On a Yang-Mills type functional

Cătălin Gherghe*

Abstract

In this paper we study a functional which is related with the classical Yang-Mills functional on the one way and with the Born-Infeld theory on the other way. We derive its first variation formula and prove the existence of critical points. We study conservation laws. We also obtain the second variation formula.

Motivations

Let $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Then the graph of u

$$G_u = \{(x, z) \in \mathbb{R}^{n+1} \mid z = u(x), x \in \Omega\},\$$

is a minimal hypersurface if and only if satisfies the following differential equation

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0. \tag{1}$$

In 1970 Calabi, in a paper in which he studied examples of Bernstein problems, noticed that if n = 2, u is a *F*-harmonic map, $F(t) = \sqrt{1 + 2t} - 1$, that is u is a critical point of the following functional:

$$E_F(u) = \int_{\mathbb{R}^2} F\left(\frac{\|du\|^2}{2}\right) \vartheta_g,$$

^{*}Partially supported by a grant of Ministry of Research and Innovation, CNCS - UE-FISCDI, project number PN-III-P4-ID-PCE-2016-0065, within PNCDI III

⁰2000 Mathematics Subject Classification: 58E15, 81T13, 53C07.

⁰Key words and phrases: Curvature, vector bundle, Yang-Mills connections, variations.

with respect to any compactly supported variation, $||du||^2$ being the Hilbert-Schmidt norm.

Following the ideas of Calabi, Yang and then Sibner showed that for n = 3, the equation (1) is equivalent, over a simply connected domain, to the vector equation

$$abla imes \left(\frac{\nabla \times A}{\sqrt{1 + |\nabla \times A|^2}} \right) = 0,$$

which arises in the nonlinear electromagnetic theory of Born and Infeld. Here A is a vector field in \mathbb{R}^3 and $\nabla \times (\cdot)$ is the curl of (\cdot) . Born-Infeld theory is of contemporary interest due to its relevance in string theory.

This observation leads Yang to give a generalized treatment of the equation (1), expressed in terms of differential forms, as follows

$$\delta\left(\frac{d\omega}{\sqrt{1+\|d\omega\|^2}}\right) = 0,\tag{2}$$

for any $\omega \in A^p(\mathbb{R}^4)$. It is not very difficult to verify that the solution of equation (2) is a critical point of the following integral

$$\int_{\mathbb{R}^4} (\sqrt{1 + \|d\omega\|^2} - 1)\vartheta_g.$$

These facts gives as the motivation to study a similar functional, defined more general on Riemannian manifolds, functional which is on its definition, in some sense, similar to the well-known Yang-Mills functional.

The paper is organized as follows. In the first section we give some preliminaries and define the functional. In Section 2 we derive the Euler-Lagrange equations and give an existence result. Section 3 is devoted to a conservation law of the functional. Finally in Section 4 we derive the second variation formula.

1 The functional

Let E be a smooth real vector bundle over a compact *n*-dimensional Riemannian manifold (M^n, g) , such that its structure group G is a compact Lie subgroup of the orthogonal group O(n). For any vector bundle F over M we denote by $\Gamma(F)$ the space of smooth cross sections of F and for each $p \ge 0$ we denote by $\Omega^p(F) = \Gamma(\Lambda^p T^* M \otimes F)$ the space of all smooth p-forms on M with values in F. Note that $\Omega^0(F) = \Gamma(F)$.

A connection D on the vector bundle E is defined by specifying a covariant derivative, that is a linear map

$$D: \Omega^0(E) \to \Omega^1(E),$$

such that $D(fs) = df \otimes s + fDs$, for any section $s \in \Omega^0(E)$ and any smooth function $f \in C^{\infty}(M)$.

A connection D is called to be a G-connection if the natural extension of D to tensor bundles of E annihilates the tensors which define the G-structure. We denote by $\mathcal{C}(E)$ the space of all smooth G-connections D on E.

Given a connection on E, the map $D: \Omega^0(E) \to \Omega^1(E)$ can be extended to a generalised de Rham sequence

$$\Omega^0(E) \xrightarrow{d^D = D} \Omega^1(E) \xrightarrow{d^D} \Omega^2(E) \xrightarrow{d^D} \dots$$

For each G-connection D of the vector bundle E, the curvature tensor of D, denoted by \mathbb{R}^D , is determined by $(d^D)^2 : \Omega^0(E) \to \Omega^2(E)$. If we suppose that E carries an inner product compatible with G, it is easy to see that $\mathbb{R}^D \in \Omega^2(g_E)$, where $g_E \subset \operatorname{End}(E)$ is the subbundle of skew-symmetric endomorphisms of E.

Given metrics on M and E, there are naturally induced metrics on all associated bundles, such as $\Lambda^p T^* M \otimes \operatorname{End}(E)$:

$$<\varphi,\psi>_{x}=\sum_{1,$$

where, for any point $x \in M$, $\{e_i\}_{i=1}^n$ is an orthonormal basis of $T_x M$ with respect to the metric g. The pointwise inner product gives an L_2 -norm on $\Omega^p(E)$ by setting

$$(\varphi,\psi) = \int_M <\varphi,\psi>\vartheta_g$$

With respect to this norm, the formal adjoint of d^D it is denoted by δ^D (the coderivative) and satisfies:

$$(d^D\varphi,\psi) = (\varphi,\delta^D\psi).$$

In particular, for any G-connection D, the norm of the curvature \mathbb{R}^D is defined by

$$||R^D||_x^2 = \sum_{i < j} ||R^D_{e_i, e_j}||_x^2,$$

for any point $x \in M$ and any orthonormal basis $\{e_i\}_{i=\overline{1,n}}$ on T_xM . The norm of $R^D_{e_i,e_j}$ is the usual one on $\operatorname{End}(E)$, namely $\langle A,B \rangle = \frac{1}{2}tr(A^t \circ B)$.

Now we are able to define the Yang-Mills-Born-Infeld functional YM_{BI} : $\mathcal{C}(E) \to \mathbb{R}$ by

$$YM_{BI}(D) = \int_{M} (\sqrt{1 + \|R^{D}\|^{2}} - 1)\vartheta_{g}.$$

2 The first variation formula. Existence result.

In the following we shall derive the Euler-Lagrange equations of the functional $Y M_{BI}$.

Theorem 1. The first variation formula of the functional YM_{BI} is given by:

$$\frac{d}{dt}|_{t=0}YM_{BI}(D^t) = \int_M \langle B, \delta^D\left(\frac{1}{\sqrt{1+\|R^D\|^2}}R^D\right) \rangle \vartheta_g,$$

where

$$B = \frac{d}{dt}|_{t=0}D^t.$$

Consequently, D is a critical point of YM_{BI} if and only if

$$\delta^D \left(\frac{1}{\sqrt{1 + \|R^D\|^2}} R^D \right) = 0,$$

which are the Euler-Lagrange equations of YM_{BI} .

Proof: Let D a G-connection $D \in \mathcal{C}(E)$ and consider a smooth curve $D^t = D + \alpha^t$ on $\mathcal{C}(E)$, $t \in (-\epsilon, \epsilon)$, such that $\alpha^0 = 0$, where $\alpha^t \in \Omega^1(g_E)$. The corresponding curvature is given by

$$R^{D^t} = R^D + d^D \alpha^t + \frac{1}{2} [\alpha^t \wedge \alpha^t],$$

where we define the bracket of g_E -valued 1 forms φ and ψ by the formula $[\varphi \land \psi](X,Y) = [\varphi(X),\psi(Y)] - [\varphi(Y),\psi(X)]$ for any vector fields $X,Y \in$ $\Gamma(TM)$. Indeed for any vector fields $X, Y \in \Gamma(TM)$ and $u \in \Gamma(E)$ we have:

$$\begin{split} R^{D^{t}}(X,Y)(u) &= D_{X}^{t}(D_{Y}^{t}u) - D_{Y}^{t}(D_{X}^{t}u) - D_{[X,Y]}^{t}u = \\ &= D_{X}^{t}(D_{Y}u + \alpha^{t}(Y)(u)) - D_{Y}^{t}(D_{X}u + \alpha^{t}(X)(u)) \\ &- D_{X}^{t}(D_{[X,Y]}u + \alpha^{t}([X,Y])(u)) = \\ &= D_{X}(D_{Y}u + \alpha^{t}(Y)(u)) + \alpha^{t}(X)(D_{Y}u + \alpha^{t}(Y)(u)) - \\ &- D_{Y}(D_{X}u + \alpha^{t}(X)(u)) - \alpha^{t}(Y)(D_{X}u + \alpha^{t}(X)(u)) - \\ &- D_{[X,Y]}u - \alpha([X,Y])(u) = \\ &= R^{D}(X,Y)(u) + D_{X}(\alpha^{t}(Y)(u)) - \alpha^{t}(Y)(D_{X}u) - \\ &- (D_{Y}(\alpha^{t}(X)(u)) - \alpha^{t}(X)(D_{Y}u)) - \alpha^{t}([X,Y])(u) + \\ &+ \alpha^{t}(X)(\alpha^{t}(Y)(u)) - \alpha^{t}(Y)(\alpha^{t}(X)(u)) = \\ &= R^{D}(X,Y)(u) + (D_{X}(\alpha^{t}(Y))(u) - (D_{Y}(\alpha^{t}(X))(u) - \\ &- \alpha^{t}([X,Y])(u) + \frac{1}{2}[\alpha^{t} \wedge \alpha^{t}](X,Y)(u) = \\ &= R^{D}(X,Y)(u) + (d^{D}\alpha^{t})(X,Y)(u) + \frac{1}{2}[\alpha^{t} \wedge \alpha^{t}](X,Y)(u) \end{split}$$

Then we have

$$\begin{split} \frac{d}{dt}|_{t=0}(\sqrt{1+\|R^{D^t}\|^2}-1) &= \frac{1}{\sqrt{1+\|R^D\|^2}} \frac{d}{dt} \frac{1}{|_{t=0}} \frac{1}{2} \|R^{D^t}\|^2 = \\ &= \frac{1}{\sqrt{1+\|R^D\|^2}} < \frac{d}{dt} R^{D^t}, R^D > |_{t=0} \\ &= \frac{1}{\sqrt{1+\|R^D\|^2}} < d^D B, R^D > \end{split}$$

where $B = \frac{d}{dt}|_{t=0}D^t \in \Omega^1(g_E)$. Thus we obtain:

$$\frac{d}{dt}|_{t=0}YM_{BI}(D^{t}) = \int_{M} \frac{1}{\sqrt{1+\|R^{D}\|^{2}}} < d^{D}B, R^{D} > \vartheta_{g} =$$

$$= \int_M \langle B, \delta^D \left(\frac{1}{\sqrt{1 + \|R^D\|^2}} R^D \right) > \vartheta_g.$$

After we have derived the Euler-Lagrange equations, the next step is to see if the above equation has solutions. We will prove now an existence theorem for critical points of the functional YM_{BI} .

Theorem 2. Let (M, g) be an n-dimensional compact Riemannian manifold with $n \ge 5$, G a compact Lie group, and E a smooth G-vector bundle over M. Then there exists a Riemannian metric \tilde{g} on M conformally equivalent to g and a G-connection D on E such that D is a critical point of the functional YM_{BI} .

Proof: We prove the theorem in two steps.

Step 1 We look at the functional $F_p : \mathcal{C}(E) \to \mathbb{R}$, defined by

$$F_p(D) = \frac{1}{2} \int_M (1 + \|R^D\|_g^2)^{(p-2)/2} \vartheta_g,$$

for which it is known that satisfies the Palais-Smale conditions and attains the minimum if 2p > n (see [4]). The Euler-Lagrange equation associated to this functional is

$$\delta_q^D \left((1 + \|R^D\|_q^2)^{(p-2)/2} R^D \right) = 0.$$

This equation has a solution D for 2p > n. Define now on M the function f by $f = (1 + ||R^D||_g^2)^{(p-2)/n-4}$ and the metric $\overline{g} = fg$, conformally equivalent to g. As $\delta_g^D(f^{(n-4)/2}R^D) = 0$ it easy to see that $\delta_{\overline{g}}^D(R^D) = 0$. Thus we have obtained that there exists a Riemannian metric \overline{g} on M, conformally equivalent to g, and a G-connection D on E such that D is a Yang-Mills connection with respect to \overline{g} .

Step 2 Now we look for a "good" function σ such that $\tilde{g} = \sigma^{-1}g$. Due to the first step we can start with an Yang-Mills connection D with respect to the metric g. It is clear that

$$\delta_g^D R^D = 0$$
 if and only if $\delta_{\tilde{g}}^D \left(\sigma^{\frac{n-4}{2}} R^D \right) = 0$,

for any G-connection.

The function σ is good if it satisfies the following functional equation:

$$\sigma^{\frac{n-4}{2}} = \frac{1}{\sqrt{1+\sigma^2 \|R^D\|_g^2}} \left(= \frac{1}{\sqrt{1+\|R^D\|_{\tilde{g}}^2}} \right)$$

So, what we have to do now is to solve the above functional equation.

Let $h : [0, \infty) \to [0, \infty)$ given by $h(t) = \sqrt{1 + 2t} - 1$. It is clear that its derivative is a strictly decreasing function and let $H : (0, 1] \to [0, \infty)$ its smooth inverse. We define now the smooth function $F : (0, 1] \to [0, \infty)$ by

$$F(y) = \frac{H(y^{(n-4)/2})}{y^2}.$$

It is not difficult to prove that F is invertible and we denote by $\Phi : [0, \infty) \to (0, 1]$ the smooth inverse of F. We define the positive smooth function σ by

$$\sigma = \Phi(\frac{1}{2} \| R^D \|_g^2).$$

Finally we have

$$0 = \delta_{\tilde{g}}^{D} \left(\sigma^{(n-4)/2} R^{D} \right) = \delta_{\tilde{g}}^{D} \left(\left(\Phi \left(\frac{1}{2} \| R^{D} \|_{g}^{2} \right) \right)^{(n-4)/2} R^{D} \right) =$$
$$= \delta_{\tilde{g}}^{D} \left(\frac{1}{\sqrt{1 + \sigma^{2} \| R^{D} \|_{g}^{2}}} R^{D} \right) = \delta_{\tilde{g}}^{D} \left(\frac{1}{\sqrt{1 + \| R^{D} \|_{\tilde{g}}^{2}}} R^{D} \right),$$

which prove that the Yang-Mills connection D is also a critical point of the functional YM_{BI} with respect to the metric \tilde{g} .

Remark 1. The condition $n \ge 5$ is crucial in the previous proof because the Euler Lagrange equations are conformal invariant for the dimension n = 4.

3 The stress-energy tensor. Conservation law

Motivated by the ideas of Feynman on stationary electromagnetic field, Baird and Eells introduced in 1982 the stress-energy tensor associated to any smooth map $f : (M,g) \to (N,h)$ between two Riemannian manifolds by $S_f = e(f)g - f^*h$, where e(f) is the energy density of f. In the same spirit, it can be associated to any G-connection D an analougue 2-tensor (related to the Yang-Mills-Born-Infeld functional) which is defined by (see also [1]):

$$S_D = (\sqrt{1 + \|R^D\|^2} - 1)g - \frac{1}{\sqrt{1 + \|R^D\|^2}}R^D \odot R^D,$$

where $R^D \odot R^D$ is the symmetric product defined by $R^D \odot R^D = \langle i_X R^D, i_Y R^D \rangle$

It is natural to ask what is the interpretation of this tensor. There is a variational interpretation which we will try to explain in the following. Let us consider the following functional:

$$\mathcal{E}_D(g) = \int_M (\sqrt{1 + \|R^D\|^2} - 1)\vartheta_g.$$

The difference between this functional and the functional YM_{BI} is that \mathcal{E}_D it is defined on the space of smooth Riemannian metrics on the base manifold Mand the connection D is fixed. We calculate now the rate of change of $\mathcal{E}_D(g)$ when the metric on the base manifold is changed. To this end, we consider a smooth family of metrics g_s with $s \in (-\varepsilon, +\varepsilon)$, such that $g_0 = g$. The "tangent" vector on g to the curve of metrics g_s is denoted by $\delta g = \frac{dg_s}{ds}|_{s=0}$ and can be viewed as a smooth 2-covariant symmetric tensor field on M. Using the formulas obtained by Baird (see [1]):

$$\frac{d\|R^D\|_{g_s}}{ds}|_{s=0} = - \langle R^D \odot R^D, \delta g \rangle,$$

and

$$\frac{d}{ds}\vartheta_{g_s}|_{s=0} = \frac{1}{2} < g, \delta g > \vartheta_g$$

we get :

$$\frac{d\mathcal{E}_D(g_s)}{ds}|_{s=0}$$

$$= \int_{M} \frac{1}{\sqrt{1 + \|R^{D}\|^{2}}} \frac{d}{ds} \left(\frac{1}{2} \|R^{D}\|^{2}\right)|_{s=0} \vartheta_{g} + \int_{M} (\sqrt{1 + \|R^{D}\|^{2}} - 1) \frac{d}{ds} \vartheta_{g_{s}}|_{s=0}$$

$$\begin{split} &= \frac{1}{2} \int_{M} < (\sqrt{1 + \|R^{D}\|^{2}} - 1)g - \frac{1}{\sqrt{1 + \|R^{D}\|^{2}}} R^{D} \odot R^{D}, \delta g > \vartheta_{g} \\ &= \frac{1}{2} \int_{M} < S_{D}, g > \vartheta_{g}. \end{split}$$

Definition 1. A G-connection D is said to satisfy a conservation law if S_D is divergence free

Concerning this notion we obtain the following

Proposition 1. Any critical point of the functional YM_{BI} is conservative

Proof: The following formula for the divergence of the stress-energy tensor is true (see [3])

$$\operatorname{div}S_{D}(X) = \left\langle \frac{1}{\sqrt{1 + \|R^{D}\|^{2}}} \delta^{D} R^{D} - i_{\operatorname{grad}\left(\frac{1}{\sqrt{1 + \|R^{D}\|^{2}}}\right)} R^{D}, i_{X} R^{D} \right\rangle$$
$$+ \frac{1}{\sqrt{1 + \|R^{D}\|^{2}}} < i_{X} d^{D} R^{D}, R^{D} >,$$

for any vector field X on M. Using now the Bianchi identity and the Euler Lagrange equation of the functional YM_{BI} we obtain that $\operatorname{div} S_D = 0$.

4 The second variation formula

In this section we obtain the second variation formula of the functional YM_{BI} . Let (M, g) be an *n*-dimensional compact Riemannian manifold, G a compact Lie group and E a G-vector bundle over M. Let D be a critical point of the functional YM_{BI} and D^t be a smooth curve on $\mathcal{C}(E)$ such that $D^t = D + \alpha^t$, where $\alpha^t \in \Omega^1(g_E)$ for all $t \in (-\varepsilon, \varepsilon)$, and $\alpha^0 = 0$. The infinitesimal variation of the connection associated to D^t at t = 0 is

$$B := \frac{d\alpha^t}{dt}|_{t=0} \in \Omega(g_E).$$

Define an endomorphism \mathcal{R}^D of $\Omega^1(g_E)$ following [2] by

$$\mathcal{R}^D(\varphi)(X) := \sum_{i=1}^n [R^D(e_i, X), \varphi(e_i)],$$

for $\varphi \in \Omega(g_E)$ and $X \in \Gamma(TM)$, where $\{e_i\}_{i=1}^n$ is a local orthonormal frame field on (M, g). Then we obtain:

Theorem 3. Let (M, g) be an n-dimensional compact Riemannian manifold, G a compact Lie group and E a G-vector bundle over M. Let D be a critical point of YM_{BI} . Then the second variation of the functional YM_{BI} is given by:

$$\begin{aligned} \frac{d^2}{dt^2}|_{t=0}YM_{BI}(D^t) &= -\int_M \frac{1}{(1+\|R^D\|^2)^{3/2}} < d^DB, R^D >^2 \vartheta_g + \\ &+ \int_M \frac{1}{\sqrt{1+\|R^D\|^2}} \left(< d^DB, d^DB > + < B, \mathcal{R}^D(B) > \right) \vartheta_g = \\ &= \int_M < B, \mathcal{S}^D(B) > \vartheta_g, \end{aligned}$$

where \mathcal{S}^D is a differential operator acting on $\Omega(g_E)$ defined by:

$$\begin{split} \mathcal{S}^{D}(B) &= -\delta^{D} \left(\frac{1}{(1 + \|R^{D}\|^{2})^{3/2}} < d^{D}B, R^{D} >^{2} \right) + \delta^{D} \left(\frac{1}{\sqrt{1 + \|R^{D}\|^{2}}} d^{D}B \right) + \\ &+ \frac{1}{\sqrt{1 + \|R^{D}\|^{2}}} \mathcal{R}^{D}(B). \end{split}$$

Proof: As $R^{D^t} = R^D + d^D \alpha^t + \frac{1}{2} [\alpha^t \wedge \alpha^t]$ and $\alpha^0 = 0$ we obtain that

$$\frac{d^2}{dt^2}\Big|_{t=0}\left(\frac{1}{2}\|R^{D^t}\|^2\right) = < d^D C + [B, B], R^D > + < d^D B, d^D B >,$$

where $C := \frac{d^2}{dt^2} |_{t=0} \alpha^t$. Thus we obtain:

$$\begin{split} \frac{d^2}{dt^2}|_{t=0}YM_{BI}(D^t) &= \frac{d}{dt}|_{t=0} \int_M \frac{1}{2} \frac{1}{\sqrt{1+\|R^D\|^2}} \frac{d}{dt} \|R^{D^t}\|^2 \vartheta_g = \\ &= -\frac{1}{4} \int_M \frac{1}{(1+\|R^D\|^2)^{3/2}} \left(\frac{d}{dt}|_{t=0} \|R^{D^t}\|^2\right)^2 \vartheta_g + \frac{1}{2} \int_M \frac{1}{\sqrt{1+\|R^D\|^2}} \frac{d^2}{dt^2}|_{t=0} \|R^{D^t}\|^2 \vartheta_g = \\ &= -\int_M \frac{1}{(1+\|R^D\|^2)^{3/2}} < d^D B, R^D >^2 \vartheta_g + \\ &+ \int_M \frac{1}{\sqrt{1+\|R^D\|^2}} \left(< d^D C + [B, B], R^D > + < d^D B, d^D B > \right) \vartheta_g. \end{split}$$

On the other hand, since D is a critical point of the functional YM_{BI} , we have:

$$\int_M \frac{1}{\sqrt{1+\|R^D\|^2}} < d^D C, R^D > \vartheta_g = \int_M \left\langle C, \delta^D \left(\frac{1}{\sqrt{1+\|R^D\|^2}} R^D \right) \right\rangle \vartheta_g = 0.$$

Finally, one can prove that

$$< [B \land B], R^D > = < B, \mathcal{R}^D(B) > .$$

Indeed

$$< [B \land B], R^{D} >= \sum_{i < j} < [B \land B](e_{i}, e_{j}), R^{D}(e_{i}, e_{j}) >=$$

$$= \sum_{i < j} < [B(e_{i}), B(e_{j})] - [B(e_{j}), B(e_{i})], R^{D}(e_{i}, e_{j}) >=$$

$$= 2\sum_{i < j} < [B(e_{i}), B(e_{j})], R^{D}(e_{i}, e_{j}) >=$$

$$= \sum_{i,j=1}^{n} < B(e_{i}), [B(e_{j}), R^{D}(e_{i}, e_{j})] >=$$

$$= \sum_{i=1}^{n} < B(e_{i}), \mathcal{R}^{D}(e_{i}) >=$$

$$= \langle B, \mathcal{R}^D(B) \rangle$$
.

and thus we obtain the second variation formula.

The index, nullity and stability of a critical point of YM_{BI} can be defined in the same way as in the case of Yang-Mills connection (see [2]) but is rather difficult to analyse them because the form of S^D is much more complicated compared with the case of Yang-Mills connections.

References

- [1] P. Baird, Stress-energy tensors and the Lichnerowicz Laplacian, J.Geom. Phys., 58(10), (2008), 1329-1342.
- [2] J.P.Bourguignon, H.B.Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun.Math.Phys. 79(1981) 189-230.
- [3] Y. Dong, S. W. Wei, On Vanishing Theorems for Vector Bundle Valued p-Forms and their Applications, Commun.Math.Phys., 304 (2011), 329-368.
- [4] K. Uhlenbeck, Connections with L^p-bounds on curvature, Commun.Math.Phys., 83 (1982), 31-42.

University of Bucharest, Faculty of Mathematics and Computer Science, Academiei 14, Bucharest, Romania, catalinliviu.gherghe@gmail.com