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Abstract

If H is a finite dimensional Hopf algebra acting on a finite dimensional algebra A, we investigate
the transfer of the Frobenius and symmetric properties through the algebra extensions AH ⊂
A ⊂ A#H.
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1. Introduction and preliminaries

Let H be a finite dimensional Hopf algebra over a field k, and let A be an algebra
on which H acts. In other words, A is a left H-module algebra, meaning that the
algebra A also has a structure of a left H-module (with the action of h ∈ H on
a ∈ A denoted by h ·a), such that h · (ab) =

∑
(h1 ·a)(h2 · b) and h · 1A = ε(h)1A

for any h ∈ H, a, b ∈ A; we use here the standard sigma notation for Hopf
algebras, and ε is the counit of H. Two algebras are associated with such an
action: the subalgebra AH of invariants, consisting of all elements a ∈ A such
that h · a = ε(h)a for any h ∈ H, and the smash product A#H, which is just
A⊗H as a vector space, with a⊗ h denoted by a#h, endowed with an algebra
structure with multiplication given by (a#h)(b#g) =

∑
a(h1 · b)#h2g.

AH is a subalgebra of A, and A embeds in A#H by a 7→ a#1. Thus we have
the algebra extensions AH ⊂ A ⊂ A#H. A general problem that can be posed
is to study the transfer of a certain property through these extensions. There are
several fundamental problems in Ring Theory and Representation Theory that
can be formulated in this way. Indeed, it is enough to mention the following
relevant examples of Hopf algebra actions; details on the first two can be found
in [11], while for the third one we refer to [2].
(1) A finite group G acting as automorphisms on an algebra A defines an action
of the group Hopf algebra kG on A. In this case AkG is just the subalgebra AG

of fixed elements, and the smash product A#kG is the skew group ring A ∗G.
(2) If A is an algebra, and G is a finite group with neutral element e, then a
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G-grading on A is just an action of (kG)∗, the dual Hopf algebra of kG, on A. In
this case, the associated subalgebra of invariants is just the homogeneous com-
ponent of degree e of A, and A#(kG)∗ is the well-known graded smash product.
(3) Let L be a finite dimensional restricted Lie algebra over a field of character-
istic p > 0. Then the restricted universal enveloping algebra u(L) has a Hopf
algebra structure, and an action of u(L) on an algebra A is just an action of L by
derivations on A, which is compatible with the p-operation of L. The subalgebra
Au(L) of invariants is just the subalgebra AL of constants with respect to the
action of L.

In this note we discuss the transfer of the Frobenius and symmetric properties
through these extensions. We recall that a finite dimensional k-algebra is called
Frobenius if A and its dual space A∗ are isomorphic as left (or equivalently right)
A-modules. If moreover, A and A∗ are isomorphic as A − A-bimodules, then
A is called a symmetric algebra. Frobenius algebras and symmetric algebras
have a rich representation theory, and they occur in representation theory of
groups, in quantum group theory, in the theory of compact oriented manifolds,
in topological quantum field theory, etc., see [9]. It was proved in [3], and with
a different approach in [7], that A is Frobenius if and only if so is A#H. We
give a new short proof of this result. We also give examples to show that except
the Frobenius property in the extension A ⊂ A#H, there is in general no other
transfer of Frobenius or symmetric properties through any of the extensions
AH ⊂ A, A ⊂ A#H and AH ⊂ A#H. However, under certain conditions, the
symmetric property transfers between AH and A#H.

We refer to [11] for notation and terminology about Hopf algebra actions. All
algebras we work with are over a field k.

2. Some transfer results

We first prove the following general result.

Proposition 2.1. Let B be a Frobenius algebra and A a subalgebra of B
such that the left A-module B and the right A-module B are free. Then A is a
Frobenius algebra.

Proof. We first note that the left A-module B and the right A-module B
have bases of the same finite cardinality. Indeed, dimkB = ndimkA, where n is
the number of elements of a basis of the left A-module B. Similarly, dimkB =
mdimkA, where m is the number of elements of a basis of the right A-module
B. It follows that m = n, thus B ≃ An as left A-modules, and also B ≃ An

as right A-modules. Since B is Frobenius, we have B ≃ B∗ as left B-modules,
so then also as left A-modules. Since B ≃ An as right A-modules, we get that
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B∗ ≃ (A∗)n as left A-modules. We obtain that An ≃ (A∗)n as left A-modules,
and using the Krull-Schmidt Theorem we obtain that A ≃ A∗ as left A-modules.
We conclude that A is a Frobenius algebra.

A first application is a very short proof of a result from [3].

Corollary 2.2. Let H be a finite dimensional Hopf algebra acting on the
finite dimensional algebra A. Then A is Frobenius if and only if so is A#H.

Proof. It is known that A#H is a free left A-module and a free right A-
module with bases of cardinality dim(H). Then by Proposition 2.1, if A#H is
Frobenius, then A is Frobenius.
On the other hand, if A is Frobenius, then so is Mn(A) ≃ A ⊗ Mn(k), since a
tensor product of Frobenius algebras is Frobenius. The dual Hopf algebra H∗

acts on A#H and the duality theorem says that (A#H)#H∗ ≃ Mn(A), see [11,
Corollary 9.4.7]. Thus (A#H)#H∗ is Frobenius, and then so is A#H.

We noticed that if A is Frobenius, then so is the matrix algebra Mn(A). Since
Mn(A) is a free as a left A-module, and also as a right A-module, the following
result, proved with a different method in [7], is an immediate consequence of
Proposition 2.1.

Corollary 2.3. Let A be a finite dimensional algebra and let n be a positive
integer. If Mn(A) is Frobenius, then so is A.

We recall that a Morita context connecting two rings R and S is a sextuple
(R,S,M,N, f, g) such that M is an R − S-bimodule, N is an S − R-bimodule,
f : M ⊗S N → R is an R − R-bimodule morphism, and g : N ⊗R M → S
is an S − S-bimodule morphism, such that f(m ⊗ n)m′ = mg(n ⊗ m′) and
g(n⊗m)n′ = nf(m⊗ n′) for any m,m′ ∈ M and n, n′ ∈ N .

Proposition 2.4. Let (R,S,M,N, f, g) be a Morita context connecting the
finite dimensional algebras R and S. If S is symmetric and f is surjective, then
R is also symmetric.

Proof. Since f is surjective, then M is a finitely generated projective right
S-module, and R ≃ End(MS), see [1, Exercise 5, page 266]. Then R is symmetric
by [10, Exercise 25, page 456].

Let H be a finite dimensional Hopf algebra acting on the algebra A. Let (ei)i
be a basis of H, and let (e∗i )i be the dual basis of H∗. The extension A/AH is
called H∗-Galois if the map

ρ : A⊗AH A → A⊗k H∗, ρ(a⊗ b) =
∑
i

a(ei · b)⊗ e∗i
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is bijective. Note that the definition of ρ does not depend on the choice of the
basis (ei)i. In the special case where H is the Hopf group algebra kG of a finite
group G, H∗-Galois extensions include classical Galois field extensions, as well
as Galois extensions in the case of finite groups acting on commutative rings.
If H = (kG)∗, G a finite group, thus A is a G-graded algebra, then A/Ae is
kG-Galois if and only if A is strongly graded.

We say that A has an element of trace 1 if there exists a ∈ A such that t·a = 1,
where t is a non-zero left integral in H. Note that (kG)∗-module algebras, i.e.
G-graded algebras, always have an element of trace 1.

If the finite dimensional Hopf algebra H acts on the algebra A, then by [11,
Theorem 4.5.3] there is a Morita context connecting the rings AH and A#H. In
the case where A/AH is H∗-Galois, the Morita map to A#H is surjective. If A
has an element of trace 1, then the other Morita map, to AH , is surjective. Now
we obtain directly from Proposition 2.4 the following two results.

Corollary 2.5. Let H be a finite dimensional Hopf algebra acting on the
finite dimensional algebra A such that A/AH is left H∗-Galois. If AH is sym-
metric, then so is A#H.

Corollary 2.6. Let H be a finite dimensional Hopf algebra acting on the
finite dimensional algebra A such that A has an element of trace 1. If A#H is
symmetric, then so is AH .

Examples of symmetric algebras with non-symmetric centers were given in
[8]. A positive result was proved in the same paper, by showing that a finite
dimensional G-graded division algebra is always symmetric, and if char k does
not divide |G|, then its center is a symmetric algebra. As another consequence
of Proposition 2.1, we have the following.

Corollary 2.7. Let A be a symmetric algebra which is a free module over
its center Cen(R). Then Cen(R) is a symmetric algebra.

3. Examples

We provide examples to show that for a general action, no transfer of Frobenius
or symmetric properties takes place between any pair of algebras among AH , A
and A#H, except the one indicated in Corollary 2.2. We will use an equivalent
characterization of Frobenius algebras: A is Frobenius if it has a hyperplane
which does not contain any non-zero left ideal, see [10, Theorem 3.15]. Also, A
is symmetric if and only if it has a hyperplane H which does not contain any
non-zero left ideal, and such that [A,A] ⊂ H see [10, Theorem 16.54]. Here
[A,A] is the subspace of A spanned by all commutators [a, b] = ab − ba, with
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a, b ∈ A. Obviously, for commutative algebras, the symmetric and the Frobenius
properties coincide.

Example 3.1. A Frobenius (symmetric) ; AH Frobenius (symmetric)
We provide two such examples.
(1) Let k be a field of characteristic 2. Let A be the k-algebra generated by
x, y with relations x2 = y2 = 0, xy = yx. A has a basis {1, x, y, xy}. Then A
is a Frobenius algebra, thus also symmetric, since A is commutative. Indeed,
the hyperplane < 1, x, y > of A does not contain non-zero ideals of A, see [10,
Example 3.15B].

Let σ be the algebra automorphism of A such that σ(x) = y and σ(y) = x.
Then σ has order 2, so it induces an action of the cyclic group C2 as automor-
phisms on A. The associated subalgebra of invariants is

AkC2 = Aσ = {α1 + βx+ βy + γxy | α, β, γ ∈ k} =< 1, x+ y, xy >

Denote p = x+ y and q = xy. Then Aσ is the algebra generated by p, q, subject
to relations p2 = q2 = pq = qp = 0 (here is where we need characteristic 2).

We claim that Aσ is not symmetric. Indeed, we first note that the one di-
mensional subspace spanned by an element of the form βp + γq is an ideal of
Aσ. If G is a hyperplane of Aσ, let {α11+β1p+ γ1q, α21+β2p+ γ2q} be a basis
of G. If α1 = 0 or α2 = 0, then G clearly contains a non-zero ideal. If α1 ̸= 0
and α2 ̸= 0, take a non-zero linear combination of the two basis elements, with
a zero coefficient for 1, and again obtain a non-zero ideal inside G. We conclude
that any hyperplane of Aσ contains a non-zero ideal, so Aσ is not symmetric.

The referee pointed out the following shorter and more conceptual proof of
the fact that Aσ is not symmetric. We see that Aσ is a local algebra with Loewy
length 2, and if it were Frobenius it would have simple socle. But Aσ has length
3 (= the dimension), so the socle has length (and dimension) 2.
(2) Let B be a finite dimensional algebra which is not Frobenius, and let A be
the trivial extension of B. More precisely, A = B ⊕ B∗, with multiplication
defined by (b, f)(b′, f ′) = (bb′, bf ′+fb′). Then A is a symmetric algebra, see [10,
Example 16.60]. On the other hand, if C2 =< c >= {e, c} is the cyclic group
of order 2, then A is a C2-graded algebra with the homogeneous components
Ae = B ⊕ 0 ≃ B, and Ac = 0 ⊕ B∗. Then A is a symmetric algebra on which
the Hopf algebra (kC2)

∗ acts, while A(kC2)
∗
= Ae is not even Frobenius.

Example 3.2. AH Frobenius (symmetric) ; A Frobenius (symmetric)
We first note that this is expected, since AH may be really small, even the field
itself (so almost trivially Frobenius), while A is not. We present two examples.
(1) Let A be the algebra of upper triangular n × n-matrices over k, where
n ≥ 2. Let G be a finite group with neutral element e, such that there exist
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g1, . . . , gn−1 ∈ G with the property that
∏

i≤p≤j gp ̸= e for any 1 ≤ i ≤ j ≤ n−1.
One can find such elements recurrently, by starting with a non-trivial g1, then
by choosing at step j some gj ∈ G \ {e} different from (gi . . . gj−1)

−1 for any
1 ≤ i ≤ j − 1. It is clear that such a choice is possible if G has enough elements
(for instance at least n elements). Define a G-grading on the algebra A, by
setting the matrix units e11, . . . , enn to be homogeneous of degree e, and eij to
be homogeneous of degree gi . . . gj−1 for any 1 ≤ i < j ≤ n. Then the homo-
geneous component of degree e of A is isomorphic to kn, which is semisimple,
thus symmetric. However, A is not Frobenius; see for example [6], where it is
proved that a structural matrix algebra over k is Frobenius only when it is a
product of diagonal blocks which are full matrix algebras. We conclude that
A is a left (kG)∗-module algebra, and A(kG)∗ = Ae is symmetric, while A is
not even Frobenius. Other examples can be obtained by taking A to be a more
complicated (non-semisimple) structural matrix algebra.

The simplest such example is A =

(
k k
0 k

)
with the C2 =< c >-graded

algebra structure

Ae =

(
k 0
0 k

)
, Ac =

(
0 k
0 0

)
.

(2) This example was given by the referee. Let k be a field of positive char-

acteristic p, and let A =

(
k k
0 k

)
, which is not Frobenius. The Jordan block

J =
(

1 1
0 1

)
determines an inner automorphism σ : A → A, σ(X) = J−1XJ

for any X ∈ A. We have σ(
(

a b
0 c

)
) =

(
a b + a − c
0 c

)
. Then σ has order p,

and thus it induces an action of the cyclic group Cp on A. The subalgebra of

invariants is ACp = {
(

a b
0 a

)
|a, b ∈ k}, which is isomorphic to k[X]/(X2), a

symmetric algebra.

Example 3.3. A symmetric ; A#H symmetric
Let H be a finite dimensional Hopf algebra acting on the finite dimensional
algebra A, such that A is symmetric, but AH is not symmetric; examples of such
actions are given in Example 3.1. Also assume that A has an element of trace
1. This condition is always satisfied in the case where H is semisimple. Then
[11, Lemma 4.3.4] shows that there exists an idempotent e ∈ A#H such that
e(A#H)e ≃ AH as algebras. Then A#H is not symmetric, otherwise e(A#H)e
is symmetric by [10, Exercise 25, page 456], and then so is AH , a contradiction.

Example 3.4. A#H symmetric ; A symmetric
Let H be a finite dimensional Hopf algebra acting on the finite dimensional
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algebra B, such that B is symmetric, but B#H is not symmetric; such examples
are given in Example 3.3. Then A = B#H is not symmetric, A is a left H∗-
module algebra, and A#H∗ = (B#H)#H∗ ≃ Mn(B) by the duality theorem.
Since B is symmetric, then so is Mn(B). Thus A#H∗ is symmetric.

Example 3.5. A#H Frobenius (symmetric) ; AH Frobenius (symmetric)
Let A and H = kC2 be as in Example 3.1 (1). We have seen that AH is not
Frobenius. We show that A#H = A ∗ C2 is symmetric.

We first compute [A ∗ C2, A ∗ C2]. If a, b ∈ A, then [ae, bσ] = (ab + σ(a)b)σ,
and a simple computation shows that [Ae,Aσ] =< (x + y)σ, xyσ >. On the
other hand, [aσ, bσ] = (aσ(b) + σ(a)b)e for any a, b ∈ A, so again we easily get
[Aσ,Aσ] =< (x+ y)e >. Clearly [Ae,Ae] = 0. We obtain that

[A ∗ C2, A ∗ C2] =< (x+ y)σ, xyσ, (x+ y)e >

Let H =< e, xe, ye > +Aσ, which is a hyperplane in A ∗C2. Clearly [A ∗C2, A ∗
C2] ⊂ H.

We show that H does not contain any non-zero left ideal of A ∗ C2. Indeed,
assume that (A∗C2)u ⊂ H for some u ∈ A∗C2. Write u as a linear combination of
the basis {e, xe, ye, xye, σ, xσ, yσ, xyσ}. Since u ∈ H, the coefficient of xye must
be zero. If the coefficient of e is non-zero, then since (xye)e = xye, and in (xye)u
the element xye can appear only from the multiplication (xye)e, we have that
the coefficient of xye in (xye)u is non-zero, thus (xye)u /∈ H, a contradiction.
Similarly, the relations

(ye)(xe) = xye, (xe)(ye) = xye, (xyσ)σ = xye,

(xσ)(xσ) = xye, (yσ)(yσ) = xye, σ(xyσ) = xye

show that the coefficients of xe, ye, σ, xσ, yσ, xyσ in u must be zero. These show
that u = 0.

We conclude that A ∗ C2 is symmetric.

Example 3.6. AH Frobenius (symmetric) ; A#H Frobenius (symmetric)
We take A and H as in Example 3.2. Then AH is symmetric, while A is not
Frobenius. Then A#H is not Frobenius either, by Corollary 2.2.

Regarding the Frobenius notion, another interesting question is whether the
extensions AH ⊂ A, A ⊂ A#H and AH ⊂ A#H are Frobenius extensions of
rings. We recall that a ring extension R ⊂ S is Frobenius if S is a finitely
generated projective left R-module and S ≃ HomR(S,R) as S − R-bimodules,
see [4] or [5] for details.

It is known that A ⊂ A#H is a Frobenius extension, see for instance [5,
Corollary 27].
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The extension AH ⊂ A is not Frobenius in general. Indeed, if A is a G-
graded algebra, where G is a finite group, such that A is not projective as a
left Ae-module (where e is the neutral element of G), then A is a left H-module
algebra, where H = (kG)∗, the dual of the group Hopf algebra, AH = Ae, and
obviously AH ⊂ A is not a Frobenius extension. There are many examples
of graded rings A which are not projective over Ae. A simple such example
is obtained by taking a commutative ring R and an R-module M which is not
projective, and considering the trivial extension A = R⊕M , which is a ring with
the multiplication (r,m)(r′,m′) = (rr′, rm′ + r′m) for any r, r′ ∈ R,m,m′ ∈ M .
Moreover, A is graded by the cyclic group C2 =< σ > of order 2 with Ae =
R⊕ 0, Aσ = 0⊕M , and clearly A is not Ae-projective.

Finally, AH ⊂ A#H is also not Frobenius in general. Indeed A#H ≃ An as
left A-modules, where n is the dimension of H. This is also an isomorphism of
left AH -modules, so in the case where A is not projective as a left AH -module
(as in the previous example), we see that A#H is also not AH -projective.
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6. S. Dăscălescu, M. Iovanov, S. Preduţ, Frobenius structural matrix algebras, Linear Alg.

Appl. 439 (2013), 3166-3172.
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