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1. Introduction

If (ϕ, ξ, η, g) is an almost contact metric structure on a smooth man-
ifold M , then a conformal change of the metric g leads to a new met-
ric which is no longer compatible with the almost contact structure
(ϕ, ξ, η). As shown in [33], this incompatibility can be corrected by
conveniently changing ξ and η. This motivated the introduction of
conformal changes of an almost contact metric structure by Vaisman
[33] and subsequently the study of such conformal changes become a
fervent topic. In particular, the question of elucidating geometry of
almost contact metric manifolds which are locally conformal to almost
cosymplectic manifolds has been investigated by various authors (see,
e.g., [6, 7, 11, 20, 22, 23, 27, 28]).
On the other hand, the study of harmonic maps between Riemannian

manifolds is a topic of high interest due to their applications in various
fields of science, including theoretical physics, computational physics,
chemistry, fluid mechanics and computer graphics. As pointed out in
[15], covering all these aspects is difficult to achieve even in an entire
book. There is an abundant literature regarding the harmonic maps
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between manifolds equipped with almost contact structures and com-
patible metrics, but the case of locally conformal almost cosymplectic
manifolds was not tackled mainly due to the difficulty in using the ten-
sorial equations that governs the geometry of such spaces in applying
any criterion for the study of harmonicity. The aim of the present work
is to fill this gap.
In the first part of the article, we derive the conditions under which

the holomorphy of a map from a locally conformal almost cosymplectic
manifold onto a cosymplectic manifold implies the harmonicity. Then
we investigate a natural problem, namely under what conditions a har-
monic map becomes pluriharmonic. In particular, we obtain obstruc-
tions to the existence of non-constant pluriharmonic maps. In the last
part of the article, we find conditions under which the identity map of a
normal locally conformal cosymplectic manifold of pointwise constant
ϕ-holomorphic sectional curvature is stable, respectively unstable.

2. Preliminaries

2.1. Manifolds equipped with almost contact metric structures.
Suppose M is an almost contact metric manifold of dimension (2n+1)
equipped with the almost contact metric structure (ϕ, ξ, η, g). Then it
is known that ϕ is a (1, 1)-tensor field, ξ is a vector field and η is a
1-form on M , satisfying [2]

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, ϕξ = η ◦ ϕ = 0

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )(1)

η(X) = g(X, ξ)

for any vector fields X, Y on M , where g denotes the Riemannian
metric onM and I stands for the identity endomorphism on the tangent
bundle TM . It is clear that the tangent bundle of any almost contact
metric manifold splits as the orthogonal sum TM = D ⊕ Span{ξ},
where D = Kerη is called the contact distribution.
Let us denote by Φ the fundamental 2-form of the almost contact

metric manifold M . This 2-form is given by

Φ(X, Y ) = g(φX, Y ),

for any vector fields X, Y on M . Then M(ϕ, ξ, η, g) is said to be an
almost cosymplectic manifold if η and Φ are both closed forms. If an
almost cosymplectic manifold is normal, i.e. [ϕ, ϕ]+2ξ⊗dη = 0 (where
[ϕ, ϕ] is the Nijenhuis torsion of ϕ defined by

[ϕ, ϕ](X, Y ) = [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + ϕ2[X, Y ],
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for any vector fields X, Y on M), then M(ϕ, ξ, η, g) is said to be a
cosymplectic manifold. It is known that a necessary and sufficient con-
dition for an almost contact metric manifold to be cosymplectic is that
the Levi-Civita connection ∇ of the metric g satisfy [2]

(2) ∇ϕ = 0.

It is known that any cosymplectic manifold is locally a product man-
ifold of a Kähler manifold and R. Moreover, we note that the product
manifold of an almost Kähler manifold and R provides the simplest ex-
ample of almost cosymplectic manifold, but there exist almost cosym-
plectic manifolds which are not such product manifolds (for various
examples see [3, 25, 26]).
An almost contact metric manifold M endowed with the almost con-

tact metric structure (ϕ, ξ, η, g) is said to be a locally conformal (al-
most) cosymplectic manifold if there exists an open covering {Uα} of
M equipped with differentiable functions σα : Uα → R such that the
almost contact metric structure (ϕα, ξα, ηα, gα) defined on each Uα by

ϕα = ϕ, ξα = eσαξ, ηα = e−σαη, gα = e−2σαg,

is (almost) cosymplectic (see [27]). We recall that the above concept
was originally introduced and investigated by Vaisman [33], who ob-
tained the following characterization of locally conformal almost cosym-
plectic manifolds.

Theorem 2.1. [33] An almost contact metric manifold M with the
almost contact metric structure (ϕ, ξ, η, g) is locally conformal almost
cosymplectic manifold if and only if there exists a 1-form ω on M such
that

(3) dΦ = 2ω ∧ Φ, dη = ω ∧ η, dω = 0.

Note that if the 1-form ω satisfying (3) exists, then this 1-form is
unique. Hence, ω is a characteristic form of a locally conformal cosym-
plectic manifold, known as the Lee form of the locally conformal almost
cosymplectic manifold M(ϕ, ξ, η, g). Locally, ω is given by ω|Uα = dσα

(see [28]). Several examples of locally conformal almost cosymplectic
manifolds can be found in [7, 22, 27, 28]. At this point, we would
like to recall only a particular class of locally conformal cosymplectic
manifolds which are foliated by generalized Hopf manifolds [21]. For
such a manifold, which is called a PC-manifold, it was proved by Mar-
rero that the universal covering space is the product of a c-Sasakian
manifold with the 2-dimensional hyperbolic space. Recall that an al-
most contact metric manifold M(ϕ, ξ, η, g) is called c-Sasakian, where
c is a nonzero real number, if M is normal and dη = cΦ. Clearly,
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a 1-Sasakian manifold is nothing but a Sasakian manifold (for exam-
ples of Sasakian manifolds and Sasakian space forms see [2]). Note
that examples of c-Sasakian manifolds of constant ϕ-sectional curva-
ture can be constructed in a standard manner for any c ̸= 0. Actually,
if M(ϕ, ξ, η, g) is a Sasakian manifold of constant ϕ-sectional curvature
k, then M(ϕ′, ξ′, η′, g′) is a c-Sasakian manifold of constant ϕ-sectional
curvature kc2, usually denoted by M(c, kc2), where

ϕ′ = ϕ, ξ′ = cξ, η′ =
1

c
η, g′ =

1

c2
g.

Next we recall two results obtained by Olszak [27] that will help us
later.

Theorem 2.2. [27] An almost contact metric manifold M with the
almost contact metric structure (ϕ, ξ, η, g) is locally conformal cosym-
plectic manifold if and only if there exists a 1-form ω on M such that
dω = 0 and

(4) (∇Xϕ)Y = ω(ϕY )X − ω(Y )ϕX − g(X,ϕY )B + g(X, Y )ϕB,

for any vector fields X, Y on M , where B = ω# (here # signifies the
rising of the indices with respect to the metric g).

Note that B = ω# is called the Lee vector field of the locally con-
formal cosymplectic manifold M(ϕ, ξ, η, g), by analogy with the locally
conformal Kähler case [9].

Theorem 2.3. [27] Let M(ϕ, ξ, η, g) be an almost contact metric man-
ifold. Then the next assertions are equivalent.

(1) M(ϕ, ξ, η, g) is a normal locally conformal cosymplectic mani-
fold.

(2) M(ϕ, ξ, η, g) is a locally conformal cosymplectic manifold with
ω = fη.

(3) There exists a function f satisfying df ∧ η = 0 such that

(5) (∇Xϕ)Y = f [g(ϕX, Y )ξ − η(Y )ϕX],

for any vector fields X, Y on M .

We remark that the family of normal locally conformal cosymplectic
manifolds includes the class of α-Kenmotsu manifolds (for details on
the last mentioned class of manifolds see [17]). In fact, an α-Kenmotsu
manifold is an almost contact metric manifold characterized by the
equation (5) in the above theorem, with f = α, where α is a non-zero
constant. Note that a 1-Kenmotsu manifold is nothing but a Kenmotsu
manifold [19]. Motivated by the above facts and Theorem 2.3, a normal
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locally conformal cosymplectic manifold is also called an f -Kenmotsu
manifold. Nontrivial examples of such manifolds can be find in [28].

2.2. Harmonic maps and stability. The second fundamental form
αF of a smooth map F : (M, g) → (N, h) between two Riemannian
manifolds (M, g) and (N, h) is given by:

(6) αF (X, Y ) = ∇̃XF∗Y − F∗∇XY,

for any vector fields X, Y on M , where ∇ denotes the Riemannian

connection on M and ∇̃ is the pullback of the Riemannian connection
∇′ on N to the induced vector bundle F−1(TN), that is,

(7) ∇̃XF∗Y = ∇′
F∗XF∗Y.

The tension field τ(F ) of the map F is defined as the trace of the second
fundamental form αF :

(8) τ(F )p =
m∑
i=1

αF (ei, ei),

where {e1, e2, ..., em} is a local orthonormal frame of TpM , p ∈ M .
If the Riemannian manifold (M, g) is compact, then the energy of

the map F : (M, g) → (N, h) is defined as

E(F ) =

∫
M

e(F )ϑg,

where ϑg denotes the canonical measure associated with the Riemann-
ian metric g and

e(F )p =
1

2
Traceg(F

∗h)p, ∀p ∈ M.

Recall that the smooth map F : (M, g) → (N, h) is called harmonic
if F is a critical point of E . The following criterion for the study of
harmonicity is extremely useful: F : (M, g) → (N, h) is a harmonic
map if and only if τ(F ) vanishes at each point p ∈ M (see [10]). The
identity map on a compact Riemannian space is one of the simplest
example of harmonic maps. For other examples, see [12, 18, 31, 32, 34]
Let us consider now a smooth two-parameter variation {Fs,t}s,t∈(−ϵ,ϵ)

of a harmonic map F such that F0,0 = F and let V,W ∈ Γ(f−1(TN)) be
the corresponding variational vector fields, i.e. V = ∂

∂s
(Fs,t)|(s,t)=(0,0),

W = ∂
∂t
(Fs,t)|(s,t)=(0,0). Recall that the Hessian of F is given by:

HessF (V,W ) =
∂2

∂s∂t
(E(Fs,t))|(s,t)=(0,0),
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while the index IF of F is defined as the dimension of the largest sub-
space of Γ(F−1(TN)) on which HessF is negative definite. A harmonic
map F is called stable if IF = 0; otherwise, F is called unstable. The
following formula, known as the second variation formula, was obtained
by Mazet and Smith (see [24, 30]):

(9) HessF (V,W ) =

∫
M

h(JF (V ),W )ϑg,

where JF stands for the Jacobi operator of the map F (see also [1]).
Recall that JF is a differential operator on the space of variation vector
fields along F , defined as

JF (V ) = −
m∑
i=1

(∇̃ei∇̃ei − ∇̃∇eiei
)V −

m∑
i=1

RN(V, F∗ei)F∗ei,

for any section V of F−1(TN), where RN is the curvature tensor of
(N, h) and {e1, . . . , em} is a local orthonormal frame on M . Note that
the operator given by

∆̄FV = −
m∑
i=1

(∇̃ei∇̃ei − ∇̃∇eiei
)V

is known as the rough Laplacian. Therefore, it is obvious that the
Jacobi operator of the map F can be expressed as

JF (V ) = ∆̄FV −
m∑
i=1

RN(V, F∗ei)F∗ei.

3. Harmonicity and pluriharmoncity of holomorphic maps
from locally conformal almost cosymplectic

manifolds

Let F : M → N be a smooth map between two almost contact metric
manifolds M(ϕ1, ξ1, η1, g) and N(ϕ2, ξ2, η2, h). Then F is said to be a
(ϕ1, ϕ2)-holomorphic map if F∗ ◦ϕ1 = ϕ2 ◦ ◦F∗ (cf. [5]). Particular and
important examples of such maps are provided by the almost contact
metric submersions [8, 12]. In particular, several examples of such
submersions were constructed in [4, Section 5].
Another example of (ϕ1, ϕ2)-holomorphic map can be obtained as

follows. Let M be a manifold equipped with an almost contact struc-
ture (ϕ1, ξ1, η1, g) and let N be an invariant submanifold of M (that is,
ϕ1(TpN) ⊂ TpN , for any p ∈ N), tangent to ξ1. Suppose i : M → N
is the inclusion map. Then taking the restriction of (ϕ1, ξ1, η1, g) to N
we obtain an almost contact structure (ϕ2, ξ2, η2, h) on N , and i is a
(ϕ1, ϕ2)-holomorphic map.
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Note that several examples of (ϕ1, ϕ2)-holomorphic maps that are not
Riemannian submersions can be found in [8, Section 3]. In particular,
we have that the map π : S2n+1(c, k)×H2

c → CP n(k+3c2)×R, defined
by

π(x, (u, v)) = (π̄(x), v), x ∈ S2n+1(c, k), (u, v) ∈ H2
c ,

where π̄ is the Hopf fibration of the c-Sasakian manifold S2n+1(c, k)
onto the n-dimensional complex projective space CP n(k+3c2) of posi-
tive holomorphic sectional curvature k+3c2 andH2

c is the 2-dimensional
hyperbolic space (i.e. the space of 2-tuples of real numbers (u, v)
equipped with the Riemannian metric du2 + e−2cudv2, where c is a
positive constant), is a (ϕ1, ϕ2)-holomorphic map.

Proposition 3.1. Let F : M → N be a (ϕ1, ϕ2)-holomorphic map from
a locally conformal almost cosymplectic manifold M(ϕ1, ξ1, η1, g) to a
cosymplectic manifold N(ϕ2, ξ2, η2, h). Then the map F is harmonic
if and only if B = ω# belongs to the kernel of F∗, where ω is the
characteristic vector field of M .

Proof. Using (6) and (7) we obtain

ϕ2(αF (X, Y )) + (∇̃Xϕ2)(F∗Y ) = ϕ2(∇̃XF∗Y − F∗∇XY )

+∇̃Xϕ2F∗Y − ϕ2∇̃XF∗Y

= −ϕ2F∗∇XY +∇′
F∗Xϕ2F∗Y,

for any vector fields X, Y and M .
Taking now into account that F is a (ϕ1, ϕ2)-holomorphic, the above

equation implies

(10) ϕ2(αF (X, Y )) + (∇̃Xϕ2)(F∗Y ) = ∇′
F∗XF∗ϕ1Y − F∗ϕ1∇XY.

On the other hand, using again (6), (7) and the (ϕ1, ϕ2)-holomorphicity
property of F , it is easy to check that

(11) F∗ ((∇Xϕ1)Y ) + αF (X,ϕ1Y ) = ∇′
F∗XF∗ϕ1Y − F∗ϕ1∇XY.

From (10) and (11), we deduce

(12) ϕ2(αF (X, Y )) + (∇̃Xϕ2)(F∗Y ) = F∗ ((∇Xϕ1)Y ) + αF (X,ϕ1Y ).

Now, we consider an adapted orthonormal frame on M :

{E1, . . . , En, En+1 = ϕ1E1, . . . , E2n = ϕ1En, E2n+1 = ξ1}.

ReplacingX = Y = Ei in (12) and using (7) and the fact that∇′ϕ2 = 0
(asN(ϕ2, ξ2, η2, h) is a cosymplectic manifold), we derive after summing
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up over i = 1, . . . , 2n+ 1 that

(13) ϕ2(τF ) = F∗ (divϕ1) +
2n+1∑
i=1

αF (Ei, ϕ1Ei).

But the last sum in (13) can be computed as follows, taking into
account that En+i = ϕ1Ei (i = 1, . . . , n), E2n+1 = ξ1 and using (1):

2n+1∑
i=1

αF (Ei, ϕ1Ei) =
n∑

i=1

αF (Ei, ϕ1Ei) +
n∑

i=1

αF (ϕ1Ei, ϕ
2
1Ei) + αF (ξ1, ϕ1ξ1)

=
n∑

i=1

αF (ϕ1Ei, η1(Ei)ξ1).

It is now easy to see that, in view of (1), we have

η1(Ei) = g(Ei, ξ1) = 0, i = 1, . . . , n

and therefore (13) reduces to

(14) ϕ2(τF ) = F∗ (divϕ1) .

Using now the fact that M(ϕ1, ξ1, η1, g) is a locally conformal cosym-
plectic manifold, we can state easily from (4) that

(15) (∇Ei
ϕ1)Ei = ω(En+i)Ei − ω(Ei)En+i + ϕ1B, i = 1, . . . , n,

(16) (∇En+i
ϕ1)En+i = −ω(Ei)En+i + ω(En+i)Ei + ϕ1B, i = 1, . . . , n

and

(17) (∇E2n+1ϕ1)E2n+1 = ϕ1B.

Using (15), (16) and (17), we get

divϕ1 =
2n+1∑
i=1

(∇Ei
ϕ1)Ei

=
n∑

i=1

[
(∇Ei

ϕ1)Ei + (∇En+i
ϕ1)En+i

]
+ (∇ξ1ϕ1)ξ1

= (2n+ 1)ϕ1B + 2
n∑

i=1

[ω(En+i)Ei − ω(Ei)En+i]
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and since B = ω#, in view of (1) we derive

divϕ1 = (2n+ 1)ϕ1B + 2
n∑

i=1

[g(B,En+i)Ei − g(B,Ei)En+i]

= (2n+ 1)ϕ1B + 2
n∑

i=1

[g(B, ϕ1Ei)Ei − g(B,Ei)ϕ1Ei]

= (2n+ 1)ϕ1B − 2
n∑

i=1

[g(ϕ1B,Ei)Ei + g(ϕ1B, ϕ1Ei)ϕ1Ei]

= (2n+ 1)ϕ1B − 2ϕ1B

= (2n− 1)ϕ1B.

Finally, from the last equation and (14), we obtain that

ϕ2(τF ) = (2n− 1)F∗ (ϕ1B)

and using again the (ϕ1, ϕ2)-holomorphicity property of F , we derive

(18) ϕ2(τF ) = (2n− 1)ϕ2F∗B.

Consequently, we have form (18) that the map F is harmonic if and
only if F∗B = 0 and as B = ω# we arrive at the desired conclusion. □

Remark 3.2. Proposition 3.1 is the counterpart of [13, Proposition 4.1]
in the contact geometry.

Remark 3.3. Proposition 3.1 provides us a criterion to decide when
a (ϕ1, ϕ2)-holomorphic map is harmonic. Applying this criterion, we
derive that the locally conformal cosymplectic submersions investigated
in [8, Section 2] cannot be harmonic, due to the fact that for such
submersions B = ω# is an horizontal vector field.

A smooth map F : M → N between two almost contact metric
manifolds M(ϕ1, ξ1, η1, g) and N(ϕ2, ξ2, η2, h) is called Φ-pluriharmonic
if the second fundamental form αF of F satisfies

(19) αF (X, Y ) + αF (ϕ1X,ϕ1Y ) = 0,

for any vector fields X, Y on M (see [16]). Furthermore, F is called
D1-pluriharmonic if (19) is valid only for X, Y ∈ Γ(D∞), where D1 is
the contact distribution on M . Obviously, any Φ-pluriharmonic map
is D1-pluriharmonic.

Remark 3.4. It is easy to check that any ϕ1-pluriharmonic map F :
M → N between two almost contact metric manifolds M(ϕ1, ξ1, η1, g)
and N(ϕ2, ξ2, η2, h) is harmonic. In order to prove this, let us consider
{E1, . . . , En, En+1 = ϕ1E1, . . . , E2n = ϕ1En, E2n+1 = ξ1} be an adapted



10 C. GHERGHE, G.-E. VÎLCU

orthonormal frame on M . Then by replacing X = Y = Ei in (19) for
i = 1, . . . , n, we get

(20) αF (Ei, Ei) + αF (ϕ1Ei, ϕ1Ei) = 0.

On the other hand, if we replace X = Y = E2n+1 in (19), in view of
(1) we obtain

(21) αF (ξ1, ξ1) = 0.

Therefore, using (8), (20) and (21), we derive immediately that τ(F )
vanishes on M . Consequently, F is harmonic. Now, it is natural to
investigate under what conditions a harmonic map is ϕ1-pluriharmonic.
At this point, we are able to prove the next result concerning ϕ1-
pluriharmonicity of (ϕ1, ϕ2)-holomorphic maps.

Proposition 3.5. Assume F : M → N is a (ϕ1, ϕ2)-holomorphic
map from a locally conformal cosymplectic manifold M(ϕ1, ξ1, η1, g) to
a cosymplectic manifold N(ϕ2, ξ2, η2, h) such that B belongs to the con-
tact distribution D1 = Kerη1. If F is a ϕ1-pluriharmonic map, then
F∗|Kerη1=0.

Proof. From (12), using (7) and taking into account that M is locally
conformal cosymplectic and N is cosymplectic, we obtain in view of
Theorem 2.2:

ϕ2(αF (X, Y )) = F∗ (ω(ϕ1Y )X − ω(Y )ϕ1X)

+F∗ (−g(X,ϕ1Y )B + g(X, Y )ϕ1B)

+αF (X,ϕ1Y ),(22)

for any vector fields X, Y on M . Replacing now (X, Y ) in (22) by
(ϕ1X,ϕ1Y ), where X, Y ∈ D1 = Kerη1, and using (1), we get

ϕ2(αF (ϕ1X,ϕ1Y )) = F∗ (−ω(Y )ϕ1X + ω(ϕ1Y )X)

+F∗ (g(ϕ1X, Y )B + g(X, Y )ϕ1B)

−αF (ϕ1X, Y ).(23)

Due to the symmetry of αF , by adding (22) and (23) we derive

ϕ2(αF (X, Y ) + αF (ϕ1X,ϕ1Y )) = F∗ (2g(X, Y )ϕ1B)

−F∗ (ω(Y )ϕ1X + ω(X)ϕ1Y )

+F∗ (ω(ϕ1Y )X + ω(ϕ1X)Y ) .(24)

Now, as F is ϕ1-pluriharmonic, it follows that F is harmonic and in
view of Proposition 3.1, we have that B = ω# ∈ KerF∗. Therefore,
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due to the (ϕ1, ϕ2)-holomorphicity of F , we obtain form (24) that

αF (X, Y ) + αF (ϕ1X,ϕ1Y ) = −F∗ (ω(Y )X + ω(X)Y )

−F∗ (ω(ϕ1Y )ϕ1X + ω(ϕ1X)ϕ1Y ) .(25)

Consequently, as F is ϕ1-pluriharmonic (and in particular harmonic),
we obtain from (25) taking Y = B and X ∈ D1 = Kerη1, X orthogonal
to B, that F∗X = 0. But, as we have B ∈ D1 and F∗B = 0, we
conclude that F∗|Kerη1=0. □

An immediate consequence of Proposition 3.5 is the following result
concerning the constancy of ϕ1-pluriharmonic maps.

Corollary 3.6. Let F : M → N be a (ϕ1, ϕ2)-holomorphic map from
a locally conformal almost cosymplectic manifold M(ϕ1, ξ1, η1, g) to a
cosymplectic manifold N(ϕ2, ξ2, η2, h) such that B belongs to the contact
distribution D1 = Kerη1. Then F is D1-pluriharmonic if and only if
F∗|D1=0. Moreover, if ξ1 ∈ KerF∗, then F is ϕ1-pluriharmonic if and
only if F is constant.

Remark 3.7. If M(ϕ1, ξ1, η1, g) is a PC-manifold, then it is known that
the Lee form ω satisfies ω(ξ1) = 0 (see [21]). But it is easy to see that
this implies B = ω# belongs to the contact distribution D1 = Kerη1.
Consequently, if we consider the PC-manifold M = R2n+1(c)×H2

c , we
deduce that the map π : M → Cm × R, defined by

π(x, (u, v)) = (π̄(x), v), x ∈ R2n+1(c), (u, v) ∈ H2
c ,

where π̄ is the canonical projection of the c-Sasakian manifold R2n+1(c)
onto them-dimensional flat Kählerian space Cm ≃ R2m (wherem ≤ n),
is a (ϕ1, ϕ2)-holomorphic map satisfying the hypotheses of Corollary
3.6. As π is not a constant map, in view of Corollary 3.6, we conclude
that π is not ϕ1-pluriharmonic.

4. Stability results for identity map of compact locally
conformal almost cosymplectic manifolds

Suppose M(ϕ, ξ, η, g) is an almost contact metric manifold. A 2-
plane Π of TpM , where p ∈ M , is said to be a ϕ-holomorphic plane
if Π is orthogonal to ξ and ϕ(Π) ⊂ Π. As usual, let us denote by
K(Π) the sectional curvature of Π. The manifold M(ϕ, ξ, η, g) is said
to be of pointwise constant ϕ-holomorphic sectional curvature if at any
point p of M , we have that K(Π) is independent on the choice of Π
as holomorphic plane in TpM . In this case, the function k defined by
k(p) = K(Π), is said to be the ϕ-holomorphic sectional curvature of
M .
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It was proved in [27] that a normal locally conformal cosymplectic
manifold with dimension ≥ 5 has pointwise constant ϕ-holomorphic
sectional curvature if and only if its Riemannian curvature tensor is

R(X, Y, Z,W ) =
k − 3f 2

4
[g(X,W )g(Y, Z)− g(X,Z)g(Y,W )]

+
k + f 2

4
[g(X,ϕW )g(Y, ϕZ)− g(X,ϕZ)g(Y, ϕW )

−2g(X,ϕY )g(Z, ϕW )]

−k + f 2 + 4f ′

4
[g(X,W )η(Y )η(Z)− g(X,Z)η(Y )η(W )

+g(Y, Z)η(X)η(W )− g(Y,W )η(X)η(Z)],(26)

where f is the function satisfying ω = fη, f ′ = ξf and k is the ϕ-
holomorphic sectional curvature of the manifold M (see [27, Theorem
5.3]).
A concrete example of such manifold can be obtained taking the

product of a complex space form N(c) of constant holomorphic sec-
tional curvature c and complex dimension ≥ 2, with the real line R.
Then it is known that M = N(c) × R admits a canonical cosymplec-
tic structure (ϕ, ξ, η, g) and transforming conformally this structure
through a function σ that depends only on s (the coordinate on R),
then one arrives at a normal locally conformal structure (ϕ′, ξ′, η′, g′)
of pointwise constant ϕ-holomorphic sectional curvature on M , given
by

ϕ′ = ϕ, ξ′ = e−σξ, η′ = eση, g′ = e2σg.

Note that if the function σ is periodic, then the above locally conformal
cosymplectic structure can be projected on M ′ = N(c) × S1. At this
point we would like to emphasize that although there exist examples of
normal locally conformal cosymplectic manifolds of pointwise constant
ϕ-holomorphic sectional curvature, it is an open problem to establish
the existence of non-normal examples [27].
In the following, we are interested in obtaining conditions under

which the identity map of a normal locally conformal cosymplectic
manifold M(ϕ, ξ, η, g) of pointwise constant ϕ-holomorphic sectional
curvature is stable, respectively unstable.

Theorem 4.1. Let M(ϕ, ξ, η, g) be a compact normal locally confor-
mal cosymplectic manifold of dimension 2n + 1 ≥ 5 and of pointwise
constant ϕ-holomorphic sectional curvature k. Suppose the following
conditions are satisfied:

(i) (n+ 1)k + (1− 3n)f 2 − 2f ′ ≥ 0;
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(ii) (n+ 1)(k + f 2) + 2(2n− 1)f ′ ≤ 0.

Then the identity map 1M is weakly stable.

Proof. Let {E1, . . . , En, En+1 = ϕE1, . . . , E2n = ϕEn, E2n+1 = ξ} be an
adapted orthonormal frame on M . Then using (26), we obtain for any
vector field V on M and i = 1, . . . , n that:

g(R(Ei, V )Ei, V ) =
k − 3f 2

4

[
g(V, V )− g2(Ei, V )

]
+
3(k + f 2)

4
g2(ϕV,Ei)−

(
k + f 2

4
+ f ′

)
η2(V ),(27)

and

g(R(ϕEi, V )ϕEi, V ) =
k − 3f 2

4

[
g(V, V )− g2(ϕEi, V )

]
+
3(k + f 2)

4
g2(ϕV, ϕEi)−

(
k + f 2

4
+ f ′

)
η2(V ).(28)

Also, we derive

g(R(E2n+1, V )E2n+1, V ) = −
(
f 2 + f ′) [g(V, V )− η2(V )

]
.(29)

Using now (27), (28) and (29), we obtain

2n+1∑
i=1

g(R(Ei, V )Ei, V ) =

[
(n+ 1)k − (3n− 1)f 2

2
− f ′

]
g(V, V )−

−
[
(n+ 1)(k + f 2)

2
+ (2n− 1)f ′

]
η2(V ).(30)

Now, the second variation formula and (30) imply

Hess1M (V, V ) =

∫
M

h(∇̃V, ∇̃V )ϑg

+

∫
M

[
(n+ 1)k − (3n− 1)f 2

2
− f ′

]
g(V, V )ϑg

−
∫
M

[
(n+ 1)(k + f 2)

2
+ (2n− 1)f ′

]
η2(V )ϑg.(31)

Therefore, we conclude from (31) that the identity map 1M is weakly
stable, provided that both conditions (i) and (ii) are satisfied. □

Theorem 4.2. Let M(ϕ, ξ, η, g) be a compact normal locally confor-
mal cosymplectic manifold of dimension 2n + 1 ≥ 5 and of pointwise
constant ϕ-holomorphic sectional curvature k. Suppose the following
conditions are satisfied:
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(i’) The first eigenvalue λ1 of the Laplacian ∆g acting on C∞(M)
satisfies the inequality:

(n+ 1)k − (3n− 1)f 2 − 2f ′ − λ1 ≥ 0;

(ii’) (n+ 1)(k + f 2) + 2(2n− 1)f ′ ≥ 0.

Then the identity map 1M is unstable.

Proof. Using Weitzenbock formula on M×R, we derive that the Lapla-
cian ∆1 of (M × R)-valued 1-forms is given by(see [14, 29]):

∆1V = ∆̄V +
2n+1∑
i=1

R(V,Ei)Ei,

where {E1, . . . , En, En+1 = ϕE1, . . . , E2n = ϕEn, E2n+1 = ξ} is an
adapted orthonormal frame onM and ∆̄ is the rough Laplacian. There-
fore, in view of the above equation, we obtain from the second variation
formula that the Hessian of the identity map 1M : M → M is

Hess1M (V, V ) =

∫
M

g(∆1V, V )ϑg − 2
2n+1∑
i=1

∫
M

g(R(V,Ei)Ei, V )ϑg.

Consequently, if λ1 is the first eigenvalue of the Laplacian ∆g and
f is a nonconstant corresponding eigenfunction, due to the fact that
∆1df = d∆gf = λ1df , we derive easily that

Hess1M (V, V ) =

∫
M

[
λ1 + (n− 1)k − (3n− 1)f 2 − 2f ′] g(V, V )ϑg

−
∫
M

[
(n+ 1)(k + f 2) + 2(2n− 1)f ′] η2(V )ϑg,

for V = gradf . From the above equation, we deduce immediately that
Hess1M (V, V ) ≤ 0, provided that conditions (i’) and (ii’) are satisfied.
Hence, the identity map 1M is unstable if (i’) and (ii’) are both valid.

□

Remark 4.3. It is easy to see that (28), (29) and (30) imply that the
Ricci tensor Ric on M satisfies

Ric(X,X) =

[
f ′ − (n+ 1)k − (3n− 1)f 2

2

]
g(X,X)

+

[
(n+ 1)(k + f 2)

2
+ (2n− 1)f ′

]
η2(X),(32)

for any vector field X on M . Replacing X by X + Y in (32) and using
the symmetry of Ric, we derive immediately that the Ricci tensor can
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be expressed as

Ric(X, Y ) =

[
f ′ − (n+ 1)k − (3n− 1)f 2

2

]
g(X, Y )

+

[
(n+ 1)(k + f 2)

2
+ (2n− 1)f ′

]
η(X)η(Y ),

for any vector fields X, Y on M . Therefore, we deduce that the Ricci
tensor on M satisfies

(33) Ric = αg + βη ⊗ η,

where α and β are scalar functions given by

(34) α = f ′ − (n+ 1)k − (3n− 1)f 2

2
and

(35) β =
(n+ 1)(k + f 2)

2
+ (2n− 1)f ′.

But this means that M(ϕ, ξ, η, g) is an η-Einstein manifold. Conse-
quently, we have that any normal locally conformal cosymplectic man-
ifold of dimension 2n+1 ≥ 5 and of pointwise constant ϕ-holomorphic
sectional curvature k is an η-Einstein manifold with scalar functions α
and β given by (34) and (35) (see also [27]). As an immediate conse-
quence of this remark, we can see that the hypotheses of Theorems 4.1
and 4.2, which at first glance seemed very technical, are related to these
scalar functions α and β. Moreover, having in mind these relations, we
can rewrite Theorems 4.1 and 4.2 in a much simpler form, as follows.

Theorem 4.4. Let M(ϕ, ξ, η, g) be a compact normal locally conformal
cosymplectic manifold of dimension ≥ 5 and of pointwise constant ϕ-
holomorphic sectional curvature. If the scalar functions α and β are
both nonpositive, then the identity map 1M is weakly stable.

Theorem 4.5. Let M(ϕ, ξ, η, g) be a compact normal locally conformal
cosymplectic manifold of dimension ≥ 5 and of pointwise constant ϕ-
holomorphic sectional curvature. If the scalar functions α and β are
such that α is bounded above by λ1

2
(where λ1 is the first eigenvalue of

the Laplacian ∆g acting on C∞(M)) and β is nonnegative, then the
identity map 1M is unstable.
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Cătălin GHERGHE
University of Bucharest, Faculty of Mathematics and Computer Sci-
ence, Academiei Str. 14, Bucharest 010014, Romania
E-mail: gherghe@fmi.unibuc.ro

Gabriel-Eduard VÎLCU
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