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COSPHERE BUNDLE REDUCTION INCONTACT GEOMETRYOana Dr�agulete, Liviu Ornea, Tudor S. RatiuWe extend the theorems 
on
erning the equivariantsymple
ti
 redu
tion of the 
otangent bundle to 
onta
tgeometry. The role of the 
otangent bundle is taken bythe 
osphere bundle. We use Albert's method for redu
-tion at zero and Willett's method for non-zero redu
tion.1. Introdu
tionOne of the main results 
on
erning symple
ti
 redu
tion with manyappli
ations in geometri
 me
hani
s states that, in the presen
e of a\good" a
tion of a �nite dimensional Lie group G on an arbitrary di�er-entiable manifold Q, the 
otangent bundle of the quotient, T �(Q=G), issymple
tomorphi
 with (T �Q)0, the redu
ed spa
e at 0 of the 
otangentbundle. More generally, the redu
tion T �(Q=G)� at � 6= 0 of T �Q issymple
tomorphi
 with a ve
tor subbundle of T �(Q=G�) endowed witha magneti
 symple
ti
 form (see [1℄, x4.3; this result for Abelian groupsis due to Satzer [10℄); G� denotes the 
oadjoint isotropy subgroup at�.The aim of this note is to prove an analogue of this result in 
onta
tgeometry. Again we start with an arbitrary manifold Q supportinga \good" a
tion of a Lie group G. The role of the 
otangent bundlewill be played by the 
osphere bundle that will be des
ribed in se
tion2 (
f. also [9℄). It is a 
onta
t manifold. We shall prove that itsredu
ed spa
e at 0 is 
onta
tomorphi
 with the 
osphere bundle ofMathemati
s Subje
t Classi�
ation. 53D20, 53D10.Key words and phrases. 
onta
t manifold, symple
ti
 manifold, 
otangent bun-dle, 
osphere bundle, momentum map, (non-zero) redu
tion.695



696 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUQ=G. Even though the result for � = 0 
ould probably be obtained by\diagram 
hasing", we prefer to provide an expli
it proof, identifyingall 
onta
tomorphisms. More generally, we prove that its redu
ed spa
eat � 6= 0 embeds in a 
onta
t manner onto a subbundle of the 
ospherebundle of Q=G�.We brie
y review, following [2℄, [4℄, the redu
tion method at 0 for
onta
t manifolds.Re
all that a 
onta
t stru
ture on a smooth (2n + 1){dimensionalmanifold N is a 
odimension one smooth distribution H � TN , lo
allygiven by the kernel of a one-form � su
h that � ^ (d�)n 6= 0. Su
h an� is 
alled a (lo
al) 
onta
t form. Any two proportional 
onta
t formsunderly the same 
onta
t stru
ture. A 
onta
t stru
ture whi
h is thekernel of a global 
onta
t form is 
alled exa
t or 
o-orientable. If �is a one form of an exa
t 
onta
t stru
ture, the pair (N; �) is 
alledan exa
t 
onta
t manifold. On an exa
t 
onta
t manifold N thereis a unique ve
tor �eld R, 
alled the Reeb ve
tor �eld , 
hara
terizedby the 
onditions �(R) = 1 and d�(R; �) = 0. The 
ow of the Reebve
tor �elds preserves the 
onta
t form �. The Reeb ve
tor �eld isnowhere vanishing and it generates the one-dimensional distributionker d� = fv 2 TN j d�(v; �) = 0g.A �nite dimensional 
onne
ted Lie group G is said to a
t by 
onta
-tomorphisms on a 
onta
t manifold if it preserves the 
onta
t stru
tureH. For an exa
t 
onta
t manifold (N; �), this means that g�� = fg� fora smooth, real-valued, nowhere zero fun
tion fg. G a
ts by strong 
on-ta
tomorphisms on N , if g�� = �, i:e: G preserves the 
onta
t form, notonly the 
onta
t stru
ture. A G{a
tion by strong 
onta
tomorphismson (N; �) admits an equivariant momentum map J : N ! g� given byevaluating the 
onta
t form on fundamental �elds: hJ; �i = �(�N).Throughout this paper we shall denote by g the Lie algebra of G,by h�; �i : g� � g ! R the natural pairing between g� and g, and by�N the fundamental ve
tor �eld (or in�nitesimal generator) de�ned by� 2 g. For simpli
ity, we shall work ex
lusively with free proper a
tions,although the extensions of our results to lo
ally free a
tions is routine;in that 
ase the relevant quotient spa
es will be orbifolds instead ofmanifolds. For a smooth map f : A ! B between the manifolds Aand B, Taf : TaA! Tf(a)B denotes its derivative, or tangent map, ata 2 A.



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 697The momentum map J is 
onstant on the 
ow of the Reeb ve
tor�eld. In addition, hTnJ(v); �i = d�(n)(v; �N(n))for any n 2 N , v 2 TnN , and � 2 g. This immediately implies[im(TnJ)℄Æ = f� 2 g j d�(n)(�N(n); �) = 0g;whi
h is the 
onta
t analogue of the bifur
ation lemma from the usualtheory of momentum maps on Poisson manifolds; the term on the leftis the annihilator of the subspa
e in parentheses. For this (
onta
t)momentummap, 0 2 g� is a regular value if and only if the fundamental�elds indu
ed by the a
tion do not vanish on the zero level set ofJ . Moreover, if this is the 
ase, the pull ba
k of the 
onta
t form toJ�1(0) is basi
. Let �0 : J�1(0) ! J�1(0)=G and �0 : J�1(0) ,! Nbe the 
anoni
al proje
tion and in
lusion respe
tively. The redu
tiontheorem asserts the existen
e of a unique 
onta
t form �0 on J�1(0)=Gsu
h that ��0�0 = ��0�.Regarding 
onta
t redu
tion at � 6= 0, up to now there are twoversions available: one due to Albert [2℄ and a very re
ent one due toWillett [11℄.Albert's method [2℄. Let (N; �) be an exa
t 
onta
t manifold withReeb ve
tor �eld R and let � be a \good" a
tion of a Lie group bystrong 
onta
tomorphisms. For � 2 g�, denote by G� the isotropygroup at � of the 
oadjoint a
tion and by g� its Lie algebra. If � 6= 0is a regular value of J the restri
tion of the 
onta
t form to J�1(�)is not basi
. This problem is over
ome by Albert by 
hanging thein�nitesimal a
tion of g� on J�1(�) as follows: � 7! �N � h�; �iR,where R is the Reeb ve
tor �eld. In general, this in�nitesimal a
tion
annot be integrated to an a
tion of G�. However, if R is 
omplete,this g�{a
tion is indu
ed by an a
tion of the universal 
overing groupbG� (if G� is 
onne
ted) given by(et�; n) 7! �et�(��1th�;�i(n));where �t is the 
ow of the Reeb ve
tor �eld. Albert de�nes the redu
edspa
e as J�1(�)= bG� via this new a
tion and shows it is naturally a
onta
t manifold.Willett's method [11℄. The idea is to expand � and to shrink G�.As above, G is a Lie group that a
ts smoothly on an exa
t 
onta
tmanifold (N; �) preserving the 
onta
t form �. Let � 2 g�. Willett
alls the kernel group of �, the 
onne
ted Lie subgroup K� of G� with



698 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIULie algebra k� = ker(�jg�). It is easy to see that k� is an ideal in g� andtherefore K� is a 
onne
ted normal subgroup of G�. Conta
t redu
tion(or the 
onta
t quotient) of N by G at � is de�ned by Willett asN� := J�1(R+�)=K�:Assume that K� a
ts freely and properly on J�1(R+�). Then J istransversal to R+� and the pull ba
k of � to J�1(R+�) is basi
 relativeto the K�{a
tion on J�1(R+�) and thus indu
es a one form �� onthe quotient N�. If, in addition, ker� + g� = g then the form ��is also a 
onta
t form. It is 
hara
terized, as usual, by the identity����� = i���, where �� : J�1(R+�) ! N� is the 
anoni
al proje
tionand i� : J�1(R+�) ,! N is the 
anoni
al in
lusion.It is to be noted that for � = 0, Albert's and Willett's quotients 
o-in
ide be
ause in Albert's method for � = 0 the 
onta
t form restri
tedto J�1(0) is basi
 and thus there is no need to 
hange the in�nitesi-mal a
tion. Hen
e both redu
tion methods yield in this 
ase the spa
eJ�1(0)=G.Notations: Throughout the paper we shall denote by �G : Q! Q=G,�Q=G : T �(Q=G) ! Q=G, �Q : T �Q ! Q the respe
tive 
anoni
alproje
tions. The Liouville one-forms of T �Q and T �(Q=G) will bedenoted respe
tively by � and �. The naturally lifted a
tion of G onT �Q admits an equivariant momentum map J
t : T �Q ! g� given byhJ
t(�q); �i = �q(�Q(q)), where �q 2 T �qQ, � 2 g, and �Q denotes thefundamental ve
tor �eld de�ned by the G{a
tion on Q.2. The 
osphere bundle and its 
onta
t stru
tureLet Q be a di�erentiable manifold of real dimension n, �Q : T �Q! Qits 
otangent bundle, and � the Liouville form on T �Q. We shall denoteby �q, �q et
. the elements of T �Q.Let G be a �nite dimensional Lie subgroup of Di�(Q) and denoteby � : G � Q ! Q a free, proper a
tion of G on Q. We denote by�� : G� T �Q! T �Q its natural lift to the 
otangent bundle of Q. ��is still free and proper and preserves the Liouville form � and thus the
anoni
al symple
ti
 stru
ture �d� of T �Q.Consider the a
tion of the multipli
ative group R+ =℄0;+1[ by di-lations on the �bers of T �Q n f0g.De�nition 2.1. The 
osphere bundle S�Q ofQ is the quotient manifold(T �Q n f0g)=R+ . Denote by � : [�q℄ 2 S�Q 7! q 2 Q the asso
iated
anoni
al proje
tion.



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 699The 
onstru
tion des
ribed below is standard (see e:g: [9℄).Let � : T �Q n f0g ! S�Q be the 
anoni
al proje
tion. The elementsof the 
osphere bundle are 
lasses that we denote with [�q℄. Of 
ourse,(�;R+ ; T �Q n f0g; S�Q) is a R+{prin
ipal bundle. As su
h, it alwayshas global se
tions: it is enough to 
hoose a Riemannian metri
 onQ (supposed para
ompa
t), to identify T �Q with TQ, S�Q with theunit sphere bundle T 1Q of TQ, and to 
onsider the 
anoni
al in
lusionT 1Q ,! TQ. Let then � : S�Q ! T �Q n f0g be a global se
tion. Theequation � Æ � = f�1T �Qnf0g;where 1T �Qnf0g denotes the identity map of T �Qnf0g, de�nes a fun
tionf� : T �Q n f0g ! R+ with the following property of 
ompatibility withrespe
t to the a
tion of R+ :(2.1) f�(r�q) = 1r f�(�q); r 2 R+ ; �q 2 T �Q n f0g:Indeed, �([�q℄) = f�(�q)�q = �([r�q℄) = f�(r�q)r�q: The followingstatement is now 
lear.Lemma 2.1. The set of global se
tions of � : T �Q n f0g ! S�Q is inbije
tive 
orresponden
e with the set of C1 fun
tions f : T �Q n f0g !R+ satisfying (2.1).We pull ba
k by � the restri
tion of the Liouville form and obtainthe one-form �� = ��� on S�Q. One has:(2.2) ���� = f��:Indeed, ���� = ����� = (� Æ �)�� = (f�1T �Qnf0g)�� = f��: Now, foranother global se
tion �, with asso
iated fun
tion f�, we have�� = ��� = (� Æ � Æ �)�� = ������ = ��(f��) = (f� Æ �)��;and hen
e we obtain(2.3) �� = g����; with g�� = f� Æ �:Note also that g�� Æ � = f�=f�. From (2.3) we easily derive that �� isa 
onta
t form on S�Q if and only if �� is one. But it was proved in[1℄ that if � is de�ned using a Riemannian metri
 on Q, as explainedabove, then �� is a 
onta
t form. Thus we have proved:Lemma 2.2. �� is a global 
onta
t form on S�Q for any global se
tion�.



700 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUIt is also 
lear from (2.3) that all these 
onta
t forms have the samenull spa
e, so that the 
onta
t stru
ture does not depend on the 
hoi
eof �.Remark 2.1. Let C(S�Q) = S�Q � R+ be the symple
ti
 
one overS�Q, endowed with the symple
ti
 form d(t��). Then one 
an easilysee that T� : C(S�Q)! T �Q given by T�([�q℄; t) = tf�(�q) ��q is a wellde�ned symple
ti
 di�eomorphism, that is, a symple
tomorphism.3. The redu
tion theoremsWe shall now lift the free proper a
tion of G to the 
osphere bundleand 
ompute the asso
iated momentum map. The a
tion � lifts to ana
tion �� on T �Q by setting��(g; �q) := T ��(g;q)�g�1�q;for g 2 G, �q 2 T �qQ, and where the upper star denotes the dual mapof the linear map to whi
h it is applied. It is 
lear that the 
otan-gent bundle proje
tion �Q : T �Q ! Q is equivariant relative to thea
tions �� and �. If the a
tion � is free and proper, this equivarian
eimmediately shows that the a
tion �� is also free and proper.Denote by �Q : [�q℄ 2 S�Q 7! q 2 Q the 
anoni
al 
osphere bundleproje
tion.Lemma 3.1. The a
tion � indu
es a free proper a
tion b�� : G�S�Q!S�Q.Proof. De�ne b��(g; [�q℄) = [��(g; �q)℄:As b��(g; [r�q℄) = [��(g; r�q)℄ = [r��(g; �q)℄ = [��(g; �q)℄, the de�ni-tion is 
orre
t. Note also that �� 
overs �, that is, �Q Æ b�� = � Æ �Q.This immediately proves that freeness (respe
tively properness) of theG a
tion on Q implies freeness (respe
tively properness) of the a
tionb�� on S�Q. Clearly (b��g)��� is a multiple of �� and the proof is 
om-plete. �Lemma 3.2. The a
tion b�� : G�S�Q! S�Q is by 
onta
tomorphismsand the s
ale fa
tors are all positive.



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 701Proof. By dire
t 
omputation and using (2.2) in the last equality, wehave:b���g��([�q℄)(v[�q ℄) = �� �b��g([�q℄)��T[�q ℄b��g(v[�q ℄)�= � �(� Æ b��g)([�q℄)��T[�q℄(� Æ b��g)(v[�q ℄)�= (� Æ b��g)([�q℄)�T[�q ℄(�Q Æ � Æ b��g)(v[�q ℄)�= f�(��g(�q))��g(�q)�T[�q ℄(�Q Æ � Æ b��g)(v[�q ℄)�= f�(��g(�q))�q �T[�q ℄(��1g Æ �Q Æ � Æ b��g)(v[�q℄)�= f�(��g(�q))�q �T[�q ℄(�Q Æ �)(v[�q ℄)�= f�(��g(�q))�(�q) �T[�q ℄(�)(v[�q ℄)�= f�(��g(�q))f�(�q) ��([�q℄)(v[�q℄): �To 
onstru
t a momentum map asso
iated to this a
tion, we needto work with a strong a
tion, that is, we need it to preserve not onlythe 
onta
t stru
ture, but the 
onta
t form. This 
an be a
hieved byadapting Palais' argument (or, if G is 
ompa
t, by averaging). Indeed,owing to Lemma 3.1, we may apply Proposition 2.8 in [5℄ assertingthat for a proper a
tion by 
onta
tomorphisms, there always exist aninvariant 
onta
t form. (The proof of this is a straightforward mod-i�
ation of the 
lassi
al proof of Palais for the existen
e of invariantRiemannian metri
s on para
ompa
t manifolds endowed with a properLie group a
tion.) As every 
onta
t form on the 
osphere bundle isobtained via a global se
tion as above, we shall 
hose on
e and for alla se
tion � for whi
h (b��g)��� = ��. Relative to this 
onta
t form theindu
ed a
tion on the 
osphere bundle is by strong 
onta
tomorphisms.The asso
iated momentum map J�� will be denoted for simpli
ity byJ sin
e in what follows no other 
onta
t form di�erent from �� will beused. Let (S�Q)0 = J�1(0)=G be the redu
ed spa
e 
orresponding tothe regular value 0 2 g�.Similar 
onsiderations apply to the manifold Q=G proving that its
osphere bundle is a 
onta
t manifold. As above, the 
onta
t stru
ture
an be des
ribed as the kernel of a 
onta
t form of the type ��, where� : S�(Q=G)! T �(Q=G)nf0g is a global se
tion and � is the Liouvilleform of T �(Q=G).



702 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUTheorem 3.1. Let G be a Lie group a
ting freely and properly on themanifold Q. Then (S�Q)0, the redu
ed spa
e at the regular value zeroof the momentum map of the 
osphere bundle of Q, is 
onta
t-diffeo-morphi
 with the 
osphere bundle S�(Q=G).Remark 3.1. Suppose (N; �) is a 
onta
t manifold on whi
h a Liegroup G a
ts by strong 
onta
tomorphisms. The a
tion 
an be natu-rally lifted to the symple
ti
 
one (C(N); d(t�)) by letting G a
t triv-ially on R+ ; one obtains an a
tion by symple
tomorphisms. It is wellknown that, in this situation, the redu
ed symple
ti
 spa
e at 0 is thesymple
ti
 
one over the 
onta
t redu
ed spa
e at 0: C(N0) �= (C(N))0.This 
an be applied to N = S�Q and 
ombined with the 
otangentbundle redu
tion theorem it should lead to a \diagram 
hasing" proofof the theorem. However, we prefer to make the maps involved in theproof pre
ise.Proof. A �rst key observation is that the a
tions of G and R+ on T �Qnf0g 
ommute, so that there exists the di�eomorphism:(3.1) � : (S�Q)=G = (T �Q n f0g=R+)=G! (T �Q n f0g=G)=R+ :Se
ond, applying the 
otangent bundle redu
tion theorem to T �Q, wehave the symple
ti
 di�eomorphism (see [1℄, [6℄, or [8℄)(3.2)'0 : J�1
t (0)=G! T �(Q=G); given by '0(b�q) (Tq�G(vq)) := �q(vq);where vq 2 TqQ, �q 2 J�1
t (0) \ T �qQ, b�q 2 J�1
t (0)=G is its 
lass in theredu
ed spa
e at zero, and �G : Q! Q=G is the proje
tion. Denote byp0 : J�1
t (0) ! J�1
t (0)=G the 
anoni
al proje
tion, that is, p0(�q) = b�qfor all �q 2 J�1
t (0).We want to relate the zero level sets of the 
onta
t momentum mapJ and of the symple
ti
 momentum map J
t. The de�nition of the(
onta
t) momentum map J , the � relatedness of �T �Q and �S�Q, for-mula (2.2), the de�nition of the Liouville form on T �Q, and �nally the�Q relatedness of �T �Q and �Q yield for any � 2 ghJ([�q℄); �i = ��([�q℄) (�S�Q([�q℄))= ��(�(�q)) �T�q�(�T �Q(�q)�= (����)(�q) (�T �Q(�q))= f�(�q)�(�q) (�T �Q(�q))= f�(�q)�q �T�q�Q(�T �Q(�q))�= f�(�q)�q (�Q(q)) ;



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 703that is,(3.3) J([�q℄) = f�(�q)�q:Sin
e f� > 0, this implies thatJ�1(0) = f[�q℄ j �q(�Q(q)) = 0; for all � 2 gg:However, hJ
t(�q); �i = �q(�Q(q)) for any � 2 g, whi
h shows thatJ�1(0) � �(J�1
t (0)). The 
onverse in
lusion being obvious, we 
on
ludethat J�1(0) = �(J�1
t (0)) and hen
e(3.4) (S�Q)0 := J�1(0)=G = (J�1
t (0) n f0g=R+)=G:Denote by(3.5) � : (S�Q)0 ! (J�1
t (0) n f0g=G)=R+the di�eomorphism obtained by restri
ting the di�eomorphism � de-�ned in (3.1) to (S�Q)0 and denote by �� the redu
ed 
onta
t form on(S�Q)0.The de�nition of the di�eomorphism '0 : J�1
t (0)=G ! T �(Q=G)de�ned in (3.2) shows that b0q 2 J�1
t (0)=G is mapped to the zero el-ement of T ��G(q)(Q=G) and that '0 
ommutes with the R+{a
tions onJ�1
t (0)=G and on T �(Q=G) respe
tively. Thus '0 indu
es a smoothmap(3.6) b'0 : (J�1
t (0) n f0g=G)=R+ ! (T �(Q=G) n f0g)=R+ = S�(Q=G)given by(3.7) b'0([b�q℄) := ['0(b�q)℄;where [b�q℄ 2 (J�1
t (0)=G)=R+ denotes the 
lass of b�q 2 J�1
t (0)=G. Thesame reasoning applied to '�10 shows that it indu
es a smooth mapS�(Q=G) ! (J�1
t (0) n f0g=G)=R+ whi
h is easily veri�ed to be theinverse of b'0, that is, b'0 is a di�eomorphism.The theorem will be proved if it is shown that b'0 Æ � : (S�Q)0 !S�(Q=G) is a 
onta
tomorphism. Let � : S�(Q=G) ! T �(Q=G) n f0gbe a global se
tion and let �� := ��� be the 
onta
t form on S�(Q=G)asso
iated to this se
tion, where � is the Liouville form on T �(Q=G).From the dis
ussion in Se
tion 2, we know that �� is one of the pos-sible 
onta
t forms underlying the 
onta
t stru
ture of the 
ospherebundle S�(Q=G). Thus, to show that b'0 Æ � is a 
onta
tomorphism,it will be enough to verify that (b'0 Æ �)��� is proportional to ��, theproportionality fa
tor being a stri
tly positive fun
tion on (S�Q)0. Tothis end, let �0 : J�1(0) ! J�1(0)=G = (S�Q)0, �0 : J�1(0) ,! S�Q
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anoni
al proje
tion and the 
anoni
al in
lusion, respe
tively.From the 
onta
t redu
tion theorem at zero (reviewed in the Introdu
-tion), we know that �� is 
hara
terized by the relation ��0�� = ��0��.Thus, it suÆ
es to show that (b'0 Æ � Æ �0)��� is proportional to ��0��with a stri
tly positive fun
tion on J�1(0) as proportionality fa
tor.The 
ommutative diagram below is needed in the proof that follows.All verti
al arrows are proje
tions. The maps in this diagram haveall been de�ned with the ex
eption of � : T �(Q=G) n f0g ! S�(Q=G)whi
h is the 
osphere bundle proje
tion asso
iated to the manifoldQ=Gand � : (J�1
t (0) n f0g)=G! ((J�1
t (0) n f0g)=G)=R+ whi
h is asso
iatesto ea
h point in (J�1
t (0) n f0g)=G its R+{orbit.J�1(0)� �
?�0(S�Q)0 -��

T �Q � J�1
t (0) n f0g -�Q Q? ?p0 �G(J�1
t (0) n f0g)=G '0���!� T �(Q=G) n f0g �Q=G���! Q=G�??y �??y�(J�1
t (0) n f0g)=G� =R+ b'0���!� S�(Q=G)
We begin with the 
omputation of (b'0 Æ � Æ �0 Æ �)���. From the
ommutative diagram we haveb'0 Æ � Æ �0 Æ � = � Æ '0 Æ p0 and �Q=G Æ '0 Æ p0 = �G Æ �Qso that using (2.2) with base manifold Q=G, the de�nition (3.2) of '0,and the global formula of the Liouville form on T �(Q=G), we get forany �q 2 J�1
t (0) n f0g and any v 2 T�q(J�1
t (0) n f0g)�(b'0 Æ � Æ �0 Æ �)���� (�q)(v) = ((� Æ '0 Æ p0)���) (�q)(v)= (('0 Æ p0)�(����)) (�q)(v) = (('0 Æ p0)�(f��)) (�q)(v)= (f� Æ '0 Æ p0)(�q) ('0 Æ p0)(�q) �T�q(�Q=G Æ '0 Æ p0)(v)�= (f� Æ '0 Æ p0)(�q) ('0 Æ p0)(�q) �T�q(�G Æ �Q)(v)�= (f� Æ '0 Æ p0)(�q)�q �T�q�Q(v)� :(3.8)
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e �0 : J�1(0) ,! S�Q is the in
lusion, from (2.2)and the de�nition of the Liouville form on T �Q, we get(3.9) ((�0 Æ �)���) (�q)(v) = (f��)(�q)(v) = f�(�q)�q �T�q�Q(v)� :The two identities (3.8) and (3.9) show that on J�1
t (0) n f0g we havethe equality(3.10) ��(b'0 Æ � Æ �0)��� = f� Æ '0 Æ p0f� ����0��:Formula (2.1) shows that the stri
tly positive proportionality fa
tor in(3.10) drops to a stri
tly positive fun
tion F on the quotient J�1(0).Sin
e � is a surje
tive submersion, (3.10) implies that (b'0Æ�Æ�0)��� =F ��0�� where the fun
tion F > 0, whi
h is the desired identity. �The �rst two examples below use parallelizable manifolds Q. Notethat for an n-dimensional parallelizable manifold Q, the 
osphere bun-dle is S�Q = Q� Sn�1.Example 3.1. Let Q = Tn and G = S1 a
ting by multipli
ationon the �rst fa
tor of the torus and trivially on the other ones. ThenQ=G = Tn�1 and S�(Tn) = Tn � Sn�1. Hen
e, by Theorem 3.1, we�nd that (Tn � Sn�1)0 is 
onta
tomorphi
 with Tn�1 � Sn�2.Example 3.2. Let Q = Rn and G = Zn a
ting by translations on ea
hfa
tor. Then Q=G = Tn, S�(Q=G) = Tn � Sn�1, S�(Rn) = Rn � Sn�1,hen
e we obtain the 
onta
tomorphism (Rn � Sn�1)0 �= Tn � Sn�1.Example 3.3. Let Q = S3 and G = S1 a
ting by multipli
ation (ofunitary quaternions by unit 
omplex numbers). Then Q=G = S2, thebase of the Hopf �bration. It is well known (see, e.g. [7℄, Exer
ise1.2-4) that S�(S2) is di�eomorphi
 with SO(3). On the other hand,S�(S3) = S2 � S3. We thus obtain the 
onta
t di�eomorphism (S2 �S3)0 �= SO(3).If we want to 
arry out the 
osphere bundle redu
tion at a point � 6=0, we have a priori two 
hoi
es: to use Albert's or Willett's redu
tionmethods.Regarding Albert's redu
tion method (see its des
ription in the In-trodu
tion), nothing will guarantee that the a
tion of the universal
over bG� on S�Q is indu
ed by an a
tion on Q. Example II in [2℄des
ribes pre
isely su
h a situation. It refers (without naming it ex-pli
itly) to the 
osphere bundle S�Tn of the n-dimensional torus Tn.
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h a
ts trivially on itself. For a non-zero reg-ular value � of norm 1, Albert applies his 
onstru
tion with bG� = Rnand obtains the standard 
ir
le S1 as the redu
ed spa
e. But the a
tionof Rn on S�Tn does not 
ome from an a
tion of Rn on T n! Thus, Al-bert's method 
annot be used to do 
onta
t redu
tion of the 
ospherebundle at a non zero value of the momentum map.However, Willett's method 
an be applied, as we shall show below.Conta
t redu
tion at a non zero value of the momentum map willembed in a 
ertain 
osphere bundle. The pre
ise statement is the fol-lowing. Re
all that K� denotes the 
onne
ted normal Lie subgroup ofG� whose Lie algebra is the ideal k� := ker(�jg�) in g�.Theorem 3.2. Let Q be a di�erentiable manifold of real dimension n,G a �nite dimensional Lie subgroup of Di�(Q) and � : G�Q! Q asmooth a
tion of G on Q. Assume that K� a
ts freely and properly onJ�1(R+�) and that ker �+ g� = g. Then the 
onta
t redu
tion(S�Q)� = J�1(R+�)=K�is embedded by a map preserving the 
onta
t stru
tures onto a subbundleof S�(Q=K�).Proof. Consider the 
osphere bundle S�Q endowed with the 
onta
tform �� preserved by the G{a
tion. Willett [11℄ x3 proves that J istransversal to R+� if and only if the K�{a
tion on J�1(R+�) is lo-
ally free. Our hypothesis is that this a
tion is in fa
t free, so thetransversality hypothesis in Willett's redu
tion theorem is satis�ed.Together with the other two stated hypotheses, these are pre
iselythe assumptions of Willett's redu
tion theorem reviewed in the In-trodu
tion. Thus (S�Q)� = J�1(R+�)=K� is an exa
t 
onta
t mani-fold whose 
onta
t form, denoted by ��;�, is 
hara
terized by the iden-tity ����� = �����;�, where �� : J�1(R+�) ,! S�Q is the in
lusion and�� : J�1(R+�)! J�1(R+�)=K� = (S�Q)� is the 
anoni
al proje
tion.As in the proof of Theorem 3.1, J�1(R+�) = �(J�1
t (R+�)) and,
onsequently,(S�Q)� := J�1(R+�)=K� = (J�1
t (R+�) n f0g=R+)=K�:Sin
e the a
tions of K� (by 
otangent lift) and R+ (by dilation in ea
h�ber) on J�1
t (R+�) 
ommute, there is a di�eomorphism�� : (S�Q)� ! (J�1
t (R+�) n f0g=K�)=R+
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hara
terized by the property� Æ �� Æ � = �� Æ p�;where �� : (J�1
t (R+�) n f0g)=K� ! [(J�1
t (R+�) n f0g)=K�℄=R+and p� : J�1
t (R+�) n f0g � T �Q n f0g ! (J�1
t (R+�) n f0g)=K�are the 
anoni
al proje
tions. If �q 2 J�1
t (R+�) n f0g � T �Q, denoteby b�q = p�(�q) its 
lass in (J�1
t (R+�) n f0g)=K�.De�ne the map � : (J�1
t (R+�) n f0g)=K� ! T �(Q=K�) n f0gby(3.11)  �(b�q)(Tq�K�(vq)) = �q(vq);where �K� : Q! Q=K� is the 
anoni
al proje
tion. To show that  � iswell de�ned, observe that for all �q0 = T ��(g;q)�g�1�q with q0 = �(g; q),vq0 = T�(g;q)�g(vq + �Q(q)), and � 2 k� identity (3.3) implies that�q0(vq0) = T ��(g;q) ��g�1�q; T�(g;q)�g(vq + �Q(q)�= �q (vq + �Q(q)) = �q(vq) + �q(�Q(q))= �q(vq) + 1f�(�q)hJ([�q℄); �i= �q(vq) + 1f�(�q)h�; �i = �q(vq)sin
e � 2 k�. This shows that  � is well de�ned. It is routine to 
he
kthat  � is smooth. In addition,  � is equivariant relative to the R+{a
tions on J�1
t (R+�) n f0g=K� and T �(Q=K�) n f0g respe
tively andthus it indu
es a smooth map on the quotientsb � : [(J�1
t (R+�) n f0g)=K�℄=R+ ! S�(Q=K�)given by b �([b�q℄) = [ �(b�q)℄;where [b�q℄ := ��(b�q), for �� : (J�1
t (R+�) n f0g)=K� ! [(J�1
t (R+�) nf0g)=K�℄=R+ is the 
anoni
al proje
tion.Next we show that b � is inje
tive. If b �([b�q℄) = b �([b�q℄), then thereexists r 2 R+ with  �(b�q) = r �(b�q), so using (3.11), �q(vq) = r�q(vq)for every vq 2 TqQ. This means that b�q = rb�q sin
e the K� and R+a
tions 
ommute, that is, [b�q℄ = [b�q℄ showing that b � is inje
tive.



708 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUWe need to show that b � Æ �� : (S�Q)� ! S�(Q=K�) preserves the
onta
t stru
tures. Let � : S�(Q=K�) ! T �(Q=K�) n f0g be a globalse
tion and let �� := ��� be the 
onta
t form on S�(Q=K�) asso
iatedto this se
tion, where � is the Liouville form on T �(Q=K�). The form�� is one of the possible 
onta
t forms underlying the 
onta
t stru
tureof the 
osphere bundle S�(Q=K�). Thus, to show that b �Æ�� preservesthe 
onta
t stru
tures, it will be enough to verify that ( b � Æ ��)��� isproportional to ��;�, the proportionality fa
tor being a stri
tly positivefun
tion on (S�Q)�. Willett's 
onta
t redu
tion theorem at � 6= 0states that ��;� is 
hara
terized by the relation �����;� = �����. Thus,it suÆ
es to show that ( b � Æ �� Æ ��)��� is proportional to ����� witha stri
tly positive fun
tion on J�1(R+�) as proportionality fa
tor. To
arry this out, we shall need a 
ommutative diagram analogous to theone 
onsidered in Theorem 3.1.J�1(R+�)��
?��(S�Q)� -���

T �Q � J�1
t (R+�) n f0g -�Q Q? ?p� �K�(J�1
t (R+�) n f0g)=K�  ����! T �(Q=K�) n f0g �Q=K�����! Q=K���??y ��??y�(J�1
t (0) n f0g)=K�� =R+ b ����! S�(Q=K�)
As in the proof of Theorem 3.1, we begin with the 
omputation of(b � Æ �� Æ �� Æ �)���. Sin
eb � Æ �� Æ �� Æ � = �� Æ  � Æ p� and �Q=K� Æ  � Æ p� = �K� Æ �Q;using (2.2) with base manifold Q=K�, the de�nition (3.11) of  �, andthe global formula of the Liouville form on T �(Q=K�), we get for any
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t (R+�) n f0g and any v 2 T�q(J�1
t (R+�) n f0g)�( b � Æ �� Æ �� Æ �)���� (�q)(v) = ((�� Æ  � Æ p�)���) (�q)(v)= �( � Æ p�)�(�����)� (�q)(v) = (( � Æ p�)�(f��)) (�q)(v)= (f� Æ  � Æ p�)(�q) ( � Æ p�)(�q) �T�q(�Q=K� Æ  � Æ p�)(v)�= (f� Æ  � Æ p�)(�q) ( � Æ p�)(�q) �T�q(�K� Æ �Q)(v)�= (f� Æ  0 Æ p�)(�q)�q �T�q�Q(v)� :(3.12)On the other hand, sin
e �� : J�1(R+�) ,! S�Q is the in
lusion, from(2.2) and the de�nition of the Liouville form on T �Q, we get(3.13) ((�� Æ �)���) (�q)(v) = (f��)(�q)(v) = f�(�q)�q �T�q�Q(v)� :The two identities (3.12) and (3.13) show that on J�1
t (R+�) n f0g wehave the equality(3.14) ��( b � Æ �� Æ ��)��� = f� Æ  � Æ p�f� �������:Formula (2.1) shows that the stri
tly positive proportionality fa
tor in(3.14) drops to a stri
tly positive fun
tion F� on the quotient J�1(R+�).Sin
e � is a surje
tive submersion, (3.14) implies that ( b �Æ��Æ��)��� =F� ����� where the fun
tion F� > 0, whi
h is the desired identity. Thisproves that b � Æ �� preserves the respe
tive 
onta
t stru
tures.That b � is an immersion 
an be proved as in the embedding versionof the 
otangent bundle redu
tion theorem (see [1℄, x4.3 or [8℄, p. 82).Indeed, we observe that �0 = �jk� = 0, hen
e 
onsidering the a
tionrestri
ted toK�, the 
orresponding momentummap J 0 is the restri
tionof J . We are thus in the 
onditions of our Theorem 3.1 and obtaina 
onta
t-di�eomorphism between J 0�1(R+�0)=K� = J 0�1(0)=K� andS�(Q=K�). Composing this with the natural in
lusion of J�1(R+�)=K�in J 0�1(R+�0)=K�, we arrive at the desired 
onta
t embedding.This ends the proof of the theorem. �Example 3.4. We look again at Albert's example dis
ussed above.We have Q = Tn, G = Tn a
ting naturally on itself. Take � 2 (Rn)� tobe the proje
tion on the last fa
tor: �(x1; : : : ; xn) = xn. Then ker � =Rn�1 , K� = Tn�1 and J�1(R+�) �= Tn. Hen
e (S�Q)� = Tn=Tn�1 �= S1and Q=K� �= S1. Our theorem yields S1 ,! S�(S1), the in
lusion beingthe zero se
tion in T �S1 followed by the 
anoni
al proje
tion.



710 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUExample 3.5. We let Q = R3(n+1) and ' be the natural a
tion ofG = (R3 ;+) on Q by translations. The lifted a
tion to the 
otangentbundle is again by translations: (x; (qi;pi)) 7! (x+qi;pi), i = 0; : : : ; n.The symple
ti
 momentum map (the linear momentum, see e.g. [8℄)has values in R3 (whi
h is identi�ed with its dual (R3)� by the usualdot produ
t) and is given by:J
t(qi;pi) = nXj=0 pj:Fix now v 2 R3 n f0g and de�ne � : R3 ! R by �(�) = v � �. Then wehave: J�1
t (R+�) = n(qi;pi) j nXi=0 pi 2 R+vo:As G is Abelian, we have k� = ker � = v? �= R2 . Hen
e K� �= R2 .De�ne the map f : R3(n+1) ! R3n+1 byf(q0; : : : ;qn) := (q1 � q0; : : : ;qn � qn�1;q0 � v=kvk2):Clearly f is smooth, surje
tive, invariant under the K�-a
tion, andf(q0; : : : ;qn) = f(q00; : : : ;q0n) if and only if q0i = qi + x, for all i =0; : : : ; n, where x 2 v?. In addition, the kernel of the derivative of fat every point equals the tangent spa
e the K�-orbit. Hen
e f indu
esa di�eomeorphism Q=K� = R3(n+1)=R2 �= R3n+1 . We thus have:S�(Q=K�) = S�R3n+1 �= R3n+1 � S3n:On the other hand,J�1
t (R+�)=K� �= R3n+1 � n(p0; : : : ;pn) j nXi=0 pi 2 R+vosin
e the K�-a
tion does not a�e
t p0; : : : ;pn. Applying Theorem 3.2we have :(S�Q)� �= R3n+1 � "S3n+2 \ n(p0; : : : ;pn) j nXi=0 pi 2 R+vo# :So Theorem 3.2 asserts the existen
e of a 
onta
t stru
ture on theabove manifold, indu
ed from that of R3n+1 � S3n. Note that it is notobvious how to 
onstru
t dire
tly a 
onta
t stru
ture onR3n+1 � "S3n+2 \ n(p0; : : : ;pn) j nXi=0 pi 2 R+vo# :
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tive (as the
orresponding map of the symple
ti
 
ase). In fa
t, sin
e b � maps�bers of J�1(R+�)=K� in �bers of S�(Q=K�), if it were surje
tive itwould be so on ea
h �ber, but a simple 
ount of dimensions proves thisis impossible. On the other hand, 
onditions like G = K� or g = g�,whi
h ensure surje
tivity in the symple
ti
 
ase, here lead to � = 0(be
ause of the 
ondition ker�+ g� = g).Remark 3.3. There is a signi�
ant di�eren
e between the redu
edspa
es for � 6= 0 in the 
otangent bundle redu
tion theorem and forthe 
osphere bundle. The symple
ti
 quotient is symple
ti
ally embed-ded (only in the parti
ular 
ase of G Abelian or G = G� one obtainsa di�eomorphism) in T �(Q=G�) endowed with a perturbed symple
ti
form (the 
anoni
al one minus a magneti
 term), while the 
onta
t quo-tient is always 
onta
tly embedded in S�(Q=K�) with a non perturbed
onta
t form. Thus, in 
onta
t geometry, the 
ases � 6= 0 and � = 0are similar and the explanation is Willett's 
hoi
e of the kernel group of� instead of the 
oadjoint isotropy group of �. Expli
itly, it is the Liealgebra of this kernel group that assures the existen
e of a well-de�nedmap preserving the 
onta
t stru
ture exa
tly as in the � = 0 
ase.Remark 3.4. One may relax the assumptions on the a
tion of G (andK�) by allowing �xed points and working in the 
ategory of orbifolds.
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