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Abstract A contact manifold M can be defined as a quotient of a symplectic manifold X
by a proper, free action of R, with the symplectic form homogeneous of degree 2. If X is
also Kähler, and its metric is homogeneous of degree 2, M is called Sasakian. A Sasakian
manifold is realized naturally as a level set of a Kähler potential on a complex manifold, hence
it is equipped with a pseudoconvex CR-structure. We show that any Sasakian manifold M
is CR-diffeomorphic to an S1-bundle of unit vectors in a positive line bundle on a projective
Kähler orbifold. This induces an embedding of M into an algebraic cone C . We show that this
embedding is uniquely defined by the CR-structure. Additionally, we classify the Sasakian
metrics on an odd-dimensional sphere equipped with a standard CR-structure.
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1 Introduction

1.1 Sasakian manifolds and algebraic cones

In this paper, we study existence of Sasakian metrics on strictly pseudoconvex CR-manifolds.
A pseudoconvex CR-manifold is a geometric structure arising on a smooth boundary of a
Stein domain X (Defintion 2.13, Remark 2.14). If M is compact and strictly pseudoconvex
CR-manifold of dimension > 3, then M can always be realized as a boundary of a Stein
variety X with at most isolated singularities [1,16]. In fact, the geometry of CR-structures is
essentially the same as the holomorphic geometry of the corresponding Stein variety. In parti-
cular, the automorphisms of X are in a natural correspondence with the CR-diffeomorphisms
of its boundary.

Strictly pseudoconvex CR-manifolds are always contact; they are sometimes called contact
pseudoconvex.

Sasakian metrics are the special Riemannian metrics on contact pseudoconvex CR-
manifolds. They are related to Kähler metrics, in the same way as the contact structures
are related to symplectic structures. A contact manifold can be defined as a manifold with a
symplectic structure on its cone; a Sasakian metric on a contact manifold induces a Kähler
metric on its symplectic cone (Definition 3.1).

Sasakian manifolds can be defined in terms of algebraic cone spaces, as follows.

Definition 1.1 A closed algebraic cone is an affine variety C admitting a C
∗-action ρ with a

unique fixed point x0, which satisfies the following.

1. C is smooth outside of x0.
2. ρ acts on the Zariski tangent space Tx0C diagonally, with all eigenvalues |αi | < 1.

An open algebraic cone is C\{x0}.
In Sec. 4.1 we give another, equivalent but more constructive, definition of an algebraic

cone (Definition 4.2).
By definition, a Sasakian manifold M admits a CR-embedding into an algebraic cone

C(M) := M × R
>0, as a set M × {t0}. The function C(M)−→ R

>0, (m, t)−→ t2 is a
Kähler potential of C(M), as follows from an elementary calculation (see e.g. [21]). The
converse is also true: given a Kähler potential ϕ : C −→ R on an algebraic cone C, satisfying
Liev ϕ = 2ϕ, for a vector field v ∈ T C inducing a holomorphic contraction on C, we may
assume that (C, ∂∂ϕ) is a Riemannian cone of M .1

The correspondence between algebraic cones and Sasakian manifolds is quite significant.
One may argue that the algebraic cone, associated with a Sasakian manifold, gives a functor
similar in many respects to the forgetful functor from the category of Kähler manifolds to
the category of complex manifolds. Indeed, the moduli space of algebraic cones is finite-
dimensional, as follows from Definition 4.2, and the Sasakian metrics are determined by an
additional set of C∞-data (the Kähler potential).

One could also argue that a proper analogy of a complex structure is a CR-structure
underlying a Sasakian manifold. However, the CR-structure (unlike complex structure, or a
structure of an algebraic cone) in many cases, e.g. in dimension 3, determines the Sasakian
metric completely (up to a constant). In fact, there is only a finite-dimensional set of Sasakian
metrics on a given CR-manifold ([BGS]; see also Theorem 1.11).

In this paper, we study the forgetful functor from the category of Sasakian manifolds to
the category of algebraic cones. We show that it is determined by the CR-structure.

1 Here, Liev denotes the Lie derivative.
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Theorem 1.2 Let M be a compact pseudoconvex contact CR-manifold. Then the following
conditions are equivalent.

(i) M admits a Sasakian metric, compatible with the CR-structure.
(ii) M admits a proper, transversal CR-holomorphic S1-action.

(iii) M admits a nowhere degenerate, transversal CR-holomorphic vector field.

Theorem 1.3 Let M be a compact, strictly pseudoconvex CR-manifold admitting a proper,
transversal CR-holomorphic S1-action. Then M admits a unique (up to an automorphism)
S1-invariant CR-embedding into an algebraic cone C. Moreover, a Sasakian metric on M
can be induced from an automorphic Kähler metric on this cone.2

We prove Theorem 1.2 in Subsect. 5.1, and Theorem 1.3 in Subsect. 5.2 (when M is not
a sphere). The case when M is a sphere is considered at the end of Subsect. 6.2.

Remark 1.4 The Sasakian metric is by definition induced from an embedding to its cone,
which is a Kähler manifold. This cone is algebraic, as indicated above. This metric is not
unique, though the embedding is unique and canonical, as follows from Theorem 1.3.

Remark 1.5 For another approach to the existence of Sasakian structures compatible with a
contact pseudoconvex structure on a compact manifold, see [8]. A still different approach is
the following: In the course of the proof of [14, Theorem E], Lee proves that the infinite-
simal generator of a transverse CR-automorphism (of a pseudoconvex contact structure) is
necessarily a Reeb vector field for a contact form underlying the given contact bundle. On the
other hand, Webster proved in [22] that if the Reeb field of a pseudoconvex contact structure
is a CR-automorphism, then the torsion of the Tanaka connection vanishes. But it is known
(see e.g. [9]) that a pseudoconvex contact structure with zero Tanaka torsion is Sasakian.
However, it seems that this result was never explicitly stated as such.

Remark 1.6 In dimension 3, Sasakian structures on CR-manifolds were completely classified
[3,4,11]. For a 3-dimensional CR-manifold M , not isomorphic to a sphere, the Sasakian
metric is unique, hence the corresponding cone is also unique. Theorem 1.2 and Theorem
1.3 in dimension 3 follow immediately from [3,4]. In this paper, we shall always assume that
dim M ≥ 5.

1.2 Sasakian geometry and contact geometry

There is a way to define contact manifolds and Sasakian manifolds in a uniform manner. Let
M be a smooth manifold equipped with a free, proper action of the multiplicative group R

>0,
and a symplectic form ω. Assume that ω is homogeneous of weight 2 with respect to ρ, that
is, Liev ω = 2ω, where v ∈ T M is the tangent vector field of ρ. Then the quotient M/ρ is
contact. This can be considered as a definition of a contact manifold (see Remark 2.9). Then
M is called a symplectic cone of a contact manifold M/ρ.

Now, let (M, g, ω) be a Kähler manifold (here we consider (M, ω) as a symplectic
manifold, equipped with a compatible Riemannian structure g). Assume again that ρ is
a free, proper action of R

>0 on M , and g and ω are homogeneous of weight 2:

Liev ω = 2ω, Liev g = 2g.

2 By automorphic Kähler metric on an open algebraic cone we understand a metric ω which satisfies
ρ∗(λ)(ω) = |λ|2ω, for all λ ∈ C

∗.
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The quotient M/ρ is contact (as indicated above) and Riemannian (the Riemannian metric
is obtained from g by appropriate rescaling). It easily follows from the definitions that M/ρ
is Sasakian. In fact, the Sasakian manifolds can be defined this way (see Definition 3.1). The
Sasakian metric is therefore a natural odd-dimensional counterpart to Kähler metrics.

In symplectic geometry, one is often asked the following question.

Question 1.7 Let M be a symplectic manifold. Is there a Kähler metric compatible with the
symplectic structure?

It is natural to ask the same question for contact geometry.

Question 1.8 Let M be a contact manifold. Is there a Sasakian metric compatible with the
contact structure?

A partial answer to this question is given in this paper, in the additional assumptions of
existence of CR-structure, which is natural and very common in contact topology.

A set of natural examples of CR and Sasakian manifolds is provided by algebraic geometry.

Example 1.9 Let X be a projective orbifold with quotient singularities (in algebraic geometry
such an object is also known under the name of “Deligne-Mumford stack”), and L an ample
Hermitian line bundle on X . Assume that the curvature of L is positive. Let Tot(L∗) be the
space of all non-zero vectors in the dual bundle, considered as a complex manifold, and ϕ:
Tot(L∗)−→ R map v ∈ L∗ into |v|2. It is easy to check that ϕ is strictly plurisubharmonic,
that is, ∂∂ϕ is a Kähler form on Tot(L∗). Therefore, the level set M := ϕ−1(λ) of ϕ is a
strictly pseudoconvex CR-manifold. This level set is a U (1)-bundle on X .

It is easy to see that the metric ∂∂ϕ induces a Sasakian structure on M (see e.g. [21]).
Such Sasakian manifolds are called quasiregular.

In dimension 3, Belgun has shown that all Sasakian manifolds are obtained this way (see
[3,4,11]):

Theorem 1.10 A strictly pseudoconvex, compact CR-manifold M of dimension 3 admits a
Sasakian metric if and only if M is isomorphic to a U (1)-fibration associated with a positive
line bundle on a projective orbifold (Example 1.9). Moreover, the Sasakian metric on M is
unique, up to a constant multiplier, unless M is S3 ⊂ C

2.

Using a construction of Sasakian positive cone due to [8], we shall extend this theorem to
arbitrary dimension.

Theorem 1.11 Let M be a strictly pseudoconvex, compact CR-manifold. Then M admits
a Sasakian metric if and only if M is CR-isomorphic to a U (1)-fibration associated with
a positive line bundle on a projective orbifold (Example 1.9). Moreover, the set of Sasa-
kian structures on M is in bijective correspondence with the set of positive and transversal
CR-holomorphic vector fields on M.3

Proof The last claim of Theorem 1.11 is due to [8]; we give a new proof of this statement in
Subsect. 6.1, and prove the rest of Theorem 1.11. ��

3 This set is called the positive Sasakian cone of M . For a definition of positive and transversal
CR-holomorphic vector fields, see Subsect. 6.1.
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2 Strictly pseudoconvex CR-manifolds

2.1 CR-manifolds and contact manifolds

We recall some definitions, which are well known.

Definition 2.1 Let M be a smooth manifold. A CR-structure (Cauchy-Riemann structure)
on M is a subbundle H ⊂ T M ⊗ C of the complexified tangent bundle, which is closed
under commutator:

[H, H ] ⊂ H

and satisfies H ∩ H = 0.
A complex manifold (P, I ) is considered as a CR-manifold, with H = T 1,0 P ⊂ T P ⊗C.

Definition 2.2 Consider a real submanifold M ⊂ P in a complex manifold (P, I ). Suppose
that T M ∩ I (T M) has constant rank. Clearly, HM := T M ⊗ C ∩ T 1,0 P is a CR-structure
on M . Then (M, HM ) is called a CR-submanifold in M , and HM is called the induced
CR-structure.

Remark 2.3 Given a real hypersurface M ⊂ P in a complex manifold, dimC P = n, the
rank of T M ∩ I (T M) is n − 1 everywhere, hence M is a CR-submanifold.

Given a CR-manifold (M, H), consider the bundle H ⊕ H ⊂ T M ⊗ C. This bundle is
preserved by the complex conjugation, hence it is the complexification of a HR ⊂ T M . Since
H∩H = 0, the map Re: H −→ HR is an isomorphism. The map

√−1 IdH: H −→ H defines
a complex structure operator IH on HR, I 2

H = − IdHR
. Clearly, H is the

√−1 -eigenspace
of the IH -action on HR ⊗ C.

Remark 2.4 We obtain that a CR-structure on a manifold M can be defined as a pair (HR, IH ),
where HR ⊂ T M is a subbundle in T M , and IH ∈ End(HR) is an endomorphism, I 2

H =
− IdHR

, such that the
√−1 -eigenspace of IH -action on HR ⊗ C satisfies

[H, H ] ⊂ H

This is the definition we shall use.

Definition 2.5 A CR-holomorphic function on a CR-manifold (M, H) is a function f :
M −→ C which satisfies DV ( f ) = 0 for any V ∈ H (DV denotes the derivative). A CR-
holomorphic map is a smooth map of CR-manifolds such that a pullback of CR-holomorphic
functions is CR-holomorphic.

Definition 2.6 Let M be a smooth manifold, and R ⊂ T M a subbundle. Consider the
commutator [R, R] −→ T M . This map is not C∞(M)-linear. However, its composition
with the projection to T M/R is linear. It is called the Frobenius tensor of the distribution
R ⊂ T M .

Definition 2.7 A contact manifold is a smooth manifold M equipped with a codimension
1 subbundle R ⊂ T M such that the Frobenius tensor R × R −→ T M/R is a nowhere
degenerate skew-symmetric T M/R-valued form on R. In this case, R is called the contact
distribution on M .
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Remark 2.8 The bundle T M/R is one-dimensional, hence trivial (if oriented). A trivializa-
tion η of T M/R defines a 1-form on T M , which is called a contact form of M . Its differential
dη is nowhere degenerate on the contact distribution R. A choice of a trivialization η also
defines a Reeb vector field ξ by the conditions: ξη = 1, ξdη = 0.

Remark 2.9 Let (M, R) be a contact manifold, and η a contact form. Using η, we define a
trivialization of T M/R. Then the total space S of positive vectors in (T M/R)∗ is identified
with the cone M × R

>0. We consider the contact structure as a T M/R-valued 1-form on M .
This gives a canonical 1-form on Tot((T M/R)∗).

Let t be a unit parameter on R
>0, and tθ the corresponding 1-form on S. It is easy to check

that d(tθ) is a symplectic form on S. The converse is also true. Starting from a symplectic
form ω on a cone M × R

>0, satisfying ρ(q)∗ω = q2ω, where ρ(q)(m, t) = (m, qt) is a
dilatation map, we may reconstruct the contact structure on M and the contact form. This
can be summarized by saying that a contact form on M is the same as a conical symplectic
structure on M × R

>0. This construction is explained in greater detail in most textbooks on
contact geometry, e.g. [2].

Definition 2.10 A contact CR-manifold is a CR-manifold (M, HR, IH ), such that the distri-
bution HR ⊂ T M is contact.

Remark 2.11 Given a CR-manifold (M, HR, IH ), with HR of codimension 1, the Frobenius
2-form HR × HR −→ T M/R is of type (1, 1) with respect to the complex structure on HR.
Indeed, this form vanishes on H and H , because [H, H ] ⊂ H ⊂ HR ⊗ C.

Definition 2.12 In these assumptions, the (1, 1)-form HR × HR −→ T M/R is called the
Levi form of the CR-manifold (M, HR, IH ).

Definition 2.13 A CR-manifold (M, HR, IH ) with HR of codimension 1 is called pseudo-
convex if the Levi form ω is positive or negative, depending on the choice of orientation. If
this form is also sign-definite, then (M, HR, IH ) is called strictly pseudoconvex, or contact
pseudoconvex.

Remark 2.14 Let S ⊂ P be a Stein domain in a complex manifold, and ∂S its boundary.
Assume that ∂S is smooth; then ∂S inherits a natural CR-structure from P . It is well known
that in this case the Levi form on P is positive, though not always definite (see [12]).

2.2 Automorphisms of CR-manifolds

Definition 2.15 Letϕ : M−→M ′ be a smooth map of CR-manifolds (M, H, I ), (M ′, H ′, I ′).
If ϕ maps H to H ′ and commutes with the complex structure, ϕ is called CR-holomorphic.
A CR-holomorphic diffeomorphism is called a CR-diffeomorphism.

Definition 2.16 Let (M, H, I ) be a strictly pseudoconvex CR-manifold. A vector field V ∈
T M is called transversal if its image in T M/H is nowhere degenerate. A diffeomorphism
flow on M is called transversal if its tangent field is transversal.

The following result is proven in [20] (see also [8]):

Theorem 2.17 Let M be a compact, strictly pseudoconvex CR-manifold which is not iso-
morphic to a sphere with a standard CR-structure, and G the group of CR-automorphisms
of M. Then G is a compact Lie group.

If M = S2n−1 is an odd-dimensional sphere, the group of CR-diffeomorphisms of M is
isomorphic to SU (n, 1) (see e.g. [8]; an explicit construction is given in Subsect. 6.2).
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3 Vaisman manifolds and Sasakian geometry

3.1 Sasakian manifolds

Definition 3.1 A Riemannian manifold (M, h) of odd real dimension is called Sasakian
if the metric cone C(M) = (M × R

>0, t2h + dt2) is equipped with a dilatation-invariant
complex structure, which makes C(M) a Kähler manifold (see [5,7]).

Remark 3.2 A Sasakian manifold is naturally embedded as a real hypersurface in its cone,
M = (M × {1}) ⊂ C(M). This defines a CR-structure on M (Remark 2.3).

Claim 3.3 This CR-structure is contact and pseudoconvex (that is, strictly pseudoconvex).

Proof The function ϕ(m, t) = t2 on C(M) defines a Kähler potential on C(M) (see e.g. [21]).
The level set of a Kähler potential is strictly pseudoconvex, because its Levi form is equal to
∂∂ϕ

∣
∣

H . ��
Remark 3.4 It is easy to show that a Sasakian manifold is equipped with a canonical contact
structure. Indeed, a contact form on M is the same as a conical symplectic form on C(M), as
explained in Remark 2.9. Such a symplectic form is a part of the Kähler structure on C(M).

Remark 3.5 Let M be a Sasakian manifold. On M ⊂ C(M), consider the vector field ξ =
I
(

t d
dt

)

, where t d
dt is the dilatation vector field of the cone C(M) = (M × R

>0, t2h + dt2),
and I the complex structure operator. Then ξη = 1, ξdη = 0, hence ξ is the Reeb vector
field of M .

The next result is well known, see for example [7]:

Claim 3.6 Let (M, h) be a Sasakian manifold. The Reeb field is unitary and Killing: its flow
ρ(t) acts on M by isometries. Moreover, it preserves the CR-structure.

If the orbits of the Reeb flow of a Sasakian manifold are compact, then the Sasakian
structure is called quasi-regular. In this case, if compact, M fibers in circles over a compact
Kähler orbifold. The construction can be reversed if one starts with a compact Hodge orbifold,
cf. [6, Theorem 2.8].

Remark 3.7 Any Sasakian metric h is S1-invariant with respect to some CR-holomorphic
S1-action. Indeed, let G be the closure of the one-parametric group generated by the Reeb
field. In [18] (see also [13]) it is shown that this group is a compact torus. Clearly, h is
G-invariant. Taking S1 ⊂ G generated by a vector field sufficiently close to the Reeb field,
we may also assume that this S1-action is proper and transversal.

3.2 Vaisman manifolds

Our method will be to constantly translate the Sasakian geometry into locally conformally
Kähler and Vaisman geometry. Here we recall the basics. For details and examples we refer
to [10,17–19,21].

As we shall only deal with compact manifolds, we can take as definition the following
characterization:

Definition 3.8 A compact complex manifold (N , I ) is called a Vaisman manifold if it admits
a Kähler covering 
 → (Ñ , I, h) → (N , I ) such that:
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• 
 acts by holomorphic homotheties with respect to h (this says that (N , I ) is equipped
with a locally conformally Kähler structure).

• (Ñ , I, h) is isomorphic to a Kähler cone over a compact Sasakian manifold M . Moreover,
there exists a Sasakian automorphism ϕ and a positive number q > 1 such that 
 is
isomorphic to the cyclic group generated by (x, t) �→ (ϕ(s), tq).

In particular, the product of a compact Sasakian manifold with S1 is equipped with a
natural Vaisman structure.

The Kähler metric h on C(M) = M × R
>0 has a global potential ψ , which is expressed

as ψ(m, t) = t2. The metric ψ−1 · h projects on N into a Hermitian, locally conformally
Kähler metric, say g, whose fundamental two-form ω satisfies the equation dω = θ ∧ ω for
a closed one-form θ called the Lee form. Then ψ =| θ |2.

Further on, N is considered as a Hermitian manifold, with the Hermitian metric g. Let θ�

be the vector field on N dual to the Lee form θ . Then θ� is called the Lee field on N .
The Lee field θ� is Killing, parallel with respect to the Levi-Civita connection on N and

holomorphic. It thus determines two foliations on N :

• F1, one-dimensional, tangent to θ�.
• F2, holomorphic two-dimensional, tangent to θ� and Iθ�.

Remark 3.9 As θ� is parallel, Lieθ�g(θ
�, θ�) = 0, hence the flow of θ� preserves the potential

ψ .

Proposition 3.10 If the foliation F1 (resp. F2) is quasi-regular (thus having compact leaves),
then the leaf space N/F1 (resp. N/F2 is a Sasakian (resp. projective Kähler) orbifold.

Remark 3.11 Let L be the weight line bundle associated to the Vaisman manifold via the
subjacent l.c.K. structure. The Lee form can be interpreted as a canonical Hermitian connec-
tion in its complexification (that we also denote by L) and one can prove (see [21]) that
the curvature is positive except on the Lee field. The Chern connection in L is trivial along
F2. Therefore, if N is quasi-regular, L is a pullback of a Hermitian line bundle π∗L on the
Kähler orbifold N/F2. Since the projection π : N −→ N/F2 kills the directions on which
the curvature was non-positive, the push-forward bundle π∗L is ample (cf. [18]).

The following result from [18] will be important in the sequel:

Theorem 3.12 [18, Proposition 4.6] A compact Vaisman manifold can be deformed into a
quasi-regular Vaisman manifold, with the same Kähler covering (Ñ , h).

4 Algebraic cones and CR geometry

4.1 Algebraic cones

Definition 4.1 Let X be a projective variety, and L an ample line bundle on X . The algebraic
cone C(X, L) of X is the total space of non-zero vectors in L∗. A cone structure on C(X, L)
is the C

∗-action arising this way (by fibrewise multiplication).

Definition 4.2 Let C(X, L) be an algebraic cone. Consider the associated affine variety
C(X, L) := Spec ⊕i H0(X, Li ). Geometrically, C(X, L) is a complex variety, obtained by
adding a point at the “origin” of the cone C(X, L). We call C(X, L) the closure of the algebraic
cone C(X, L). This space is called a closed algebraic cone, and C(X, L) an open algebraic
cone.

123



Geom Dedicata (2007) 125:159–173 167

The definition of an algebraic cone is motivated by the following observation. Let h be
a Hermitian metric on L∗, such that the curvature of the associated Hermitian connection is
negative definite (such a metric exists, because L is ample). Consider a function C(X, L)

ϕ−→
R, ϕ(v) = h(v, v). Then ∂∂ϕ is a Kähler metric on C(X, L) (see e.g. [21]). The associated
Kähler manifold is a Riemannian cone of a unit circle bundle

{v ∈ C(X, L) | h(v, v) = 1}
which is, therefore, Sasakian.

In the Introduction, we defined algebraic cones in a less constructive manner (see Defi-
nition 1.1). This definition is equivalent to the one given above, as follows from [18] and
[19]. Starting from an algebraic cone in the sense of Definition 1.1, that is, an affine alge-
braic variety X with an action ρ of C

∗ contracting X to a single singular point x0, we may
embed (X\x0)/ρ(2) into a diagonal Hopf manifold, as shown in [19]. This allows us to equip
(X\x0)/ρ(2)with a Vaisman metric. In [18], it was shown that a covering of a compact Vais-
man manifold is isomorphic to the space of non-zero vectors in some anti-ample line bundle
over a projective orbifold. Therefore, it is an open algebraic cone, in the sense of Definition
4.2. This implies that Definition 1.1 is equivalent to Definition 4.2.

The arguments of the present paper are built on the correspondence between the Sasakian
manifolds and the algebraic cones, which is implied by the following proposition.

Proposition 4.3 Let M be a compact Sasakian manifold, C(M) its cone, considered as a
complex manifold. Then C(M) = C(X, L) is an algebraic cone, associated with a projective
orbifold X.

Proof Indeed, the product M × S1 is Vaisman (see above), and is covered by the Kähler
cone C(M). Proposition 4.6 of [18] implies that the same cone C(M) is a covering of a quasi-
regular Vaisman manifold, that is, a total space of an elliptic fibration E −→ X , with X a
projective orbifold. But any quasi-regular Vaisman manifold can be obtained as a quotient
of a cone C(X, L) (see 3.11) by an equivalence t ∼ qt , where q ∈ C

∗ is a fixed complex
number, |q| > 1 (see Definition 3.8). ��

The Kähler structure of the Riemannian cone C(M) explicitly depends on the Sasakian
metric of M . However, the holomorphic structure of the cone is determined by the underlying
CR-structure of M , as follows from Theorem 1.3. A weaker version of this statement is
obtained immediately from standard results of complex analysis.

Proposition 4.4 Let M be a compact Sasakian manifold, and λ a positive real number.
Denote by C(M)λ the set of all (m, t) ∈ C(M), t ≤ λ. Then the holomorphic structure of
C(M)λ depends only on the CR-structure of M.

Proof Consider the standard embedding M ↪→ C(M), m −→ m × {λ}, and let Mλ be its
image, which is the boundary of a complete Stein domain M × [0, λ]/M × {0} (see [19]),
Theorem 3.1). Let Vλ be the space of CR-holomorphic functions on Mλ. Using the solution
of ∂-Neumann problem ([15]), we identify Vλ with the space of holomorphic functions on the
Stein domain C(M)λ which are smooth on its boundary Mλ. Then C(M)λ is the holomorphic
spectrum of the ring Vλ. ��

The following problem is then natural: if one starts with an algebraic cone and fixes
a pseudoconvex CR-hypersurface in it, when does the CR-structure underlie a Sasakian
structure? As shown in the next section, the answer is related to the Kähler potentials on the
cone.
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4.2 Sasakian manifolds in algebraic cones

Theorem 4.5 Let M be a smooth real hypersurface in a closed algebraic cone C, considered
as a CR-manifold. Assume that M is contact and pseudoconvex (this implies that M is the
boundary of a Stein domain C1 in C). Then M admits a Sasakian metric if and only if for
some cone structure ρ : C

∗ −→ Aut(C), M is S1-invariant.

Proof The “if” part follows from Remark 3.7, where the S1-action is constructed. For the
converse, assume that C1 is an open, S1-invariant subset of a cone. To prove that its boundary
M is Sasakian, we need to construct a Kähler potential which is homogeneous under the cone
action and such that M is its level set. To this end, we introduce the following

Definition 4.6 A section of the action ρ: R
>0 −→ Aut(C) is a subset V ⊂ C such that

ρ(λ1)V does not intersect ρ(λ2)V for λ1 �= λ2, and ρ(R>0)V = C.

We now fix a Kähler potential ψ on C1 mapping its boundary to 1 (the existence of such a
potential is assured by the strict pseudoconvexity of M ; see e.g. [16, Consequence 3.2]). Let
�1 be a unit disk in C. Averaging ψ with S1-action induced by ρ, we may assume that ψ is
S1-invariant. For all m ∈ M , the discs ρ(�1)m, bounded by the images of S1, belong to C1

(indeed, being strictly plurisubharmonic, ψ is subharmonic on all curves in C). This implies
that M ⊂ C is a section of ρ: R

>0 −→ Aut(C), in the sense of the above definition.
This allows us to define a map ϕ: C −→ R

>0, mapping x ∈ C to t2, where x ∈ ρ(t)M .
By construction, this map is homogeneous with respect to the cone action.

To finish the proof it remains to show that ϕ is a Kähler potential. Clearly, on the contact
distribution of M the form ∂∂ϕ is equal to ϕω0, where ω0 is the Levi form, and it is positive
because M is pseudoconvex. On the plane generated by ρ-action, ϕ = |z|2, hence plurisub-
harmonic. Finally, these two spaces are orthogonal, because ϕ is ρ(S1)-invariant. Then ϕ is
plurisubharmonic. ��
Remark 4.7 In the proof of Theorem 4.5, we constructed an S1-invariant Sasakian metric on
M . Moreover, the Reeb field of M is proportional (with constant coefficient) to the tangent
field to the S1-action. However, M can possibly admit other Sasakian metrics, not all of them
necessarily S1-invariant or having the prescribed Reeb field; see [8] or Theorem 1.11.

5 Existence and uniqueness of Sasakian structures

5.1 Sasakian structures on CR-manifolds with S1-action

Theorem 5.1 Let M be a compact pseudoconvex contact CR-manifold, dim M ≥ 5. Then
the following assumptions are equivalent.

(i) M admits a transversal, CR-holomorphic action of S1.
(ii) M admits a transversal, CR-holomorphic vector field.

(iii) M admits a Sasakian metric, compatible with the CR-structure.

Proof The implication (i) ⇒ (ii) is clear, and (iii) ⇒ (i) follows from Remark 3.7. The impli-
cation (ii) ⇒ (i) is clear from Theorem 2.17. Indeed, since the group of CR-automorphisms
of M is compact (unless M is a sphere), any diffeomorphism flow can be approximated by an
S1-action within its closure. The implication (ii) ⇒ (iii) follows from differential-geometric
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Fig. 1 Gluing C1 to itself
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arguments (see Remark 1.5). We use another argument, which is based on complex ana-
lysis. The implication (i) ⇒ (iii), and the proof of Theorem 5.1, is given by the following
proposition.

Proposition 5.2 Let M be a compact pseudoconvex contact CR-manifold, dim M ≥ 5.
Assume that M admits a proper CR-holomorphic S1-action ρ. Then M admits an S1-
equivariant CR-embedding to an algebraic cone.

Proof As shown in [15], M is the boundary of a Stein variety C1 with isolated singularities.
Since C1 is constructed uniquely (by solving the boundary ∂-Neumann problem), the S1-
action on M can be extended to a holomorphic S1-action on C1. We shall explain now how
to integrate ρ to a C

∗-action.
Let ζ be the tangent vector field induced by the S1-action, and ζ c = I (ζ ) the corresponding

vector field in T C1. Since ζ is transversal with respect to CR-structure, ζ c has to point inward
or outward, everywhere in M (in other words, it has to point either towards the filled-in part
or towards the opposite direction). Assume it is inward.

The flow of ζ c provides a holomorphic automorphism ρ1 of C1, mapping C1 into itself.
Iterating this map, we find that we can integrate ρ from S1 to an action of 0 < |z| ≤ 1.
Inverting this construction and gluing images of ρ(0 < |z| < ε) together, as shown in Fig. 1,
we obtain a domain C containing C1 where ρ can be integrated to a C

∗-action.
The potential ϕ, constructed in the proof of Theorem 4.5, can be defined in the same way

now, and it gives a homogeneous, S1-invariant plurisubharmonic function on C as indicated.
Then C/ρ(2) is Vaisman, hence C is a cone of a projective orbifold as follows from [18,
Proposition 4.6]. ��

This finishes the proof of Theorem 1.2. The proof of Proposition 5.2 also leads to the
following result.

Corollary 5.3 Let M be a compact pseudoconvex contact CR-manifold, admitting a proper
CR-holomorphic S1-action ρ, and

M ↪→ C
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an S1-equivariant embedding to an algebraic cone. Then C is uniquely determined by M and
the S1-action.

Proof By Proposition 4.4, the holomorphic structure on C1 is determined by the CR-structure
on M . The cone C is reconstructed from C1 and the S1-action as above. ��
5.2 Uniqueness of the algebraic cone

Every Sasakian manifold is CR-embedded to an algebraic cone by Proposition 5.2. This cone
is determined uniquely by an S1-action, as follows from Corollary 5.3. On the other hand,
the cone is determined by the Sasakian metric. Then, if a given Sasakian metric is invariant
under two different S1-actions, the cone associated to one S1-action is isomorphic to the cone
associated to the other S1-action. Therefore, unless M is a sphere, Theorem 1.3 is implied
by the following proposition.

Proposition 5.4 ([8, Proposition 4.4]) Let M be a CR-manifold of Sasakian type, and G
the group of CR-automorphisms of M. Assume that M is not a sphere. Then M admits a
G-invariant Sasakian metric g.

6 The positive Sasakian cone of a CR-manifold

6.1 Positive Sasakian cone

The notion of positive Sasakian cone is due to [8]. We use it to classify the Sasakian metrics
on a sphere.

Definition 6.1 Let (M, H) be a strictly pseudoconvex CR-manifold. The Levi form H ⊗
H −→ T M/H is sign-definite. This gives an orientation on T M/H . A transversal
CR-holomorphic vector field is called positive if its projection to T M/H is everywhere po-
sitive. The positive Sasakian cone is the space of all transversal, positive, CR-holomorphic
vector fields.

Definition 6.2 Let M be a Sasakian manifold, C(M) = M ×R
>0 its cone, with t a coordinate

in R
>0, and d

dt the corresponding holomorphic vector field. It is clear from the definition
that ξ := I (t d

dt ) is tangent to the fibration M × {t}, hence defines a vector field on M . We
normalize it in such a way that |ξ | = 1. Then ξ is called the Reeb field of the Sasakian
manifold M .

This definition is compatible with the one used in contact geometry (Remark 2.8). The
following well-known claim is easy to prove (see, for example, [7]):

Claim 6.3 In these assumptions, ξ is transversal, positive, CR-holomorphic and Killing.

The following theorem is implied by Lemma 6.4 of [8].

Theorem 6.4 Let M be a compact, strictly pseudoconvex CR-manifold, and R the Sasakian

positive cone. Denote by S the set of Sasakian metrics on M, and let S �−→ R map a metric
into the corresponding Reeb field. Then � is a bijection.
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Proof We give an independent proof of Theorem 6.4, using the same kind of arguments as we
used in the proof of Theorem 1.2. The Reeb field on a contact, pseudoconvex CR-manifold
(M, H, I ) determines the Sasakian metric uniquely, as can be seen from the following argu-
ment. Denote the corresponding contact form by η (see Remark 2.8). The Hermitian form
dη

∣
∣

H is equal to the Levi form by construction; the Reeb field ξ is orthogonal to H and has

length 1. Therefore, the map S �−→ R is injective. It remains to show that� is a surjection.
Let ζ be a positive, transversal CR-holomorphic vector field on a compact, strictly pseudo-

convex CR-manifold M , and B the corresponding Stein domain, ∂B = M . Then etζ induces
an automorphism of B = Spec(OM ), where OM is the ring of CR-holomorphic functions
on M . Since ζ is positive, the vector field −ζ c := −I (ζ ) points transversally to M towards
B. Therefore, the map e−tζ c

: B −→ B is well defined for small t , and maps B to a strictly
smaller subset which is contained in the interior of B. Iterating this map, we obtain that e−tζ c

is well defined for all t . Inverting this procedure as in the proof of Proposition 5.2, we obtain
that ζ c induces a holomorphic action ρ of the multiplicative group R

>0 on a Stein domain
B∞, which contains M as a hypersurface. Clearly, ρ is a contraction, with ρ(εi ), εi −→ 0,
putting B into a sequence of smaller open balls converging to a single fixed point x0 (see
[19]). Therefore, ρ is free outside of {x0}, and

B∞\S = ρ(R>0)M.

because each orbit of ρ encounters M on the way to x0. We define a function
ϕ: (B∞\{x0})−→ R

>0 by

ϕ(x) = λ2, for ρ(λ−1)x ∈ M.

Then ϕ is a Kähler potential on B∞. Indeed, on the contact distribution H ⊂ T M ,
∂∂ϕ is proportional to the Levi form of M , because ϕ is constant on M . In particular, ∂∂ϕ is
positive on H . On the 1-dimensional complex foliation F generated by 〈ζ, ζ c〉, ϕ is quadratic,
and can be written in appropriate holomorphic coordinates as z −→ |z − c|2. Finally, ∂∂ϕ
vanishes on pairs (x, y), x ∈ H, y ∈ F , because Lieζ ϕ = 0. Therefore, ∂∂ϕ is positive
on F ⊕ H = T B∞. The function ϕ is by construction homogeneous with respect to the
action of ρ. Therefore, the corresponding Kähler form ∂∂ϕ is also homogeneous, and B∞,
considered as a Riemannian manifold, is identified with a Riemannian cone over M . This
gives a Sasakian metric on M . It is easy to check that the corresponding Reeb field is equal to
ζ . We proved that any positive transversal CR-holomorphic vector field is induced by some
Sasakian metric. Theorem 6.4 is proven. ��

Now we can prove Theorem 1.11. A Sasakian manifold M is quasi-regular if the
1-dimensional foliation F1 induced by the Reeb field on M has compact fibers. Quasire-
gular Sasakian manifolds are always obtained from the construction described in Example
1.9 (see [6]). Therefore, to prove Theorem 1.11, we need to show that a given CR-manifold
M admits a quasi-regular Sasakian structure, if it admits some Sasakian structure.

Denote by A0 the 1-parameter group of CR-holomorphic isometries, generated by etξ ,
where ξ is the Reeb field of M . Let A be its closure in the Lie group of CR-holomorphic
isometries of M . Since A0 is abelian, A is also abelian; it is compact, because the group of
isometries is compact. Therefore, A is a compact torus.

Let a be its Lie algebra. We consider a as a subset in the space of CR-holomorphic
vector fields on M . We call a vector field ζ ∈ T M quasi-regular if the corresponding
1-dimensional foliation has compact fibers. A vector field ζ ∈ a is quasi-regular if it is
tangent to an embedding S1 ↪→ A. Such embeddings correspond to rational points in a,

123



172 Geom Dedicata (2007) 125:159–173

hence they are dense in a. Taking a quasiregular ζ ∈ a sufficiently close to ξ , we may assume
that it is also transversal and positive. By Theorem 6.4, the corresponding Sasakian manifold
is quasiregular. We proved Theorem 1.11.

Remark 6.5 A similar deformation-type argument was used in [13, Proposition 1.10].

6.2 Sasakian metrics on a sphere

To finish the proof of Theorem 1.3, we need to consider the case of a sphere. Let M =
S2n−1 ⊂ C

n be an odd-dimensional sphere equipped with a standard CR-structure. We are
going to classify the Sasakian metrics compatible with this CR-structure. We are interested
in Sasakian metrics up to CR-automorphism.

Let G be the group of CR-automorphisms of M . It is well known that G ∼= SU (n, 1) (see
e.g. [8]). Using the same argument as used in the proof of Proposition 4.4, we may assume
that G acts as a group of holomorphic automorphisms on an open ball B ⊂ C

n , ∂B = M .
The action of SU (n, 1) on B is very easy to describe explicitly. Let us identify B with a
projectivization of the positive cone

{ξ ∈ V | (ξ, ξ)p > 1},
where (·, ·)p is a Hermitian form of signature (n, 1) on V = C

n+1. The group U (n, 1) acts
on V preserving the metric, hence SU (n, 1) ⊂ PU (n, 1) acts on B ⊂ PV . This action is
holomorphic, therefore its restriction to M = ∂B is CR-holomorphic. Clearly, G = SU (n, 1)
acts on the interior of B transitively. This gives

Proposition 6.6 Let M ⊂ C
n be an odd-dimensional sphere, considered as a CR-manifold,

G = AutC R(M) the group of CR-automorphisms, G ∼= SU (n, 1). Then G acts transitively
on the interior part of the open ball B, M = ∂B.

We are interested in classification of Sasakian structures up to CR-automorphism. A
Sasakian structure on M induces a C

∗-action on a Stein domain containing B (Theorem
1.3). This way, B is identified with an open part of an algebraic cone. Since G acts on B
transitively, it maps the origin of this cone into any other interior point of B.

Corollary 6.7 In assumptions of Proposition 6.6, let g be a Sasakian metric on M, and
ξ its Reeb field. As shown in Subsection 6.1, ρ(t) := e−tξ c

acts on B by holomorphic
contractions. Denote by x0 the fixed point of ρ. Then, after an appropriate action of the
group of CR-automorphisms of G, we may assume that x0 is 0 ∈ B.

The group G0 of CR-automorphisms of M fixing 0 ∈ B is identified with the stabilizer of
0 under SU (n, 1)-action on B, that is, with U (n). Denote by R0 the part of positive Sasaki
cone consisting of those positive transversal CR-holomorphic vector fields ξ which fix 0 ∈ B.
As follows from Theorem 6.4 and Corollary 6.7, every Sasakian metric on M corresponds
to some ξ ∈ R0, up to a CR-automorphism. Then, the set S/G of isomorphism classes of
Sasakian metrics is identified with R0/G0

Clearly, R0 is the set of all ξ ∈ u(n) which are positive and transversal, that is, have all
eigenvalues αi with −√−1αi positive real numbers. The group U (n) acts on R0 in a natural
way, and each orbit is determined by the corresponding set of eigenvalues. This gives the
following theorem:

Theorem 6.8 Let M ⊂ C
n be an odd-dimensional sphere, considered as a CR-manifold,

G = AutC R(M) the group of CR-automorphisms, G ∼= SU (n, 1), and S the set of Sasakian
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metrics on M. Then S/G is in natural, bijective and continuous correspondence with the set
of unordered n-tuples of positive real numbers.

From this construction, it is clear that the Riemannian cone of each Sasakian structure on
a sphere is identified naturally with C

n \ {0}. This proves Theorem 1.3 in the case when M
is a sphere. We finished the proof of Theorem 1.3.
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