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COSPHERE BUNDLE REDUCTION INCONTACT GEOMETRYOana Dr�agulete, Liviu Ornea, Tudor S. RatiuWe extend the theorems onerning the equivariantsympleti redution of the otangent bundle to ontatgeometry. The role of the otangent bundle is taken bythe osphere bundle. We use Albert's method for redu-tion at zero and Willett's method for non-zero redution.1. IntrodutionOne of the main results onerning sympleti redution with manyappliations in geometri mehanis states that, in the presene of a\good" ation of a �nite dimensional Lie group G on an arbitrary di�er-entiable manifold Q, the otangent bundle of the quotient, T �(Q=G), issympletomorphi with (T �Q)0, the redued spae at 0 of the otangentbundle. More generally, the redution T �(Q=G)� at � 6= 0 of T �Q issympletomorphi with a vetor subbundle of T �(Q=G�) endowed witha magneti sympleti form (see [1℄, x4.3; this result for Abelian groupsis due to Satzer [10℄); G� denotes the oadjoint isotropy subgroup at�.The aim of this note is to prove an analogue of this result in ontatgeometry. Again we start with an arbitrary manifold Q supportinga \good" ation of a Lie group G. The role of the otangent bundlewill be played by the osphere bundle that will be desribed in setion2 (f. also [9℄). It is a ontat manifold. We shall prove that itsredued spae at 0 is ontatomorphi with the osphere bundle ofMathematis Subjet Classi�ation. 53D20, 53D10.Key words and phrases. ontat manifold, sympleti manifold, otangent bun-dle, osphere bundle, momentum map, (non-zero) redution.695



696 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUQ=G. Even though the result for � = 0 ould probably be obtained by\diagram hasing", we prefer to provide an expliit proof, identifyingall ontatomorphisms. More generally, we prove that its redued spaeat � 6= 0 embeds in a ontat manner onto a subbundle of the ospherebundle of Q=G�.We briey review, following [2℄, [4℄, the redution method at 0 forontat manifolds.Reall that a ontat struture on a smooth (2n + 1){dimensionalmanifold N is a odimension one smooth distribution H � TN , loallygiven by the kernel of a one-form � suh that � ^ (d�)n 6= 0. Suh an� is alled a (loal) ontat form. Any two proportional ontat formsunderly the same ontat struture. A ontat struture whih is thekernel of a global ontat form is alled exat or o-orientable. If �is a one form of an exat ontat struture, the pair (N; �) is alledan exat ontat manifold. On an exat ontat manifold N thereis a unique vetor �eld R, alled the Reeb vetor �eld , haraterizedby the onditions �(R) = 1 and d�(R; �) = 0. The ow of the Reebvetor �elds preserves the ontat form �. The Reeb vetor �eld isnowhere vanishing and it generates the one-dimensional distributionker d� = fv 2 TN j d�(v; �) = 0g.A �nite dimensional onneted Lie group G is said to at by onta-tomorphisms on a ontat manifold if it preserves the ontat strutureH. For an exat ontat manifold (N; �), this means that g�� = fg� fora smooth, real-valued, nowhere zero funtion fg. G ats by strong on-tatomorphisms on N , if g�� = �, i:e: G preserves the ontat form, notonly the ontat struture. A G{ation by strong ontatomorphismson (N; �) admits an equivariant momentum map J : N ! g� given byevaluating the ontat form on fundamental �elds: hJ; �i = �(�N).Throughout this paper we shall denote by g the Lie algebra of G,by h�; �i : g� � g ! R the natural pairing between g� and g, and by�N the fundamental vetor �eld (or in�nitesimal generator) de�ned by� 2 g. For simpliity, we shall work exlusively with free proper ations,although the extensions of our results to loally free ations is routine;in that ase the relevant quotient spaes will be orbifolds instead ofmanifolds. For a smooth map f : A ! B between the manifolds Aand B, Taf : TaA! Tf(a)B denotes its derivative, or tangent map, ata 2 A.



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 697The momentum map J is onstant on the ow of the Reeb vetor�eld. In addition, hTnJ(v); �i = d�(n)(v; �N(n))for any n 2 N , v 2 TnN , and � 2 g. This immediately implies[im(TnJ)℄Æ = f� 2 g j d�(n)(�N(n); �) = 0g;whih is the ontat analogue of the bifuration lemma from the usualtheory of momentum maps on Poisson manifolds; the term on the leftis the annihilator of the subspae in parentheses. For this (ontat)momentummap, 0 2 g� is a regular value if and only if the fundamental�elds indued by the ation do not vanish on the zero level set ofJ . Moreover, if this is the ase, the pull bak of the ontat form toJ�1(0) is basi. Let �0 : J�1(0) ! J�1(0)=G and �0 : J�1(0) ,! Nbe the anonial projetion and inlusion respetively. The redutiontheorem asserts the existene of a unique ontat form �0 on J�1(0)=Gsuh that ��0�0 = ��0�.Regarding ontat redution at � 6= 0, up to now there are twoversions available: one due to Albert [2℄ and a very reent one due toWillett [11℄.Albert's method [2℄. Let (N; �) be an exat ontat manifold withReeb vetor �eld R and let � be a \good" ation of a Lie group bystrong ontatomorphisms. For � 2 g�, denote by G� the isotropygroup at � of the oadjoint ation and by g� its Lie algebra. If � 6= 0is a regular value of J the restrition of the ontat form to J�1(�)is not basi. This problem is overome by Albert by hanging thein�nitesimal ation of g� on J�1(�) as follows: � 7! �N � h�; �iR,where R is the Reeb vetor �eld. In general, this in�nitesimal ationannot be integrated to an ation of G�. However, if R is omplete,this g�{ation is indued by an ation of the universal overing groupbG� (if G� is onneted) given by(et�; n) 7! �et�(��1th�;�i(n));where �t is the ow of the Reeb vetor �eld. Albert de�nes the reduedspae as J�1(�)= bG� via this new ation and shows it is naturally aontat manifold.Willett's method [11℄. The idea is to expand � and to shrink G�.As above, G is a Lie group that ats smoothly on an exat ontatmanifold (N; �) preserving the ontat form �. Let � 2 g�. Willettalls the kernel group of �, the onneted Lie subgroup K� of G� with



698 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIULie algebra k� = ker(�jg�). It is easy to see that k� is an ideal in g� andtherefore K� is a onneted normal subgroup of G�. Contat redution(or the ontat quotient) of N by G at � is de�ned by Willett asN� := J�1(R+�)=K�:Assume that K� ats freely and properly on J�1(R+�). Then J istransversal to R+� and the pull bak of � to J�1(R+�) is basi relativeto the K�{ation on J�1(R+�) and thus indues a one form �� onthe quotient N�. If, in addition, ker� + g� = g then the form ��is also a ontat form. It is haraterized, as usual, by the identity����� = i���, where �� : J�1(R+�) ! N� is the anonial projetionand i� : J�1(R+�) ,! N is the anonial inlusion.It is to be noted that for � = 0, Albert's and Willett's quotients o-inide beause in Albert's method for � = 0 the ontat form restritedto J�1(0) is basi and thus there is no need to hange the in�nitesi-mal ation. Hene both redution methods yield in this ase the spaeJ�1(0)=G.Notations: Throughout the paper we shall denote by �G : Q! Q=G,�Q=G : T �(Q=G) ! Q=G, �Q : T �Q ! Q the respetive anonialprojetions. The Liouville one-forms of T �Q and T �(Q=G) will bedenoted respetively by � and �. The naturally lifted ation of G onT �Q admits an equivariant momentum map Jt : T �Q ! g� given byhJt(�q); �i = �q(�Q(q)), where �q 2 T �qQ, � 2 g, and �Q denotes thefundamental vetor �eld de�ned by the G{ation on Q.2. The osphere bundle and its ontat strutureLet Q be a di�erentiable manifold of real dimension n, �Q : T �Q! Qits otangent bundle, and � the Liouville form on T �Q. We shall denoteby �q, �q et. the elements of T �Q.Let G be a �nite dimensional Lie subgroup of Di�(Q) and denoteby � : G � Q ! Q a free, proper ation of G on Q. We denote by�� : G� T �Q! T �Q its natural lift to the otangent bundle of Q. ��is still free and proper and preserves the Liouville form � and thus theanonial sympleti struture �d� of T �Q.Consider the ation of the multipliative group R+ =℄0;+1[ by di-lations on the �bers of T �Q n f0g.De�nition 2.1. The osphere bundle S�Q ofQ is the quotient manifold(T �Q n f0g)=R+ . Denote by � : [�q℄ 2 S�Q 7! q 2 Q the assoiatedanonial projetion.



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 699The onstrution desribed below is standard (see e:g: [9℄).Let � : T �Q n f0g ! S�Q be the anonial projetion. The elementsof the osphere bundle are lasses that we denote with [�q℄. Of ourse,(�;R+ ; T �Q n f0g; S�Q) is a R+{prinipal bundle. As suh, it alwayshas global setions: it is enough to hoose a Riemannian metri onQ (supposed paraompat), to identify T �Q with TQ, S�Q with theunit sphere bundle T 1Q of TQ, and to onsider the anonial inlusionT 1Q ,! TQ. Let then � : S�Q ! T �Q n f0g be a global setion. Theequation � Æ � = f�1T �Qnf0g;where 1T �Qnf0g denotes the identity map of T �Qnf0g, de�nes a funtionf� : T �Q n f0g ! R+ with the following property of ompatibility withrespet to the ation of R+ :(2.1) f�(r�q) = 1r f�(�q); r 2 R+ ; �q 2 T �Q n f0g:Indeed, �([�q℄) = f�(�q)�q = �([r�q℄) = f�(r�q)r�q: The followingstatement is now lear.Lemma 2.1. The set of global setions of � : T �Q n f0g ! S�Q is inbijetive orrespondene with the set of C1 funtions f : T �Q n f0g !R+ satisfying (2.1).We pull bak by � the restrition of the Liouville form and obtainthe one-form �� = ��� on S�Q. One has:(2.2) ���� = f��:Indeed, ���� = ����� = (� Æ �)�� = (f�1T �Qnf0g)�� = f��: Now, foranother global setion �, with assoiated funtion f�, we have�� = ��� = (� Æ � Æ �)�� = ������ = ��(f��) = (f� Æ �)��;and hene we obtain(2.3) �� = g����; with g�� = f� Æ �:Note also that g�� Æ � = f�=f�. From (2.3) we easily derive that �� isa ontat form on S�Q if and only if �� is one. But it was proved in[1℄ that if � is de�ned using a Riemannian metri on Q, as explainedabove, then �� is a ontat form. Thus we have proved:Lemma 2.2. �� is a global ontat form on S�Q for any global setion�.



700 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUIt is also lear from (2.3) that all these ontat forms have the samenull spae, so that the ontat struture does not depend on the hoieof �.Remark 2.1. Let C(S�Q) = S�Q � R+ be the sympleti one overS�Q, endowed with the sympleti form d(t��). Then one an easilysee that T� : C(S�Q)! T �Q given by T�([�q℄; t) = tf�(�q) ��q is a wellde�ned sympleti di�eomorphism, that is, a sympletomorphism.3. The redution theoremsWe shall now lift the free proper ation of G to the osphere bundleand ompute the assoiated momentum map. The ation � lifts to anation �� on T �Q by setting��(g; �q) := T ��(g;q)�g�1�q;for g 2 G, �q 2 T �qQ, and where the upper star denotes the dual mapof the linear map to whih it is applied. It is lear that the otan-gent bundle projetion �Q : T �Q ! Q is equivariant relative to theations �� and �. If the ation � is free and proper, this equivarianeimmediately shows that the ation �� is also free and proper.Denote by �Q : [�q℄ 2 S�Q 7! q 2 Q the anonial osphere bundleprojetion.Lemma 3.1. The ation � indues a free proper ation b�� : G�S�Q!S�Q.Proof. De�ne b��(g; [�q℄) = [��(g; �q)℄:As b��(g; [r�q℄) = [��(g; r�q)℄ = [r��(g; �q)℄ = [��(g; �q)℄, the de�ni-tion is orret. Note also that �� overs �, that is, �Q Æ b�� = � Æ �Q.This immediately proves that freeness (respetively properness) of theG ation on Q implies freeness (respetively properness) of the ationb�� on S�Q. Clearly (b��g)��� is a multiple of �� and the proof is om-plete. �Lemma 3.2. The ation b�� : G�S�Q! S�Q is by ontatomorphismsand the sale fators are all positive.



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 701Proof. By diret omputation and using (2.2) in the last equality, wehave:b���g��([�q℄)(v[�q ℄) = �� �b��g([�q℄)��T[�q ℄b��g(v[�q ℄)�= � �(� Æ b��g)([�q℄)��T[�q℄(� Æ b��g)(v[�q ℄)�= (� Æ b��g)([�q℄)�T[�q ℄(�Q Æ � Æ b��g)(v[�q ℄)�= f�(��g(�q))��g(�q)�T[�q ℄(�Q Æ � Æ b��g)(v[�q ℄)�= f�(��g(�q))�q �T[�q ℄(��1g Æ �Q Æ � Æ b��g)(v[�q℄)�= f�(��g(�q))�q �T[�q ℄(�Q Æ �)(v[�q ℄)�= f�(��g(�q))�(�q) �T[�q ℄(�)(v[�q ℄)�= f�(��g(�q))f�(�q) ��([�q℄)(v[�q℄): �To onstrut a momentum map assoiated to this ation, we needto work with a strong ation, that is, we need it to preserve not onlythe ontat struture, but the ontat form. This an be ahieved byadapting Palais' argument (or, if G is ompat, by averaging). Indeed,owing to Lemma 3.1, we may apply Proposition 2.8 in [5℄ assertingthat for a proper ation by ontatomorphisms, there always exist aninvariant ontat form. (The proof of this is a straightforward mod-i�ation of the lassial proof of Palais for the existene of invariantRiemannian metris on paraompat manifolds endowed with a properLie group ation.) As every ontat form on the osphere bundle isobtained via a global setion as above, we shall hose one and for alla setion � for whih (b��g)��� = ��. Relative to this ontat form theindued ation on the osphere bundle is by strong ontatomorphisms.The assoiated momentum map J�� will be denoted for simpliity byJ sine in what follows no other ontat form di�erent from �� will beused. Let (S�Q)0 = J�1(0)=G be the redued spae orresponding tothe regular value 0 2 g�.Similar onsiderations apply to the manifold Q=G proving that itsosphere bundle is a ontat manifold. As above, the ontat struturean be desribed as the kernel of a ontat form of the type ��, where� : S�(Q=G)! T �(Q=G)nf0g is a global setion and � is the Liouvilleform of T �(Q=G).



702 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUTheorem 3.1. Let G be a Lie group ating freely and properly on themanifold Q. Then (S�Q)0, the redued spae at the regular value zeroof the momentum map of the osphere bundle of Q, is ontat-diffeo-morphi with the osphere bundle S�(Q=G).Remark 3.1. Suppose (N; �) is a ontat manifold on whih a Liegroup G ats by strong ontatomorphisms. The ation an be natu-rally lifted to the sympleti one (C(N); d(t�)) by letting G at triv-ially on R+ ; one obtains an ation by sympletomorphisms. It is wellknown that, in this situation, the redued sympleti spae at 0 is thesympleti one over the ontat redued spae at 0: C(N0) �= (C(N))0.This an be applied to N = S�Q and ombined with the otangentbundle redution theorem it should lead to a \diagram hasing" proofof the theorem. However, we prefer to make the maps involved in theproof preise.Proof. A �rst key observation is that the ations of G and R+ on T �Qnf0g ommute, so that there exists the di�eomorphism:(3.1) � : (S�Q)=G = (T �Q n f0g=R+)=G! (T �Q n f0g=G)=R+ :Seond, applying the otangent bundle redution theorem to T �Q, wehave the sympleti di�eomorphism (see [1℄, [6℄, or [8℄)(3.2)'0 : J�1t (0)=G! T �(Q=G); given by '0(b�q) (Tq�G(vq)) := �q(vq);where vq 2 TqQ, �q 2 J�1t (0) \ T �qQ, b�q 2 J�1t (0)=G is its lass in theredued spae at zero, and �G : Q! Q=G is the projetion. Denote byp0 : J�1t (0) ! J�1t (0)=G the anonial projetion, that is, p0(�q) = b�qfor all �q 2 J�1t (0).We want to relate the zero level sets of the ontat momentum mapJ and of the sympleti momentum map Jt. The de�nition of the(ontat) momentum map J , the � relatedness of �T �Q and �S�Q, for-mula (2.2), the de�nition of the Liouville form on T �Q, and �nally the�Q relatedness of �T �Q and �Q yield for any � 2 ghJ([�q℄); �i = ��([�q℄) (�S�Q([�q℄))= ��(�(�q)) �T�q�(�T �Q(�q)�= (����)(�q) (�T �Q(�q))= f�(�q)�(�q) (�T �Q(�q))= f�(�q)�q �T�q�Q(�T �Q(�q))�= f�(�q)�q (�Q(q)) ;



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 703that is,(3.3) J([�q℄) = f�(�q)�q:Sine f� > 0, this implies thatJ�1(0) = f[�q℄ j �q(�Q(q)) = 0; for all � 2 gg:However, hJt(�q); �i = �q(�Q(q)) for any � 2 g, whih shows thatJ�1(0) � �(J�1t (0)). The onverse inlusion being obvious, we onludethat J�1(0) = �(J�1t (0)) and hene(3.4) (S�Q)0 := J�1(0)=G = (J�1t (0) n f0g=R+)=G:Denote by(3.5) � : (S�Q)0 ! (J�1t (0) n f0g=G)=R+the di�eomorphism obtained by restriting the di�eomorphism � de-�ned in (3.1) to (S�Q)0 and denote by �� the redued ontat form on(S�Q)0.The de�nition of the di�eomorphism '0 : J�1t (0)=G ! T �(Q=G)de�ned in (3.2) shows that b0q 2 J�1t (0)=G is mapped to the zero el-ement of T ��G(q)(Q=G) and that '0 ommutes with the R+{ations onJ�1t (0)=G and on T �(Q=G) respetively. Thus '0 indues a smoothmap(3.6) b'0 : (J�1t (0) n f0g=G)=R+ ! (T �(Q=G) n f0g)=R+ = S�(Q=G)given by(3.7) b'0([b�q℄) := ['0(b�q)℄;where [b�q℄ 2 (J�1t (0)=G)=R+ denotes the lass of b�q 2 J�1t (0)=G. Thesame reasoning applied to '�10 shows that it indues a smooth mapS�(Q=G) ! (J�1t (0) n f0g=G)=R+ whih is easily veri�ed to be theinverse of b'0, that is, b'0 is a di�eomorphism.The theorem will be proved if it is shown that b'0 Æ � : (S�Q)0 !S�(Q=G) is a ontatomorphism. Let � : S�(Q=G) ! T �(Q=G) n f0gbe a global setion and let �� := ��� be the ontat form on S�(Q=G)assoiated to this setion, where � is the Liouville form on T �(Q=G).From the disussion in Setion 2, we know that �� is one of the pos-sible ontat forms underlying the ontat struture of the ospherebundle S�(Q=G). Thus, to show that b'0 Æ � is a ontatomorphism,it will be enough to verify that (b'0 Æ �)��� is proportional to ��, theproportionality fator being a stritly positive funtion on (S�Q)0. Tothis end, let �0 : J�1(0) ! J�1(0)=G = (S�Q)0, �0 : J�1(0) ,! S�Q



704 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUbe the anonial projetion and the anonial inlusion, respetively.From the ontat redution theorem at zero (reviewed in the Introdu-tion), we know that �� is haraterized by the relation ��0�� = ��0��.Thus, it suÆes to show that (b'0 Æ � Æ �0)��� is proportional to ��0��with a stritly positive funtion on J�1(0) as proportionality fator.The ommutative diagram below is needed in the proof that follows.All vertial arrows are projetions. The maps in this diagram haveall been de�ned with the exeption of � : T �(Q=G) n f0g ! S�(Q=G)whih is the osphere bundle projetion assoiated to the manifoldQ=Gand � : (J�1t (0) n f0g)=G! ((J�1t (0) n f0g)=G)=R+ whih is assoiatesto eah point in (J�1t (0) n f0g)=G its R+{orbit.J�1(0)� �
?�0(S�Q)0 -��

T �Q � J�1t (0) n f0g -�Q Q? ?p0 �G(J�1t (0) n f0g)=G '0���!� T �(Q=G) n f0g �Q=G���! Q=G�??y �??y�(J�1t (0) n f0g)=G� =R+ b'0���!� S�(Q=G)
We begin with the omputation of (b'0 Æ � Æ �0 Æ �)���. From theommutative diagram we haveb'0 Æ � Æ �0 Æ � = � Æ '0 Æ p0 and �Q=G Æ '0 Æ p0 = �G Æ �Qso that using (2.2) with base manifold Q=G, the de�nition (3.2) of '0,and the global formula of the Liouville form on T �(Q=G), we get forany �q 2 J�1t (0) n f0g and any v 2 T�q(J�1t (0) n f0g)�(b'0 Æ � Æ �0 Æ �)���� (�q)(v) = ((� Æ '0 Æ p0)���) (�q)(v)= (('0 Æ p0)�(����)) (�q)(v) = (('0 Æ p0)�(f��)) (�q)(v)= (f� Æ '0 Æ p0)(�q) ('0 Æ p0)(�q) �T�q(�Q=G Æ '0 Æ p0)(v)�= (f� Æ '0 Æ p0)(�q) ('0 Æ p0)(�q) �T�q(�G Æ �Q)(v)�= (f� Æ '0 Æ p0)(�q)�q �T�q�Q(v)� :(3.8)



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 705On the other hand, sine �0 : J�1(0) ,! S�Q is the inlusion, from (2.2)and the de�nition of the Liouville form on T �Q, we get(3.9) ((�0 Æ �)���) (�q)(v) = (f��)(�q)(v) = f�(�q)�q �T�q�Q(v)� :The two identities (3.8) and (3.9) show that on J�1t (0) n f0g we havethe equality(3.10) ��(b'0 Æ � Æ �0)��� = f� Æ '0 Æ p0f� ����0��:Formula (2.1) shows that the stritly positive proportionality fator in(3.10) drops to a stritly positive funtion F on the quotient J�1(0).Sine � is a surjetive submersion, (3.10) implies that (b'0Æ�Æ�0)��� =F ��0�� where the funtion F > 0, whih is the desired identity. �The �rst two examples below use parallelizable manifolds Q. Notethat for an n-dimensional parallelizable manifold Q, the osphere bun-dle is S�Q = Q� Sn�1.Example 3.1. Let Q = Tn and G = S1 ating by multipliationon the �rst fator of the torus and trivially on the other ones. ThenQ=G = Tn�1 and S�(Tn) = Tn � Sn�1. Hene, by Theorem 3.1, we�nd that (Tn � Sn�1)0 is ontatomorphi with Tn�1 � Sn�2.Example 3.2. Let Q = Rn and G = Zn ating by translations on eahfator. Then Q=G = Tn, S�(Q=G) = Tn � Sn�1, S�(Rn) = Rn � Sn�1,hene we obtain the ontatomorphism (Rn � Sn�1)0 �= Tn � Sn�1.Example 3.3. Let Q = S3 and G = S1 ating by multipliation (ofunitary quaternions by unit omplex numbers). Then Q=G = S2, thebase of the Hopf �bration. It is well known (see, e.g. [7℄, Exerise1.2-4) that S�(S2) is di�eomorphi with SO(3). On the other hand,S�(S3) = S2 � S3. We thus obtain the ontat di�eomorphism (S2 �S3)0 �= SO(3).If we want to arry out the osphere bundle redution at a point � 6=0, we have a priori two hoies: to use Albert's or Willett's redutionmethods.Regarding Albert's redution method (see its desription in the In-trodution), nothing will guarantee that the ation of the universalover bG� on S�Q is indued by an ation on Q. Example II in [2℄desribes preisely suh a situation. It refers (without naming it ex-pliitly) to the osphere bundle S�Tn of the n-dimensional torus Tn.



706 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUThe group is G = Tn whih ats trivially on itself. For a non-zero reg-ular value � of norm 1, Albert applies his onstrution with bG� = Rnand obtains the standard irle S1 as the redued spae. But the ationof Rn on S�Tn does not ome from an ation of Rn on T n! Thus, Al-bert's method annot be used to do ontat redution of the ospherebundle at a non zero value of the momentum map.However, Willett's method an be applied, as we shall show below.Contat redution at a non zero value of the momentum map willembed in a ertain osphere bundle. The preise statement is the fol-lowing. Reall that K� denotes the onneted normal Lie subgroup ofG� whose Lie algebra is the ideal k� := ker(�jg�) in g�.Theorem 3.2. Let Q be a di�erentiable manifold of real dimension n,G a �nite dimensional Lie subgroup of Di�(Q) and � : G�Q! Q asmooth ation of G on Q. Assume that K� ats freely and properly onJ�1(R+�) and that ker �+ g� = g. Then the ontat redution(S�Q)� = J�1(R+�)=K�is embedded by a map preserving the ontat strutures onto a subbundleof S�(Q=K�).Proof. Consider the osphere bundle S�Q endowed with the ontatform �� preserved by the G{ation. Willett [11℄ x3 proves that J istransversal to R+� if and only if the K�{ation on J�1(R+�) is lo-ally free. Our hypothesis is that this ation is in fat free, so thetransversality hypothesis in Willett's redution theorem is satis�ed.Together with the other two stated hypotheses, these are preiselythe assumptions of Willett's redution theorem reviewed in the In-trodution. Thus (S�Q)� = J�1(R+�)=K� is an exat ontat mani-fold whose ontat form, denoted by ��;�, is haraterized by the iden-tity ����� = �����;�, where �� : J�1(R+�) ,! S�Q is the inlusion and�� : J�1(R+�)! J�1(R+�)=K� = (S�Q)� is the anonial projetion.As in the proof of Theorem 3.1, J�1(R+�) = �(J�1t (R+�)) and,onsequently,(S�Q)� := J�1(R+�)=K� = (J�1t (R+�) n f0g=R+)=K�:Sine the ations of K� (by otangent lift) and R+ (by dilation in eah�ber) on J�1t (R+�) ommute, there is a di�eomorphism�� : (S�Q)� ! (J�1t (R+�) n f0g=K�)=R+



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 707haraterized by the property� Æ �� Æ � = �� Æ p�;where �� : (J�1t (R+�) n f0g)=K� ! [(J�1t (R+�) n f0g)=K�℄=R+and p� : J�1t (R+�) n f0g � T �Q n f0g ! (J�1t (R+�) n f0g)=K�are the anonial projetions. If �q 2 J�1t (R+�) n f0g � T �Q, denoteby b�q = p�(�q) its lass in (J�1t (R+�) n f0g)=K�.De�ne the map � : (J�1t (R+�) n f0g)=K� ! T �(Q=K�) n f0gby(3.11)  �(b�q)(Tq�K�(vq)) = �q(vq);where �K� : Q! Q=K� is the anonial projetion. To show that  � iswell de�ned, observe that for all �q0 = T ��(g;q)�g�1�q with q0 = �(g; q),vq0 = T�(g;q)�g(vq + �Q(q)), and � 2 k� identity (3.3) implies that�q0(vq0) = T ��(g;q) ��g�1�q; T�(g;q)�g(vq + �Q(q)�= �q (vq + �Q(q)) = �q(vq) + �q(�Q(q))= �q(vq) + 1f�(�q)hJ([�q℄); �i= �q(vq) + 1f�(�q)h�; �i = �q(vq)sine � 2 k�. This shows that  � is well de�ned. It is routine to hekthat  � is smooth. In addition,  � is equivariant relative to the R+{ations on J�1t (R+�) n f0g=K� and T �(Q=K�) n f0g respetively andthus it indues a smooth map on the quotientsb � : [(J�1t (R+�) n f0g)=K�℄=R+ ! S�(Q=K�)given by b �([b�q℄) = [ �(b�q)℄;where [b�q℄ := ��(b�q), for �� : (J�1t (R+�) n f0g)=K� ! [(J�1t (R+�) nf0g)=K�℄=R+ is the anonial projetion.Next we show that b � is injetive. If b �([b�q℄) = b �([b�q℄), then thereexists r 2 R+ with  �(b�q) = r �(b�q), so using (3.11), �q(vq) = r�q(vq)for every vq 2 TqQ. This means that b�q = rb�q sine the K� and R+ations ommute, that is, [b�q℄ = [b�q℄ showing that b � is injetive.



708 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUWe need to show that b � Æ �� : (S�Q)� ! S�(Q=K�) preserves theontat strutures. Let � : S�(Q=K�) ! T �(Q=K�) n f0g be a globalsetion and let �� := ��� be the ontat form on S�(Q=K�) assoiatedto this setion, where � is the Liouville form on T �(Q=K�). The form�� is one of the possible ontat forms underlying the ontat strutureof the osphere bundle S�(Q=K�). Thus, to show that b �Æ�� preservesthe ontat strutures, it will be enough to verify that ( b � Æ ��)��� isproportional to ��;�, the proportionality fator being a stritly positivefuntion on (S�Q)�. Willett's ontat redution theorem at � 6= 0states that ��;� is haraterized by the relation �����;� = �����. Thus,it suÆes to show that ( b � Æ �� Æ ��)��� is proportional to ����� witha stritly positive funtion on J�1(R+�) as proportionality fator. Toarry this out, we shall need a ommutative diagram analogous to theone onsidered in Theorem 3.1.J�1(R+�)��
?��(S�Q)� -���

T �Q � J�1t (R+�) n f0g -�Q Q? ?p� �K�(J�1t (R+�) n f0g)=K�  ����! T �(Q=K�) n f0g �Q=K�����! Q=K���??y ��??y�(J�1t (0) n f0g)=K�� =R+ b ����! S�(Q=K�)
As in the proof of Theorem 3.1, we begin with the omputation of(b � Æ �� Æ �� Æ �)���. Sineb � Æ �� Æ �� Æ � = �� Æ  � Æ p� and �Q=K� Æ  � Æ p� = �K� Æ �Q;using (2.2) with base manifold Q=K�, the de�nition (3.11) of  �, andthe global formula of the Liouville form on T �(Q=K�), we get for any



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 709�q 2 J�1t (R+�) n f0g and any v 2 T�q(J�1t (R+�) n f0g)�( b � Æ �� Æ �� Æ �)���� (�q)(v) = ((�� Æ  � Æ p�)���) (�q)(v)= �( � Æ p�)�(�����)� (�q)(v) = (( � Æ p�)�(f��)) (�q)(v)= (f� Æ  � Æ p�)(�q) ( � Æ p�)(�q) �T�q(�Q=K� Æ  � Æ p�)(v)�= (f� Æ  � Æ p�)(�q) ( � Æ p�)(�q) �T�q(�K� Æ �Q)(v)�= (f� Æ  0 Æ p�)(�q)�q �T�q�Q(v)� :(3.12)On the other hand, sine �� : J�1(R+�) ,! S�Q is the inlusion, from(2.2) and the de�nition of the Liouville form on T �Q, we get(3.13) ((�� Æ �)���) (�q)(v) = (f��)(�q)(v) = f�(�q)�q �T�q�Q(v)� :The two identities (3.12) and (3.13) show that on J�1t (R+�) n f0g wehave the equality(3.14) ��( b � Æ �� Æ ��)��� = f� Æ  � Æ p�f� �������:Formula (2.1) shows that the stritly positive proportionality fator in(3.14) drops to a stritly positive funtion F� on the quotient J�1(R+�).Sine � is a surjetive submersion, (3.14) implies that ( b �Æ��Æ��)��� =F� ����� where the funtion F� > 0, whih is the desired identity. Thisproves that b � Æ �� preserves the respetive ontat strutures.That b � is an immersion an be proved as in the embedding versionof the otangent bundle redution theorem (see [1℄, x4.3 or [8℄, p. 82).Indeed, we observe that �0 = �jk� = 0, hene onsidering the ationrestrited toK�, the orresponding momentummap J 0 is the restritionof J . We are thus in the onditions of our Theorem 3.1 and obtaina ontat-di�eomorphism between J 0�1(R+�0)=K� = J 0�1(0)=K� andS�(Q=K�). Composing this with the natural inlusion of J�1(R+�)=K�in J 0�1(R+�0)=K�, we arrive at the desired ontat embedding.This ends the proof of the theorem. �Example 3.4. We look again at Albert's example disussed above.We have Q = Tn, G = Tn ating naturally on itself. Take � 2 (Rn)� tobe the projetion on the last fator: �(x1; : : : ; xn) = xn. Then ker � =Rn�1 , K� = Tn�1 and J�1(R+�) �= Tn. Hene (S�Q)� = Tn=Tn�1 �= S1and Q=K� �= S1. Our theorem yields S1 ,! S�(S1), the inlusion beingthe zero setion in T �S1 followed by the anonial projetion.



710 OANA DR�AGULETE, LIVIU ORNEA, TUDOR S. RATIUExample 3.5. We let Q = R3(n+1) and ' be the natural ation ofG = (R3 ;+) on Q by translations. The lifted ation to the otangentbundle is again by translations: (x; (qi;pi)) 7! (x+qi;pi), i = 0; : : : ; n.The sympleti momentum map (the linear momentum, see e.g. [8℄)has values in R3 (whih is identi�ed with its dual (R3)� by the usualdot produt) and is given by:Jt(qi;pi) = nXj=0 pj:Fix now v 2 R3 n f0g and de�ne � : R3 ! R by �(�) = v � �. Then wehave: J�1t (R+�) = n(qi;pi) j nXi=0 pi 2 R+vo:As G is Abelian, we have k� = ker � = v? �= R2 . Hene K� �= R2 .De�ne the map f : R3(n+1) ! R3n+1 byf(q0; : : : ;qn) := (q1 � q0; : : : ;qn � qn�1;q0 � v=kvk2):Clearly f is smooth, surjetive, invariant under the K�-ation, andf(q0; : : : ;qn) = f(q00; : : : ;q0n) if and only if q0i = qi + x, for all i =0; : : : ; n, where x 2 v?. In addition, the kernel of the derivative of fat every point equals the tangent spae the K�-orbit. Hene f induesa di�eomeorphism Q=K� = R3(n+1)=R2 �= R3n+1 . We thus have:S�(Q=K�) = S�R3n+1 �= R3n+1 � S3n:On the other hand,J�1t (R+�)=K� �= R3n+1 � n(p0; : : : ;pn) j nXi=0 pi 2 R+vosine the K�-ation does not a�et p0; : : : ;pn. Applying Theorem 3.2we have :(S�Q)� �= R3n+1 � "S3n+2 \ n(p0; : : : ;pn) j nXi=0 pi 2 R+vo# :So Theorem 3.2 asserts the existene of a ontat struture on theabove manifold, indued from that of R3n+1 � S3n. Note that it is notobvious how to onstrut diretly a ontat struture onR3n+1 � "S3n+2 \ n(p0; : : : ;pn) j nXi=0 pi 2 R+vo# :



COSPHERE BUNDLE REDUCTION IN CONTACT GEOMETRY 711Remark 3.2. Observe that b � may no longer be surjetive (as theorresponding map of the sympleti ase). In fat, sine b � maps�bers of J�1(R+�)=K� in �bers of S�(Q=K�), if it were surjetive itwould be so on eah �ber, but a simple ount of dimensions proves thisis impossible. On the other hand, onditions like G = K� or g = g�,whih ensure surjetivity in the sympleti ase, here lead to � = 0(beause of the ondition ker�+ g� = g).Remark 3.3. There is a signi�ant di�erene between the reduedspaes for � 6= 0 in the otangent bundle redution theorem and forthe osphere bundle. The sympleti quotient is sympletially embed-ded (only in the partiular ase of G Abelian or G = G� one obtainsa di�eomorphism) in T �(Q=G�) endowed with a perturbed sympletiform (the anonial one minus a magneti term), while the ontat quo-tient is always ontatly embedded in S�(Q=K�) with a non perturbedontat form. Thus, in ontat geometry, the ases � 6= 0 and � = 0are similar and the explanation is Willett's hoie of the kernel group of� instead of the oadjoint isotropy group of �. Expliitly, it is the Liealgebra of this kernel group that assures the existene of a well-de�nedmap preserving the ontat struture exatly as in the � = 0 ase.Remark 3.4. One may relax the assumptions on the ation of G (andK�) by allowing �xed points and working in the ategory of orbifolds.
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