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Abstract

We give a natural construction of an Einstein metric g on the products §3 x §?
and S” x S, total spaces of some induced Hopf bundles. Since ¢ is also a Sasakian
metric, a locally conformal Kahler and conformally Ricci-flat metric b is induced by
g on the products S3 x §% x S! and 87 x §® x 8!, that fiber also as twistor spaces
over the hypercomplex and the Cayley Hopf manifolds S3 x S' and S7 x S'. An
extension of this construction is given to some Stiefel manifolds and induced Hopf
bundles over Segre manifolds.

The product of spheres S® x S? is an example of manifold whose moduli space of
Einstein structures has infinitely many components, cf. [1], p. 472. Among all these
possible choices, a very special Einstein metric g - non homothetic to the standard product
2go X go - has been considered in several contexts: [9], p. 404, [16], p. 291, [5], p. 277, [2],
pp- 95-96, and indeed a general framework for the existence of g can be traced back to a
theorem of S. Kobayashi (cf. [11], p. 136, as well as its generalization in [1], pp. 255-256).

The simple construction of g we are presenting here is obtained by a natural imbedding
of S% x S? into S7, after a deformation of the standard metric of S” in the direction of one
of its Sasakian structure vector fields. This procedure can be extended to obtain similar
Einstein metrics on S7 x S, on the Stiefel manifolds V5(R"*") of the oriented orthonormal
2-frames, and on the induced Hopf bundles over some Segre complex projective manifolds.

Our motivation comes from studying diagrams like the following:

Lgintdygl —> Lgim+s — Loposl  — Cp?ntl

{ 3 \ -

S4n+3 X Sl N S4n+3 — CP2n+1 — HP",



whose lower horizontal arrows are the prototypes of well known fibrations appearing in
both 3-Sasakian and quaternion Hermitian-Weyl geometry: [4], [14], [15]. The vertical
arrows, fibrations in spheres S?, can be looked at as ”twistor spaces” over the base man-
ifolds, with respect to their structures - from the left to the right of the diagram - of
hyperhermitian-Weyl, 3-Sasakian, Kahler-Einstein and quaternion Kédhler manifold. The
fibers of the above diagram, over a point of HP" - and in fact of any positive quaternion
Kahler manifold - are describes as:

S3%xS?xS - $¥xS*? -5 CP'xCP! — CP!
{ { { {
S3 x S! — S3 — CP! — ot

suggesting to study structures on S x S? and on S? x S? x S! related to the geometries
appearing in both the diagrams.

1 Preliminaries

We start by collecting some basic definitions and facts about Sasakian and 3-Sasakian
geometry (cf. for example [3], [4]).

Definition 1 .
(i) Let (N, gN) be a (2n+1)-dimensional Riemannian manifold endowed with a unitary

Killing vector field & whose dual 1-form is denoted by n. The Levi-Civita connection V'V
of gV defines the smooth section o = VNE of End(TN). If the equation:

(VE¥@)Z =n(Z)Y — g™ (Y, Z)¢

holds on N, then & defines a Sasakian structure on (N, g).

(ii) A (4n + 3)-dimensional Riemannian manifold (P, g") is 3-Sasakian if a triple ',
£2, € of orthonormal Sasakian structures are defined on P and they satisfy the identities
(€2, €8] = € for (o, B,7) = (1,2, 3) and cyclic permutations.

We call € or €', €2, € the structure vector fields, and note that each dual one-form 7,
n', n%, n is a contact form.
The following formulae are easily proved:

Proposition 1 .
(i) On any Sasakian manifold:

=0, gN(pY,02) =g (Y, Z)—n(¥V)n(Z),

for all the tangent vector fields Y, Z. Moreover the sectional curvature K of sections
containing & satisfies the following normalization condition:

K(Y,€) =1.
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(i) On any 3-Sasakian manifold, besides the above formulae for each o = 1,2, 3, the
following holds:
Soagﬂ = 7577
for (o, B,7v) = (1,2,3) and cyclic permutations.

The spheres S?"*! and S*"*3, with their standard metric g, are examples of Sasakian
and 3-Sasakian manifolds, respectively: their structure vector fields are —JN or —I1 N,
—I,N, —I3N, where J and I;,15,I3 are the canonical complex and hypercomplex structure
of the respective Euclidean spaces E?"*2 or E*"** and N is the unit normal.

There are fibrations relating Sasakian and 3-Sasakian manifolds respectively with
Kéhler and quaternion Kéhler geometry. Namely (cf. [20], pp. 286-291, and [4]):

Proposition 2 .

(i) Let N*"' be a compact Sasakian manifold whose structure vector field & generates
a regular foliation. Then the projection m : N — M = N/ is a principal circle bundle,
the metric g of N projects to a Kdhler metric on M, whose Kdhler form Q has integral
values. M 1is thus a complex projective algebraic manifold, and n is a connection form in
N — M with curvature the pull-back of €.

(ii) Let P73 be a compact 3-Sasakian manifold whose structure vector fields €', €2,
& generate a regular foliation. Then the projection m : P — M = P/ is a bundle
of 3-dimensional homogeneous spherical space forms over the positive quaternion Kahler
manifold M.

The map 7 : N — M = N/ is known as a Boothby-Wang fibration, and we are
concerned with the Einstein property of its total space N. We need in this respect the
following notion:

Definition 2 . A Sasakian manifold (N, g",€) is n-Einstein if its Ricci tensor satisfies
Ric = MgV + un®n.

If N has dimension > 5, then A and p can be shown to be constant (cf. [20], p. 285):
they can be called the Finstein constants of the Sasaki n-Einstein manifold N.

Lemma 1 . On any Boothby-Wang fibration N*"*!' — M?", N is n-Einstein with Ein-
stein constants (A, pu) = (v — 2,2n + 2 — «) if and only if M is Kdhler-FEinstein with
Einstein constant .

Proof.  Use the following relation between the Ricci tensors of M and N, total and
base spaces of a Riemannian submersion N — M with geodesic S! fibres ([1], p. 244):

Ric™(Y, Z) = Ric™ (Y*, Z*) + 29N (Ay-V, Az V).

Here V is tangent to the fibre, A is the O’Neill tensor: Ay-V = horizontal part of V.V,
and Y* is the horizontal lift of the vector field Y of M. In our case V = &, Ay.V =



©Y* and from prop. 1 we see that g™ (pY*, 0 Z*) = gN(Y*, Z*) — n(Y*)n(Z*). Since the
horizontal distribution is the kernel of 7, it follows:

Ric™(Y, Z) = Ric™ (Y*, Z*) + 29N (Y*, Z%).

Then the conclusion follows from the normalization property K(Y,£) = 1 of prop. 1,
giving Ric(&,€) = 2n on any 2n + 1 dimensional Sasakian manifold.

2 Induced Hopf bundles and S° x S?

Denote now by (N, gV, &) a compact Sasakian manifold, and assume that its structure
Killing vector field ¢ generates a regular foliation, so that the Boothby-Wang fibration
7: N — M = N/¢ projects N over the complex projective algebraic manifold M. Any
isometric immersion i,; : M < M gives rise to both a corresponding isometric immersion
in : N = N of the induced total space N and to an induced S! bundle 7 : N — M. If
iy is a complex immersion and € is tangent to the immersed manifold iy (V), then iy is
invariant to ¢ = V¢, thus N inherits a Sasakian structure (cf. [19], p. 102). We shall
denote by ¢V, ¢V the induced metrics.

Lemma 2 . In the above setting, if iy is minimal, also iy 18 minimal.
Proof. With the above notations one has ([19], p.100):
(TY)* = oY™, ¢N(Y*.2) = gV (V. 2),

(VY 2) = VY.2" + g (Y™, Z°)E,
for any vector fields Y, Z on M. The Gauss formula then yields the following relation
between the second fundamental forms of 73, and 7y:

(BM(v,2)) = BY(Y*, 7).

Use local bases of vector fields on N as {ej, e, ....e;, &}, {ef} (i = 1,...k) projecting to
local bases {e;} on M: then, if iy, is minimal, in order for iy to be minimal it is enough
to show that BN (&£,€) = 0. This follows from prop. 1, since BY (£, €) is the normal part

of Vévf = ¢€.
Consider now the following induced Hopf bundle:

1% - 97

! 1
CP'x CP' — CP?,

where the lower horizontal arrow is the Segre map U : ([zg : 1], [yo : v1]) = [20 1 21 : 22 :
23] = [xoyo : Toy1 : T1Yo ¢ x1y1] imbedding the product of two complex projective lines as
the non singular quadric Qs : 2923 = 2129 of CP3.
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V can be identified by looking at both the Hopf fibrations S* — CP3? — HP!,
(20,21, 29,23) — [20 @ 21 ¢ 29 * 23] = [ho : M|, representing points of S7 also by pairs
of quaternions hy = 2y + 225, h1 = 21 + 2z3j. Thus the restriction of S” — CP? to a
projective line, say [ : W([zg : 21],[1 : 0]), in one of the two families that rule the quadric
Q.. is the S* C S7 over the point [1: 0] € HP!. By letting the line [ vary in all its family,
spanned by [yo : 1], the diffeomorphism V' 22 83 x S? is recognized. Observe now that W
is a complex and isometric immersion with respect to the product metric of CP' x CP!
and the Fubini-Study metric of CP?, fixed on both CP' and CP? to have holomorphic
sectional curvature 4. Thus S” — CP? is a Riemannian submersion and the manifolds
S7, CP3, CP! x CP! in the diagram have Einstein constants respectively o = 6,8, 4.
Hence lemmas 1 and 2 give:

Proposition 3 . V = 82 x 8% C S7 is a minimal Sasakian and n-FEinstein submanifold
with Finstein constants (A, u) = (2, 2).

We now prove that the induced Hopf bundle p : V — CP' x CP' can be identified
with the Stiefel bundle of the oriented orthonormal 2-frames o : Vo(R*) — Gry(R*) over
the Grassmannian of the oriented 2-planes in R*. Compare in fact the Chern class of the
two S'-bundles. First ¢ (p) = ¥*a = a; + a, where U is the Segre map and o, aq,as
are the canonical generators of the H*(CP?) and of the H? of the two factors CP' in
the quadric surface Q2. On the other hand ¢; (o) is 1/2 of the first Chern class ¢} of the
quadric surface Qs ([5], pp. 276-277). Since ¢ = 2(a; + ag), it follows ¢ (p) = ¢1 (o), and
p=o.

Denote by g; the metric induced on V' by the standard metric gy of S”. By prop. 3, g is
Sasakian with respect to the unit tangent vector & to the fibers and Ric; = 2¢g; +2n, ®n;.
Then a straightforward computation shows that

2 2

92391 *5771@)7717

Sasakian with respect to & = %fl, satisfies the Einstein condition Ric = 4g (cf. [16], p.
290). Therefore:

Theorem 1 . The product of spheres S® x S, imbedded in S™ as the total space of the
induced Hopf bundle over the quadric Qo C CP3, inherits from the standard metric of
ST an n-Einstein Sasakian metric gi, allowing to define the Sasakian Einstein metric

g=2q —2m@n.

3 The product S° x S? x S!

Recall that a complex Hermitian manifold (W?"*2 h_ .J) is a generalized Hopf manifold
if it is locally conformal Kéhler, i. e. if there is an open covering {U; } such that by, = efih!
with A, Kéhler on U;, and moreover its Lee form w, locally defined as wy,, = dfi, is
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parallel with respect to the Levi-Civita connection of . The structure of compact reqular
generalized Hopf manifold (W?*+2 h, .J) - i. e. such that the foliation B generated by the
dual vector field B of w is regular - has been established by I. Vaisman. In particular the
following results are proved in [17], [18]:

a) the class of compact reqular generalized Hopf manifolds coincides with the class of
principal flat S'-bundles over compact Sasakian manifolds;

b) the conformally flat compact reqular generalized Hopf manifolds reduce, up to finite
coverings, to products S?"+t1 x St — G2+l

As an intermediate situation between the above cases a) and b) we prove here the
following:

Proposition 4 . A compact reqular generalized Hopf manifold W?"*2 is locally con-
formally Ricci-flat if and only if it fibers in circles over a compact Sasakian-FEinstein
manifold.

Proof. Look at the projection p : W — M = W/B as a Riemannian submersion
with totally geodesic fibers, and denote by Ef(’w the Ricci tensor of the local Kéahler
metrics on W. Assume, as always possible up to normalization, that w is unitary. A
well known formula ([1], p.59) then gives Ric" = Ric" — 2nlh — w ® w]|, and observe
that }’?,\iJcW(B, B) = RicW (B, B) = 0. On the other hand, by the formula connecting the
Ricci tensors for Riemannian submersions (cf. proof of lemma 1), we have Ric™ (Y, Z) =
RicW (Y*, Z*). Thus:

Ric" = Ric" — 2ng — w ® w|,
where ¢ is the projection of h to the Sasakian manifold M = W/B. Then the conclusion

follows from the fact that Sasakian Einstein metrics in dimension 2n + 1 have Einstein
constant 2n (cf. prop. 1).

Recall now from [17] the definition of the (integrable) complex structure J and of the
generalized Hopf metric 4 on the total space W of any flat principal S'-bundle 7 : W — M
over a Sasakian M:

h=r¢g+u®u, JY=—-p)—nY)B, JB=E¢

Here u is the flat connection, Y is any horizontal vector field and B the dual vector field
with respect to h. Thus, by applying prop. 4 to the metric g of theorem 1, we obtain:

Corollary 1 . The product S* x S? x S' admits a complex structure and a Hermitian
metric h, making it a conformally Ricci flat and non conformally flat generalized Hopf
manifold.



Remark 1 . It is worth to observe that the product of a locally conformal Kahler man-
ifold with a Kahler manifold is not locally conformal Kahler. Thus the generalized Hopf
structure on S® x S' x S?% established by cor. 1 cannot be obtained as a product.

On the other hand, it is natural to compare the (S* x S% x S, .J h) of cor. 1 with
some natural Hermitian structure related to the twistor fibration S? x §2 x S — 83 x S*.
Indeed, the properties of Hermitian metrics on twistor spaces over oriented Riemannian 4-
manifolds exclude the locally conformal Kahler possibility, at least by looking at metrics
defined by means of the Levi Civita connection [13]. Another natural connection on
standard Hopf surfaces S? x S! is the Weyl connection, that glues together the Levi
Civita connections of the local standard Kéhler metrics (cf. [17]). However, by choosing
the Weyl connection, the lifted Hermitian metric on S? x S? x S! turns out to be locally
conformal semikdhler, but not locally conformal Kdahler. This is obtained from formulae
in the appendix of [6], namely from its lemma 12 and corollary 2, pp. 618-619. We wish
to thank Paul Gauduchon for a very helpful conversation about this point.

4 The products S”x S% S7xS%x S! and more examples

The construction of the metrics ¢ and h expressed in theorem 1 and corollary 1 can be
pursued also in the following similar context.

Consider the Hopf fibration S' — CP” and the induced Hopf bundle p : V' — Gry(R?)
over the Grassmannian Gry(R?) of the oriented 2-planes in R®, isometrically immersed in
CPT as a non singular quadric complex hypersurface Q. A comparison of the first Chern
classes shows that the bundle p is isomorphic to the Stiefel bundle o : V5(R?®) — Gry(R?)
of oriented orthonormal 2-frames in R® (cf. the discussion following prop. 3 as well as [2],
pp-84-86). Since Gry(R®) = Qg is Kéhler-Einstein with Einstein constant 12 ([12], p.282),
by lemma 1 its total space ST x S% = V,(R?) inherits from S an n-Einstein Sasakian
metric ¢;. Its Ricci tensor satisfies Ric; = 10g; + 217 ® 1y, where 1 is the dual of the
unit Killing vector field &;, induced by the Sasakian structure of S'>. Then the metric:

6 6
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Sasakian with respect to & = %fl, satisfies Ric = 12g.
This, together with proposition 4 applied to it, yields the following:

Corollary 2 . The product S™ x S8, total space of the induced Hopf bundle over the
quadric Qs C CP7, inherits from the standard metric of S an n-Einstein Sasakian
metric g, and then the metric g = gg] — %n] ® my  is Sasakian Finstein. Accordingly,
the product ST x S% x St admits a structure of generalized Hopf manifold, whose metric
h s conformally Ricci flat and non conformally flat.

It can be observed that both S® x §% and S7 x S% are examples of Brieskorn manifolds
([20], pp. 291-305), as one recognizes from the equations: zqz3 = 2129, >.; 2Z; = 1 of
S3 x 8? in C*, and the similar equations of S7 x S% in C8.



Remark 2 . The product S7 x S® x S' can be looked at as a "twistor space” of the
Hopf manifold S7 x S' with respect to the structure induced on it by the Cayley numbers.
Indeed, the diffeomorphism S”x S' = (R®—0)/(z, — 27,) and the seven almost complex
structures I, Iy, I3, E, E1,, E1,, EL,, defined on R® by its identification with the Cayley
numbers Ca, show that S7 x S! is naturally equipped by such a ”Cayley structure”.
The space of the compatible almost complex structures on S” x S', diffeomorphic to
S” x S x S' can be endowed with a natural almost complex structure .J: this can be
done through the Weyl connection in the usual tautological twistorial way. However, .J
turns out (even on the fibers) to be non integrable. Thus the complex structure obtained
on S”x S% x St by corollary 2 (that is integrable) is different from that defined by looking
at it as the twistor space of the almost complex structures compatible with the Cayley
structure of ST x S'.

More examples of induced Hopf bundles carrying a Sasakian Einstein metric can be
given by extending the above constructions in the following two cases.

Let M = CP* x CP* with its product Fubini Study metric, that is Einstein with
Einstein constant 2k +2. Let W : ([zg : ...t 2], [yo : -t yk]) = [20 1 - 1 212 21] = [Towo
Toyi... : Txyx) be the Segre map, isometrically imbedding CP* x CP* into Cptty-1,
Then the Hopf bundle S2k+0*~1 _y C¢PE+)*~1 regtricted to the Segre manifold Sk =
CP* x CP*, carries an induced metric g;, which is Sasakian and 7-Einstein. Denote by
Vi.x the total space of this induced Hopf bundle, on which g, is defined. By lemma 1 the
Ricci tensor of ¢y satisfies Ric; = 2kg, + (4k* — 2k)m ® n;. Next, a Sasakian Einstein
metric g is constructed on Vj ; by following the procedure used for thm. 1 and inspired
by formulae in [16]. Thus define on Vj ; the metric

k42 (k10— 26)
a2 127 (22 + 1)

g 771®771a

4k2+2
2k+2

and observe that ¢ is Sasakian with respect to £ = &1. Moreover the computation of

the Ricci tensor of ¢ gives Ric = 4k%g. Thus:

Corollary 3 . The induced Hopf bundle Vi, carries the Sasakian Finstein metric g =
2h+2 o K(k+1)(1-2%)
axz291 (2k241)2

S2k+1° =1 defined through the Segre map CP* x CP¥ — CP*+D*~1,

m ® mn . The metric gi ts induced by the imbedding of Vi into

Another setting for our construction is that of a complex non singular hyperquadric
Q,—1 C CP", Kahler Einstein submanifold with Einstein constant 2n — 2. The induced
Hopf bundle over @, ; can be identified with the Stiefel bundle V5(R"!) — Gry(R™1)
of the oriented orthonormal 2-frames in R**'. Thus the standard metric of S?**! induces
the Sasakian n-Einstein metric g; on Vo(R"™") and Ric; = (2n — 4)g; + 2 ® n;. Here
the associated Einstein metric is:

on—2 N —2(2n — 2)
2n 91 4n?

g= Th & M,



271251 and satisfying Ric = (2n — 2)g.

Sasakian with respect to £ = 5=

Corollary 4 . The Stiefel manifold Vo(R™1) carries the Sasakian Einstein metric g =

27;;2.(]1 + ’2(42:;2)771 ® ny. Here gy is induced by looking at Vo(R"™') as the total space of

the Hopf bundle over the quadric Q),,_; C CP".

Remark 3 . The Stiefel manifold V5(RT) is diffeomorphic to the (unique) homogeneous
3-Sasakian manifold G5/Sp(1) over the exceptional positive quaternion Kéhler manifold
G2/SO(4). This diffeomorphism (stated in [8], p. 115) can be recognized as follows. Look
at G»/SO(4) as the Grassmannian of the quaternionic 4-planes in R” = I'm Ca, and at
G+/Sp(1) as the space of the same quaternionic 4-planes together with a hypercomplex
structure on them. The latter fibers in circles over G/U(2), twistor space of G3/SO(4),
and space of the same quaternionic 4-planes together with a complex structure on them.
For any oriented orthonormal 2-frame {i,j} of R the cross product k = i x j defines,
through the Cayley multiplication, a hypercomplex structure on the oriented 4-plane L
orthogonal to 1i,j,k, and since this construction can be reversed, the diffeomorphism is
obtained. A similar argument shows that G5/U(2) = Gry(RT). Thus the natural question
arises of comparing on V5(RT) the Sasakian Einstein metric ¢ of cor. 4 with the (also
Einstein) 3-Sasakian metric ¢ as defined through the fibration G,/Sp(1) — G3/SO(4),
following [4]. We are not able to give the answer, involving a comparison between the
Kihler Einstein structure of Gro(R”) = @5 C CP® and the structure of contact Fano
manifold coming from the stated diffeomorphism Gry(R7) = G,/U(2) with the twistor
space of Go/SO(4). Note that both Q5 and G3/U(2) appear in the study of nilpotent
orbits in the complexified Lie algebra of G, cf. [10], pp. 29-30.

Finally, as a consequence of prop. 4 and cor. 4, we have:

Corollary 5 . The products Vi, x S' and Vo(R") x S carry a structure of conformally
Ricci flat and non conformally flat generalized Hopf manifold.
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