� on ~M . As every element of CH(R) is desribed as 's � q(�) fromRemark 2.1, de�ne a homomorphism 	 : CH(R)!R � PSH(S2n�1; �A; J0) by setting	('s � q(�)) = (s; �(�)):Reall that the ation q(�)('tw) = 't�w from (2.21). Then,G('s � q(�)('tw)) = G('s+t � �w) = (s+ t; dev(�w)) = (s+ t; �(�) dev(w))= (s; �(�))(t; dev(w)) = 	('s � q(�))G('tw):Hene, (	; G) : (CH(R); ~M )!(R � PSH(S2n�1; �A; J0);R � S2n�1) is equivariantly di�eo-morphi. Next, sine G�t = t for the t-oordinate of R � S2n�1 and dev� �A = � from(4.10), it follows that:(4.14) G�
A = G�d(et � Pr��A) = d(eG�t �G�Pr��A) = d(et � ���) = 
:By de�nition, G�� = d=dt. Moreover, when x = 'sw,G( t(x)) = G('s tw) = G('si 0tw) = (s; dev( 0tw)) = (s; �( 0t) dev(w)):By (2.7) and (4.7), G�(�J�x) = dG tdt (x)jt=0 = AGx = �JA( ddt)Gx:



22 YOSHINOBU KAMISHIMA AND LIVIU ORNEAThus G�(J�) = JAG��. As G�
A = 
 from (4.14), G maps f�; J�g? onto fd=dt;Ag?.Consider the ommutative diagram:(4.15) (f�; J�g?; J) �����! (Null �; J)??yG� ??ydev�(f ddt ;Ag?; JA) Pr����! (Null �0; J0):Here note that JA = J0 on Null �A = Null �0. For X 2 f�; J�g?,Pr�G�J(X) = dev�(J��X) = J0dev���(X) = JAPr�G�(X) = Pr�JAG�(X);thus, G�J(X) = JAG�(X). Hene, G is (J; JA)-biholomorphi. Moreover, as G�~!A =G�(2e�t
A) = 2e�t
 = �� and �g(X; Y ) = ��(JX; Y ), we obtain that G�~gA = �g. Therefore,(	; G) indues a holomorphi isometry from (M; ĝ; J) onto (R�S2n�1=	(�1(M)); ĝA; ĴA).�4.3. The Hopf manifold R � S2n�1=	(�1(M)). We prove that R �S2n�1=	(�1(M)) isa primary Hopf manifoldM� for some � obtained in x3. Eah element of �1(M) is of theform  = 's � q(�) for some s 2 R where �() = � 2 Q = �(�1(M)). By the de�nitionof 	, 	() = (s; �(�)). We show that 	(�1(M)) has no torsion element. For this, if	() is of �nite order (say, l), then 1 = (0; 1) = 	(l) = (ls; �(�l)). Then, s = 0 sothat 	() = (0; �(�)). On the other hand, reall from (4.5) that �(Q) � U(n � 1) upto onjugay, and so �(Q) has a �xed point w0 2 S2n�1. Sine 	(�1(M)) ats freely onR � S2n�1, while 	()(t; w0) = (t; �(�)w0) = (t; w0), it follows that 	() = 1. More-over, if 1 = 's1 � q(�1), 2 = 's2 � q(�2), then 	([1; 2℄) = (0; �([�1; �2℄). For thesame reason, 	([�1(M); �1(M)℄) = f1g. Hene, �1(M) is a �nitely generated torsion-free abelian group. If we reall from (2.24) that 1!Z!�1(M) ��! Q!1 is the entralgroup extension where Q is �nite, then �1(M) itself is an in�nite yli group. Sine	(�1(M)) � R � PSH(S2n�1; �A; J0) and the projetion maps 	(�1(M)) onto �(Q) inPSH(S2n�1; �A; J0), �(Q) is a �nite yli group. As PSH(S2n�1; �A; J0) has the maximaltorus T n (f. (3.4)), we obtain that 	(�1(M)) � R � T n up to onjugay. A generatorof 	(�1(M)) is desribed as (s; (1; � � � ; n)) 2 R � T n. Noting (4.9), let �j = e�ajsjand � = (�1; � � � ; �n). By Theorem 3.1 and the remark below it, R � S2n�1=	(�1(M))is a primary Hopf manifold M� of type �. This �nishes the proof of Theorem C in theIntrodution. Referenes[1℄ F. A. Belgun, On the metri struture of non-K�ahler omplex surfaes, Math. Ann., 317 (2000),1{40.[2℄ D. E. Blair, Contat manifolds in Riemannian geometry, L.N.M. 509, Springer Verlag, 1976.[3℄ G. Bredon, Introdution to ompat transformation groups, Aademi Press, New York, 1972.
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