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Abstract. We show that as in the Hopf algebra case, the space of
left integrals on a Hopf superalgebra A is nonzero if and only if A is
co-Frobenius as a coalgebra. Our proof uses bosonization and a general
result which is of independent interest: if C is a comodule coalgebra over
a finite dimensional Hopf algebra H, then the smash coproduct C >◁ H
is (quasi)co-Frobenius if and only if so is C.
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1. Introduction and preliminaries

The theory of integrals for Hopf algebras was initiated by Larson and
Sweedler in the 1960’s, and continued with Sullivan’s proof of the uniqueness
of integrals in early 1970’s. Integrals have been of great use in understand-
ing the structure of Hopf algebras. Their study was in close relationship to
finiteness properties of the underlying coalgebra structure of the Hopf alge-
bra. More precisely, a Hopf algebra has non-zero integrals if and only if it is
co-Frobenius as a coalgebra. In the case of Hopf superalgebras, a systematic
study of integrals was initiated in [6] and continued in [7], where it has been
related to integration on Lie supergroups. It is natural to ask whether the
existence of integrals is also related to finiteness coalgebra properties in the
Hopf superalgebra case. In this paper we answer this in

Theorem A. Let A be a Hopf superalgebra. Then the following are equiv-
alent.
(i) A has non-zero left integrals.
(ii) A is left co-Frobenius as a coalgebra.
(iii) A is left quasi-co-Frobenius as a coalgebra.
(iv) A is a left semiperfect coalgebra.
Moreover, these conditions are also equivalent to their right hand side ver-
sions.

We give the definitions of (quasi)-co-Frobenius coalgebras and semiperfect
coalgebras in Section 2, and of integrals for Hopf superalgebras in Section
3.

A standard method in the study of Hopf superalgebras is the reduction to
usual Hopf algebras by applying a process of bosonization. More precisely if
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A is a Hopf superalgebra, then there is an action and a coaction of the group
Hopf algebra kZ2 of the cyclic group of order 2 on A, and then the tensor
product A⊗ kZ2 has an algebra structure (a smash product) and a coalge-
bra structure (a smash coproduct), which are compatible and make A⊗kZ2

a Hopf algebra. In this way, integrals on A are investigated in connection
to integrals on its bosonization in [6], leading to a uniqueness theorem for
integrals on Hopf superalgebras. Our approach for proving Theorem A is
similar, so we need to understand how finiteness properties transfer between
A and its bosonization. In fact we prove a much more general transfer result,
which is of interest by itself.

Theorem B. Let C be a right comodule coalgebra over a finite dimen-
sional Hopf algebra H, and let C >/ H be the associated smash coproduct.
The following assertions hold.
(1) C >/ H is left quasi-co-Frobenius if and only if so is C.
(2) C >/ H is left co-Frobenius if and only if so is C.

We give the necessary definitions and the proof of Theorem B in Section
2.

2. Co-Frobenius smash coproducts

Let H be a finite dimensional Hopf algebra over a field k. A right H-
comodule coalgebra is a coalgebra C with comultiplication denoted by c 7→∑
c1 ⊗ c2 for c ∈ C, and counit ε, such that C is also a right H-comodule

with coaction denoted by c 7→
∑
c(0) ⊗ c(1) ∈ C ⊗ H, and the following

compatibility conditions hold∑
c(0)1 ⊗ c(0)2 ⊗ c(1) =

∑
c(0) ⊗ c2(0) ⊗ c1(1)c2(1)∑

ε(c(0))c(1) = ε(c)1H

for any c ∈ C.
If C is a right H-comodule coalgebra, the smash coproduct C >/ H

associated with a right H-comodule coalgebra C is the space C ⊗H, with
c ⊗ h denoted by c >/ h for any c ∈ C, h ∈ H, endowed with a coalgebra
structure whose comultiplication is

∆(c >/ h) =
∑

(c1 >/ c2(1)h2)⊗ (c2(0) >/ h1)

and counit is given by ε(c >/ h) = ε(c)ε(h).
The map π : C >/ H → C, π(c >/ h) = ε(h)c is a coalgebra morphism,

thus C >/ H is a left C-comodule and a right C-comodule via π. Moreover,
we have that

• C >/ H ' Cdim(H) as left C-comodules; ϕ : C >/ H → C ⊗ H,
ϕ(c >/ h) = c⊗ h is such an isomorphism.

• C >/ H ' Cdim(H) as right C-comodules; ψ : C >/ H → H ⊗ C,
ψ(c >/ h) =

∑
c(1)h⊗c(0) is such an isomorphism, with inverse ψ−1(h⊗c) =
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c(0) >/ S(c(1))h, where S is the antipode of H.

Now we recall from [2, Chapter 3] the definitions of several coalgebra
properties.

• A coalgebra C is called left co-Frobenius if C embeds into its dual C∗

as a left C∗-module; if C is finite dimensional, C is left co-Frobenius if and
only if its dual algebra C∗ is Frobenius.

• C is called left quasi-co-Frobenius if C embeds into a free left C∗-module,
or equivalently, C is a projective right C-comodule.

• C is called left semiperfect if any finite dimensional left C-comodule
has a projective cover, or equivalently, the injective envelope of any simple
right C-comodule is finite dimensional, and furthermore equivalent to the
rational part Rat(C∗

C∗) part of the right C∗-module C∗ is a dense subset of
C∗ in the finite topology.

It is known that C left co-Frobenius ⇒ C is left quasi-co-Frobenius ⇒ C
is left semiperfect. There are also versions to the right of these coalgebra
properties, and note that neither of them is left-right symmetric.

Proof of Theorem B. Denote n = dim(H).
(1) Assume that C >/ H is left quasi-co-Frobenius. Then C >/ H is a

projective right C >/ H-comodule. Consider the pair of adjoint functors

MC>◁H
F // MC

−utC(C>◁H)
oo

where F is induced by π : C >/ H → C; here utC denotes the cotensor
product over C, see [2, Section 2.3]. Since C >/ H is a free left C-comodule,
the functor −utC(C >/ H) is exact, and then its left adjoint F takes projec-
tives to projectives. In particular, C >/ H is a projective right C-comodule,
and then so is C since C >/ H ' Cn in MC . This shows that C is left
quasi-co-Frobenius.

Conversely, assume that C is left quasi-co-Frobenius. Then so is the
n× n-matrix coalgebra M c(n,C) = M c(n, k) ⊗ C. By the duality theorem
for coactions [3], we have (C >/ H) >/ H∗ ' M c(n,C), so C >/ H is left
quasi-co-Frobenius by the first implication that we proved above, applied to
the right H∗-comodule coalgebra C >/ H .

(2) Assume that C >/ H is left co-Frobenius, so C >/ H embeds into
(C >/ H)∗ as a left (C >/ H)∗-module. Regard this as an embedding of left
C∗-modules.

Now C >/ H ' Cn as right C-comodules, or equivalently, as left C∗-
modules. On the other hand, since C >/ H ' Cn as left C-comodules,
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we get that (C >/ H)∗ ' (C∗)n as left C∗-modules. Hence the embedding
of C >/ H into (C >/ H)∗ produces an embedding Cn ↪→ (C∗)n as left
C∗-modules; in fact Cn ↪→ Rat(C∗C∗)n.

The coradical C0 of C is the sum of all simple subcoalgebras of C, so
it can be written as a sum of minimal right coideals, as well as a sum of
minimal left coideals. Write C0 = ⊕j∈JTj = ⊕i∈ISi, where the Tj ’s are
simple right C-comodules, and the Si’s are simple left C-comodules. Each
isomorphism type occurs finitely many times among the Tj ’s (since isomor-
phic minimal right coideals occur only from the same simple subcoalgebra
in a representation of C0 as a direct sum of simple subcoalgebras). We have
that

C = ⊕j∈JE(Tj) = ⊕i∈IE(Si),

where E(X) denotes an injective envelope of the right (left) coideal X inside
C. By (1), C is left quasi-co-Frobenius, so it is also left semiperfect, showing
that each E(Tj) is finite dimensional. Moreover, by [1, Proposition 1.3]

Rat(C∗C∗) ⊂ ⊕j∈JE(Tj)
∗ ⊂ Rat(C∗

C∗) ⊂ ⊕∈IE(Si)
∗ ⊂ C∗.

Since Cn ↪→ Rat(C∗C∗)n as left C∗-modules, and we obtain that

⊕j∈JE(Tj)
n = Cn ↪→ ⊕∈I(E(Si)

∗)n

as left C∗-modules. Note that since E(Tj) is finite dimensional and injective
as a right C-comodule, it is also injective as a left C∗-module.

Let Tj1 , . . . , Tjh be all the Tj ’s isomorphic to a certain simple right C-
comodule. Then E(Tj1)

n⊕ . . .⊕E(Tjh)
n is an injective left C∗-module, and

it embeds into ⊕i∈I(E(Si)
∗)n, so

E(Tj1)
n ⊕ . . .⊕ E(Tjh)

n ⊕X = ⊕i∈I(E(Si)
∗)n

for some left C∗-module X. By [4, Lemma 1.4] (see also [1, Proposition 1.5]),
the endomorphism ring of the left C∗-module E(Si)

∗ is local (thus E(Si)
∗

is indecomposable). By a lemma used in the proof of Azumaya theorem, we
find distinct i1, . . . , ih ∈ I such that E(Siv)

∗ ' E(Tjv) for any 1 ≤ v ≤ h.
Then each E(Siv) has finite dimension and Si1 , . . . , Sih are isomorphic, since
E(Siv) ' E(Tjv)

∗, so Siv is the socle of E(Tjv)
∗. We obtain that

(2.1) E(Tj1)⊕ . . .⊕ E(Tj1) ' E(Si1)
∗ ⊕ . . .⊕ E(Sih)

∗

and either side lies inside Rat(C∗C∗). If we write the relation (2.1) for each
isomorphism type of simple right C-comodule, and note that if Tj is not
isomorphic to Tj′ , E(Tj) ' E(Si)

∗ and E(Tj′) ' E(Si′)
∗, we cannot have

Si ' Si′ , we obtain by taking the direct sum of all these relations that
C = ⊕j∈JE(Tj) ↪→ Rat(C∗C∗), showing that C is left co-Frobenius.

Conversely, if C is left co-Frobenius, then so is M c(n,C) =M c(n, k)⊗C.
Using as in (1) the duality theorem and the implication proved above, we
get that C >/ H is left co-Frobenius.

Remark 2.1. The transfer of semiperfectness between a comodule coalgebra
and the smash coproduct was discussed in [1, Theorem 4.8 and Proposition
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4.10], where it was showed that if C is a left comodule coalgebra over the
finite dimensional Hopf algebra H, then C >/ H is left semiperfect if and
only if so is C.

3. Hopf superalgebras with integrals

Consider the category MkZ2 of right comodules over the group Hopf al-
gebra kZ2, which is exactly the category of Z2-graded vector spaces. This
is a monoidal category with the usual tensor product of Z2-graded vector
spaces, and moreover, it is braided with the braiding cV,W : V ⊗W →W⊗V
defined by cV,W (v ⊗ w) = (−1)|v|·|w|w ⊗ v for any Z2-graded vector spaces
V and W , and any homogeneous elements v ∈ V , w ∈ W ; here |v| denotes
the degree of the homogeneous element v.

A Hopf superalgebra is a Hopf algebra in the braided category MkZ2 , i.e.,
it is a Z2-graded vector space A which is the same time a Z2-graded algebra
and a Z2-graded coalgebra, such that the comultiplication ∆ and the counit
ε satisfy the relations

∆(ab) =
∑

(−1)|a2|·|b1|a1b1 ⊗ a2b2

ε(ab) = ε(a)ε(b)

for any homogeneous a, b ∈ A; we consider representations of ∆(a) =
∑
a1⊗

a2 with homogeneous a1’s and a2’s.
The following hold for the antipode S of A

(3.1) S(ba) = (−1)|a|·|b|S(a)S(b)

(3.2) ∆(S(a)) =
∑

(−1)|a1|·|a2|S(a2)⊗ S(a1)

for any homogeneous elements a, b ∈ A.
A left integral on a Hopf superalgebra A is an element t ∈ A∗ such that∑
t(a2)a1 = T (a)1 for any a ∈ A. It is proved in [6, Theorem 1] that the

dimension of the space of left integrals on A is at most 1, and if it is 1, the
space of left integrals is spanned by a homogeneous element of A∗.

If A is a Hopf superalgebra, then the right kZ2-coaction on A induces a
left action of the dual Hopf algebra (kZ2)

∗. Let p0̂, p1̂ be the basis of (kZ2)
∗

dual to the basis 0̂, 1̂ of kZ2. As k has characteristic 6= 2, it contains a
primitive root of unity of order 2, so there is a Hopf algebra isomorphism
(kZ2)

∗ ' kZ2, which takes p0̂ to 1
2(0̂ + 1̂) (regarded as a sum of grouplike

elements, not as a sum in Z2), and p1̂ to 1
2(0̂− 1̂). Hence kZ2 acts from the

left, as well from the right as it is commutative, on A. This right action
works as follows: if a = a0̂ + a1̂ ∈ A, then a · 0̂ = a and a · 1̂ = a0̂ − a1̂.

With these structures, A is a Hopf algebra in the category of (right)
Yetter-Drinfeld modules over kZ2, and then we can consider its bosoniza-
tion A >/ kZ2, which is a regular Hopf algebra with comultiplication given
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by the smash coproduct and multiplication given by the smash product.

At this point we explain that a fundamental theorem of Hopf modules
holds in the braided category MkZ2 . If A is a Hopf superalgebra, an A-Hopf
supermodule is a Z2-graded vector space which is a right A-module and a
right A-comodule such that∑

(ma)(0) ⊗ (ma)(1) =
∑

(−1)|m(1)|·|a1|m(0)a1 ⊗m(1)a2

for any homogeneous m ∈ M , a ∈ A; here m 7→
∑
m(0) ⊗m(1) denotes the

A-coaction on M . We denote M coA = {m ∈ M |
∑
m(0) ⊗m(1) = m ⊗ 1},

the subspace of A-coinvariants of M . By an adaptation of the proof of the
fundamental theorem of Hopf modules in the usual Hopf algebra case, using
equations (3.1), (3.2), we obtain the following.

Proposition 3.1. LetM be an A-Hopf supermodule. Then ϕ :M coA⊗A→
M defined by ϕ(m⊗ a) = ma, is an isomorphism of A-Hopf supermodules.

Proof. Let g :M →M be defined by g(m) =
∑
m(0)S(m(1)). Then∑

g(m)(0) ⊗ g(m)(1) =
∑

(−1)|m(0)(1)|·|S(m(1))1|m(0)(0)S(m(1))1

⊗m(0)(1)S(m(1))2

=
∑

(−1)|m(1)|·|S(m(2)2)|(−1)|m(2)1|·|m(2)2|m(0)S(m(2)2)

⊗m(1)S(m(2)1)

=
∑

(−1)|m(1)|·|m(3)|(−1)|m(2)|·|m(3)|m(0)S(m(3))

⊗m(1)S(m(2))

=
∑

(−1)(|m(1)|+|m(2)|)·|m(3)|m(0)S(m(3))

⊗m(1)S(m(2))

= (−1)|m(1)|·|m(2)|m(0)S(m(2))⊗ ε(m(1))1

=
∑

m(0)S(m(2))ε(m(1))⊗ 1

= m(0)S(m(1))⊗ 1

= g(m)⊗ 1

which shows that g(m) ∈ M coA. Then we can define ψ : M → M coA ⊗ A
by ψ(m) =

∑
g(m(0) ⊗m(1), and as for usual Hopf algebras one shows that

φ and ψ are inverse each other. □

Following the same approach as for Hopf algebras, we have the following
after direct, but tedious computations.

Proposition 3.2. Let A be a Hopf superalgebra. The following assertions
hold.



FINITENESS CONDITIONS FOR HOPF SUPERALGEBRAS 7

(i) The rational part Rat(A∗A∗) of the left A∗-module A∗ is a right A-
comodule. Moreover, Rat(A∗A∗)coA is the space of left integrals on A.
(ii) A∗ is a right A-module with action given by

a∗ ↽ a = (−1)|a
∗|·|a|(S(a)⇀ a∗),

for any homogeneous elements a ∈ A, a∗ ∈ A∗, where ⇀ denotes the usual
left A-action on A∗.
(iii) Rat(A∗A∗) is a submodule of the right A-module A∗ in (ii).
(iv) Rat(A∗A∗) is an A-Hopf supermodule with the coaction of (i) and action
of (iii).

Corollary 3.3. Let A be a Hopf superalgebra. Then there exist non-zero
left integrals on A if and only if Rat(A∗A∗) 6= 0.

Proof. It follows from Proposition 3.2 and Proposition 3.1. □

Now we are in the position to prove Theorem A. For reasons which will
be clear when we develop the proof, it is useful to rewrite the statement in
a more complete way as follows.

Theorem 3.4. Let A be a Hopf superalgebra. Then the following are equiv-
alent.
(i) A has non-zero left integrals.
(ii) A is left co-Frobenius as a coalgebra.
(iii) A is left quasi-co-Frobenius as a coalgebra.
(iv) A is a left semiperfect coalgebra.
(i’) A has non-zero right integrals.
(ii’) A is right co-Frobenius as a coalgebra.
(iii’) A is right quasi-co-Frobenius as a coalgebra.
(iv’) A is a right semiperfect coalgebra.

Proof. We first recall that if A is a usual Hopf algebra, the assertions in the
theorem are equivalent by the Lin-Larson-Sweedler-Sullivan Theorem, see
[2, Theorem 5.3.2].
(i)⇒(ii) If there is a non-zero left integral on A, it is showed in the proof
of [6, Theorem 1] that the bosonization A >/ kZ2 of A has a non-zero left
integral, so then it is left co-Frobenius. Then A is left co-Frobenius by
Theorem B.
(ii)⇒(iii) and (iii)⇒(iv) are clear.
(iv)⇒(i’) If A is left semiperfect, then A∗rat

r 6= 0, so by the right hand side
of Corollary 3.3 there are non-zero right integrals on A.
(i’)⇒(ii’)⇒(iii’)⇒(iv’) similar to (i)⇒(ii)⇒(iii)⇒(iv).
(iv’)⇒(i) similar to (iv)⇒(i’). □
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