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LOCALLY CONFORMAL KÄHLER STRUCTURES

IN QUATERNIONIC GEOMETRY

LIVIU ORNEA AND PAOLO PICCINNI

Abstract. We consider compact locally conformal quaternion Kähler mani-
folds M . This structure defines on M a canonical foliation, which we assume
to have compact leaves. We prove that the local quaternion Kähler metrics are
Ricci-flat and allow us to project M over a quaternion Kähler orbifold N with
fibers conformally flat 4-dimensional real Hopf manifolds. This fibration was
known for the subclass of locally conformal hyperkähler manifolds; in this case
we make some observations on the fibers’ structure and obtain restrictions on
the Betti numbers. In the homogeneous case N is shown to be a manifold and
this allows a classification. Examples of locally conformal quaternion Kähler
manifolds (some with a global complex structure, some locally conformal hy-
perkähler) are the Hopf manifolds quotients of Hn−{0} by the diagonal action
of appropriately chosen discrete subgroups of CO+(4).

Introduction

The oldest and simplest example of a complex manifold which does not admit
any Kähler metric is the Hopf manifold HC = (Cn − {0})/Γ2,Γ2 generated by
(z1, . . . , zn) 7→ (2z1, . . . , 2zn). Since the conformal Kähler metric g = (

∑
α zαz̄α)−1

·
∑
α dzα⊗dz̄α on Cn−{0} is invariant by Γ2, g induces a locally conformal Kähler

metric on HC. The theory of locally conformal Kähler manifolds, initiated by I.
Vaisman in 1976 and by now motivated by several significant examples, has been
developed with more conclusive results for the subclass of generalized Hopf mani-
folds [Va1, Va3]. These are locally conformal Kähler manifolds with the parallelism
condition of their Lee form, 1-form canonically associated to the structure. A survey
of this theory is given in [Or].

In quaternionic geometry one can consider the Hopf manifold HH =
(Hn − {0})/Γ2 as one of the simplest examples of a hypercomplex manifold not
admitting any hyperkähler metric. The same g as before (in quaternionic coor-
dinates) is a locally conformal hyperkähler metric. In fact, the two well-known
quaternionic analogues of complex Kähler manifolds, namely hyperkähler mani-
folds and quaternion Kähler manifolds, have as locally conformal correspondents
the two classes which are the subject of this paper: locally conformal hyperkähler
manifolds and the larger class of locally conformal quaternion Kähler manifolds.
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Examples of both can actually be obtained by admitting more general groups than
Γ2 to act on Hn − {0} (cf. §6).

These two classes of quaternionic manifolds have already appeared in the con-
texts of Hermitian-Einstein-Weyl structures [Pe-Po-Sw] and of 3-Sasakian struc-
tures [Bo-Ga-Ma1]. A special feature of this quaternionic setting, of particular
interest for us, is the possibility of assuming the Lee form to be parallel. This pos-
sibility, not guaranteed in the complex case, depends here on the Einstein property
of the local conformal metrics applied to a recent result of P. Gauduchon [Gau2].

Accordingly, the structure of compact locally conformal hyperkähler and locally
conformal quaternion Kähler manifolds is described by fibrations over orbifolds
carrying different structures, similarly to the case of complex generalized Hopf
manifolds (cf. Theorems 2.1, 3.8, 5.1, that refine earlier results in [Pe-Po-Sw]).
However, the interplay with other geometries—quaternion Kähler, complex Kähler
via twistors, 3-Sasakian, local similarity—-appears here to be richer than in the
complex case. The most significant fibration, with base a quaternion Kähler orb-
ifold, has as fibers 4-dimensional compact manifolds of Hopf type, with universal
covering R4−{0} and endowed, according to the cases, with a complex, hypercom-
plex, or quaternionic structure (cf. Proposition 6.1). This relates with the work
of Ma. Kato [Ka1], [Ka2] on discrete groups acting on C2 − {0} to preserve its
complex or hypercomplex structure.

The locally conformal hyperkähler manifolds carry naturally a S2-bundle of com-
patible complex locally conformal Kähler structures. Yet, their Betti numbers have
here much stronger restrictions than in the complex case (cf. Theorems 3.11 and
Remarks 3.12, 3.13): for example it is necessary that b1 = 1, whether examples
exist of a complex generalized Hopf manifold for any odd b1. Also, none of the
compatible complex structure may support a Kähler metric. Finally, for compact
locally conformal hyperkähler homogeneous manifolds, the quaternion Kähler orb-
ifold base of the fibration in Hopf surfaces is actually a homogeneous manifold: this,
similarly to the case of 3-Sasakian manifolds [Bo-Ga-Ma1], allows a classification
(cf. Proposition 4.2 and Corollary 4.3).

1. Preliminaries

We recall the following definition from complex geometry. A complex Hermitian
manifold (M2n, g, J) is locally conformal Kähler (l.c.K.) if over open neighbour-
hoods {Ui} covering M , g|Ui = efig′i with g′i Kähler and fi a C∞ function on Ui.
This is equivalent to the condition:

dΩ = ω ∧Ω, dω = 0,(1.1)

where Ω is the Kähler form of g and the closed 1-form ω, locally defined by ω|Ui =
dfi, is called the Lee form. Hence, ω is exact iff M is globally conformal Kähler
(g.c.K.). The Levi-Civita connection Di of the local Kähler metrics g′i glue together
on M to a connection D related to the Levi-Civita connection ∇ of g by the formula

DXY = ∇XY −
1

2
{ω(X)Y + ω(Y )X − g(X,Y )B},(1.2)

where B = ω\ is the Lee vector field. The two properties Dg = ω ⊗ g and D
torsion free show that D is a Weyl connection of the conformal manifold (M, [g])
satisfying, in addition, DJ = 0. Moreover, the associated 1-form of the Weyl
manifold (M, [g], D) is precisely the Lee form ω.
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A significant subclass of l.c.K. manifolds is given by the generalized Hopf mani-
folds (see [Va4]) defined by the stronger condition ∇ω = 0. Note that on compact
M this is not compatible with ω = df , i.e. with the g.c.K. condition. Moreover,
on compact M , the generalized Hopf condition implies the vanishing of the Euler
characteristic; thus not all manifolds carrying a l.c.K. metric may admit a general-
ized Hopf one. The following result yields a sufficient condition for a l.c.K. metric
to be globally conformal with a generalized Hopf one:

Theorem 1.3 ([Gau1], [Gau2]). Let (Mn, [g], D) be a compact Weyl manifold, n ≥
3.

(i) There exists a metric g0 ∈ [g], unique up to homotheties, whose associated
1-form ω0 is g0-coclosed.

(ii) If, in addition, (Mn, [g], D) is Einstein-Weyl (i.e. the symmetrized Ricci
tensor of D is proportional to g) and ω0 is closed but not exact, then ∇0ω0 = 0
with respect to the Levi-Civita connection ∇0 of g0.

To approach our subject, we recall the following terminology. Let M be a 4n-
dimensional C∞ manifold. A triple I1, I2, I3 of global integrable complex structures
on M satisfying the quaternionic identities: IαIβ = Iγ for (α, β, γ) = (1, 2, 3)
and cyclic permutations, defines a hypercomplex structure on M . If a Riemannian
metric g is added, assumed to be Hermitian with respect to I1, I2, I3, one gets a
hyperhermitian manifold (M, g, I1, I2, I3).

More generally, by (M, g,H) we denote a quaternion Hermitian manifold. Here
H is a rank 3 subbundle of End(TM), locally spanned by (not necessarily inte-
grable) almost complex structures I1, I2, I3, again satisfying the quaternionic iden-
tities and related on the intersections of trivializing open sets by matrices of SO(3).
H defines on M a structure of quaternionic manifold and the local almost complex
structures I1, I2, I3 are said to be compatible with the quaternionic structure H.
The additional datum of a metric g, Hermitian with respect to the local compatible
almost complex structures, defines the quaternion Hermitian manifold (M, g,H).
Recall that the hyperhermitian or quaternion Hermitian metric g is said to be hy-
perkähler or quaternion Kähler if its Levi-Civita connection ∇ satisfies respectively
∇Iα = 0 (α = 1, 2, 3) or ∇H ⊂ H. We can now define the two classes of manifolds
that we will be concerned with in this paper.

Definition 1.4. (i) A hyperhermitian manifold (M, g, I1, I2, I3) is locally confor-
mal hyperkähler (l.c.h.K.) if, over open neighbourhoods {Ui} covering M, g|Ui =
efig′i with g′i quaternion Kähler on Ui.

(ii) A quaternion Hermitian manifold (M, g,H) is locally conformal quaternion
Kähler (l.c.q.K.) if, over open neighbourhoods {Ui} covering M, g|Ui = efig′i with
g′i quaternion Kähler on ui.

In both cases we have a Lee form ω, locally defined by ω|Ui = dfi and satisfying:

dΘ = ω ∧Θ, dω = 0,(1.5)

where Θ =
∑
α=1,2,3 Ωα ∧ Ωα is the (global) Kähler 4-form. Properties (1.5) for

Θ are also sufficient for a hyperhermitian or quaternion Hermitian metric to be
l.c.h.K. or l.c.q.K., respectively.

Then, recalling that hyperkähler and quaternion Kähler metrics are Einstein,
Gauduchon’s Theorem 1.3 can be applied to our context. Precisely:
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Corollary 1.6. Let (M, g) be a compact locally conformal hyperkähler or locally
conformal quaternion Kähler manifold and assume that no metric in the conformal
class [g] of g is respectively hyperkähler or quaternion Kähler. Then there exists a
g0 ∈ [g] whose Lee form ω0 is ∇0-parallel.

We point out that the possibility of assuming ∇ω = 0, given by Corollary 1.6,
has no correspondent in the complex case of l.c.K. manifolds; the standard Hopf
surface HC blown up at one point has nonzero Euler characteristic and is therefore
an example of a l.c.K. manifold not admitting any generalized Hopf metric.

Throughout the paper (with the only exception of Proposition 2.3) by the terms
locally conformal hyperkähler or locally conformal quaternion Kähler structures we
mean such structures that are not globally conformal ones. Moreover, by the above
discussion, the following assumptions are not restrictive for compact manifolds and
will always by made:

(i) the fixed metric g makes ω parallel : ∇ω = 0;
(ii) ‖ω‖ = 1.

Proposition 1.7. Let (M, g, I1, I2, I3) be a locally conformal hyperkähler manifold
which is either compact or satisfying ∇ω = 0; let B = ω\ be its Lee vector field and
Ωα the Kähler 2-form with respect to Iα. Then the following formulas hold good :

∇B = 0, LBIα = 0, LBg = 0, LBΩα = 0, LBΘ = 0,(1.7.a)

(∇XIα)Y =
1

2
{ω(IαY )X − ω(Y )IαX − g(X, IαY )B + g(X,Y )IαB},(1.7.b)

LIαBIα = 0, LIαBIβ = Iγ , LIαBg = 0,(1.7.c)

[B, IαB] = 0, [IαB, IβB] = IγB,(1.7.d)

(∇XIαω)Y =
1

2
{Iαω(Y )ω(X)− ω(Y )Iαω(X)− g(X, IαY )},(1.7.e)

dIαω = 2∇XIαω = Ωα − ω ∧ Iαω,(1.7.f)

LIαBΩα = 0, LIαBΩβ = Ωγ , LIαBΘ = 0,(1.7.g)

where LX is the Lie derivative and (α, β, γ) = (1, 2, 3) and cyclic permutations.

Proof. All the formulas are easily obtained from the case of complex generalized
Hopf manifolds (cf. [Ch-Pi], [Or], [Va3]) by choosing on the l.c.h.K. manifold the
appropriate compatible complex structure. In particular, from (1.7.a), (1.7.c) we see
that B, IαB are infinitesimal automorphisms of the quaternion Hermitian structure
H ⊂ End(TM) of M , here globally spanned by I1, I2, I3 (cf. [Pi]).

For a l.c.q.K. manifold, the Weyl connection D can still be defined by the formula
(1.2) in terms of the Lee 1-form of the structure. Yet D does not preserve in this case
the compatible almost complex structures individually but only their 3-dimensional
bundle H. In fact [Pe-Po-Sw]:

DIλ =
∑

aλµ ⊗ Iµ,(1.8)

where λ, µ = 1, 2, 3 and (aλµ) is a skew-symmetric matrix of local 1-forms. Accord-
ingly, formulas (1.7.a)–(1.7.g) have corresponding l.c.q.K. ones (1.7.a′)–(1.7.g′). For
example, (1.7.b′) is obtained by adding (DXIα)Y =

∑
µ aαµ(X)IµY in the right-

hand side of (1.7.b).

We shall be interested in the properties of some canonically defined foliations
F on l.c.h.K. and l.c.q.K. manifolds. Some convenient hypotheses on F have to
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be chosen in order to relate the geometry of M to that of the leaf space M/F .
Two natural assumptions on F are: (i) F is regular in the sense of R. Palais (cf.
[Pa]), assuring that M/F is a C∞ manifold; (ii) F has compact leaves, implying
that M/F is an orbifold, i.e. a second countable Hausdorff space locally modelled on
finite quotients of Rn. We shall make on all foliations F the hypothesis (ii). This is,
on one hand, a weaker assumption, providing more examples (see [Bo-Ga-Ma1]) and
on the other hand orbifolds seem to be a natural class to work with in quaternionic
geometry.

We recall that a point p of an orbifold N is said to be regular if it has a neighbor-
hood homeomorphic with Rn, and singular if such a neighborhood does not exist.
We refer to [Mo] for the formal definition and properties of orbifolds and to [Sat]
for the generalization of geometric objects to the orbifold category.

2. Locally conformal quaternion Kähler manifolds

Let M be a compact l.c.q.K. manifold. As mentioned, we choose the metric
g such that ∇ω = 0 and ‖ω‖ = 1. The vector fields B, I1B, I2B, I3B span a 4-
dimensional distribution D that, by formula (1.7.d), is seen to be integrable (cf.
[Pe-Po-Sw]). Then:

Theorem 2.1. On a compact locally conformal quaternion Kähler (M,H, g), all
the local quaternion Kähler metrics are Ricci-flat and M is therefore locally con-
formal locally hyperkähler. Moreover, the metric g is bundle-like with respect to D
and, if D has compact leaves, projects to an Einstein metric with positive scalar
curvature at the regular points of the orbifold N = M/D.

Proof. The vanishing of the scalar curvature sD follows from Theorem 3 in [Gau2].
A direct proof in this context can be given as follows. The scalar curvatures s of g
and sDi of the quaternion Kähler g′i on Ui are related by

sDi = e−fi
[
s|Ui −

(4n− 1)(2n− 1)

2

]
(cf. [Be], p. 59). It follows that sDi = constant; thus, if sDi 6= 0, after derivation:

ωi = d ln

[
s|Ui −

(4n− 1)(2n− 1)

2

]
.

Thus, since both ω and s are global on M , ω is exact, in contradiction with the
assumption made after Corollary 1.6. If sDi = 0 on some Ui, then s = s|Ui =
(4n−1)(2n−1)

2 , constant on M ; hence sDi = 0 for all Ui. Then all local Kähler
metrics are Ricci-flat.

To see that g is bundle-like, as LBg = 0 by (1.7.a), we only have to compute
LIαBg on horizontal vector fields X,Y . By (1.7.b) we derive

(LIαBg)(X,Y ) = g(∇XIαB, Y ) + g(X,∇Y IαB)

= g((∇XIα)B, Y + g(X, (∇Y Iα)B)

=
∑
µ

{aαµ(X)Iµω(Y ) + aαµ(Y )Iµω(X)} = 0.
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Therefore, at regular points, N is a Riemannian manifold and the projection M →
N is a Riemannian submersion. The Ricci tensors of M and N are related by

SN (X,Y ) = SM (X,Y ) + g(AXB,AYB) +
3∑

α=1

g(AXIαB,AY IαB),

where AX is the O’Neill tensor acting on vertical vector fields by AXV = h∇XV, h
being the horizontal projector (cf. [Be], p. 244). We have AXB = 0 and, from
(1.7.b), AXIαB = − 1

2IαX . On the other hand, taking into account that the
local quaternion Kähler metrics are Ricci-flat, on horizontal vector fields we have
SM = 2n−1

2 g. Thus SN = (n+ 1
4 )gN and the proof is complete.

Remark 2.2. A consequence of the above result is that on compact l.c.q.K. mani-
folds one may always assume the neighbourhoods Ui to be simply connected and the
local compatible almost complex structures to be integrable and parallel. However,
the existence of a global hypercomplex structure on M is not implied (cf. examples
in §6). Note that with respect to local parallel compatible I1, I2, I3 the matrix (aλµ)
in formula (1.8) vanishes. Therefore, with this choice, formulas (1.7.a),. . . ,(1.7.g)
can be applied without modifications also to compact l.c.q.K. manifolds.

A characterization of quaternion Kähler manifolds in the larger class of l.c.q.K.
manifolds (here not necessarily nonglobally conformal) is given as follows. Cf. [Va2]
for the complex case.

Proposition 2.3. A locally conformal quaternion Kähler manifold (M4n, g,H),
n ≥ 2, is quaternion Kähler if and only if through each point of it there exists
a totally geodesic submanifold Q of real dimension 4h ≥ 8, which is quaternion
Kähler with respect to the structure induced on it by (g,H).

Proof. The relation between the second fundamental forms b′i and b of a submanifold
with respect to the metrics g′i and g is easily seen to be

b′i = b+ g ⊗Bν ,
whereBν is the part ofB normal to the submanifold. Let q ∈M andQ a quaternion
Kähler submanifold as in the statement. Let j be the immersion of Q in M . Then
j∗dΘ = 0; thus (cf. (1.5)) j∗ω ∧ j∗Θ = 0. As rank j∗Θ = 4h ≥ 8, necessarily
j∗ω = 0. It follows that the Lee vector field B is normal to Q; hence B = Bν .
Further, j∗ω = 0 shows also that Q ∩ Ui is a quaternionic submanifold of the
quaternion Kähler manifold (Ui, g

′
i). Since quaternionic submanifolds of quaternion

Kähler manifolds are known to be totally geodesic (cf. for example [Gr]), this is the
case for Q ∩ Ui in Ui with respect to g′i. Thus b = −g ⊗ B on Q ∩ Ui. But b = 0
from the assumption; thus B = 0 on Q ∩ Ui. Since such a Q exists through any
point q ∈M , it follows that B ≡ 0 on M ; i.e. g is a quaternion Kähler metric. The
converse part is clear with Q = M .

3. Locally conformal hyperkähler manifolds

Let M now be a compact l.c.h.K. manifold, D the 4-dimensional foliation on M
defined in §2 and D⊥ its orthogonal complement. The structure of M has been
described in [Pe-Po-Sw] and can be related to 3-Sasakian manifolds. The latter
were extensively studied in the recent paper [Bo-Ga-Ma1]; their consideration goes
back to the seventies, starting with [Ud] (who introduced them as coquaternionic
manifolds) and [Ku].
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Proposition 3.1. (i) D is a Riemannian totally geodesic foliation. Its leaves, if
compact, are complex Hopf surfaces admitting an integrable hypercomplex structure
(cf. Theorem 3.2 below). In particular, they may be nonprimary.

(ii) D⊥ is not integrable. Its integral manifolds are totally real and have maximal
real dimension n− 1.

Proof. As in §2, D is integrable (1.7.d); here the vector fields B, IαB are actually
Killing (1.7.a), (1.7.c); thus D is Riemannian and by (1.7.b) totally geodesic. If the
leaves are compact, their structure can be deduced by Theorem 1 in [Bo]. They
are in fact tangent to the Lee vector field B = ω\, and hence carry a structure of
hyperhermitian nonhyperkähler 4-dimensional manifold. As for (ii), observe that
a submanifold M⊥ of M is an integral manifold of D⊥ if and only if ω and Iαω
are zero on M⊥. On such an integral submanifold dIαω is then also zero. Then
formula (1.7.f) implies that IαX is normal to M⊥ for all the X tangent to M⊥.
The last assertion then follows.

Here integrable hypercomplex structure is intended in the sense of G-structures,
i.e. of the existence of a local quaternionic coordinate such that the differential of
the change of coordinate belongs to H∗. For further use we recall the following:

Theorem 3.2 ([Ka2]). A complex Hopf surface S admits an integrable hypercom-
plex structure if and only if S = (H−{0})/Γ where the discrete group Γ is conjugate
in Gl(2,C) to any of the following subgroups G ⊂ H∗ ⊂ Gl(2,C):

(i) G = Zm×Γc with Zm and Γc both cyclicly generated by left multiplication by
am = e2πi/m, m ≥ 1, and c ∈ C∗.

(ii) G = L× Γc, where c ∈ R∗ and L is one of the following: D4m, the dihedral
group, m ≥ 2, generated by the quaternion j and ρm = eπi/m;T24, the tetrahe-
dral group generated by ζ2 and 1√

2
(ζ3 + ζ3j), ζ = eπi/4;O48, the octahedral group

generated by ζ and 1√
2
(ζ3 + ζ3j); I120, the icosahedral group generated by

ε3, j,
1√
5

[ε4 − ε+ (ε2 − ε3)j], ε = e2πi/5.

(iii) G generated by Zm and cj,m ≥ 3, c ∈ R∗.
(iv) G generated by D4m and cρ2n, c ∈ R∗ or by T24 and cζ, c ∈ R∗.

It follows from Theorem 2.1 that the leaf space N = M/D of a compact l.c.h.K.
M is, at regular points, an Einstein manifold with positive scalar curvature. More-
over, by (1.7.c) and (1.7.g) we see that, although no single element of H projects
under p : M → N , this is the case for the bundle H itself and the Kähler 4-form Θ.
Thus (cf. [Pe-Po-Sw]):

Proposition 3.3. Let M be a compact locally conformal hyperkähler manifold of
real dim ≥ 12 and such that D has all the leaves compact. Then the leaf space
N = M/D inherits a structure of quaternion Kähler orbifold with positive scalar
curvature.

Proof. Denote by ΘN the projection of Θ on the leaf space. The vanishing of ∇ΘN

can be obtained by computing ∇Θ =
∑
α=1,2,3∇(Ωα ∧ Ωα) on basic vector fields

of the Riemannian submersion M → N . One obtains:

∇XΩα(Y, Z) = g(Y, (∇XIα)Z),
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and for basic X,Y, Z the right-hand side vanishes (1.7.b). The parallelism of ΘN

then follows.
The result holds also for dimM = 8 (cf. Remark 3.9(i)). Note that, according

to Proposition 2.3, the fibration M → N can never be trivial.

Remark 3.4. Any of the surfaces in Kato’s list can actually occur as leaves of D.
To see this, just consider the standard hypercomplex Hopf manifold S4n−1 × S1 =
HH = (Hn − {0})/Γ2 and the diagonal action of any G in the list on the elements
(h0, h1, . . . , hn−1) of Hn − {0}. In this way, G acts on the fibers of S4n−1 × S1 →
HPn−1, i.e. on the primary standard Hopf surface S3 × S1. Note that, except in
case (i) for m = 1, all fibers are nonprimary.

To better understand the above projection p : M → N , we fix a complex structure
J ∈ H and consider the complex analytic foliation VJ spanned by B and JB. From
[Va2] and [Pe-Po-Sw] we then know that the leaf space ZJ = M/VJ is a Kähler-
Einstein orbifold with positive scalar curvature. Let ρ be the projection M → ZJ .

Remark 3.5. Assume D to have all the leaves compact. Then for any J ∈ H, ZJ is
analytically equivalent with the twistor space Z of N .

Proof. Fix q ∈ ZJ . Its counterimage on M is a complex torus on a well-determined
hypercomplex Hopf surface S, leaf of D. If r is the image of S on N , then q 7→ r
defines a Riemannian submersion π : ZJ → N and p = π ◦ ρ. As the image of S
under ρ is a sphere S2, π naturally realizes ZJ as the total space of a S2-bundle
over N . The fixed complex structure J on M projects on ZJ under ρ but not on
N under π. However, once a q in ZJ is chosen, J defines a compatible complex

structure Kq ∈ Hr ⊂ End(TrN) by: KqX = π∗JX̃q, X̃q being the horizontal lift at
q of X ∈ TrN . This identifies the complex structure of ZJ with that of the twistor
space Z of N .

We now consider the foliation B generated on M by the Lee vector field B and
its orthogonal complement B⊥. The integrability of B⊥ is assured by dω = 0.

Proposition 3.6. B⊥ is a totally geodesic Riemannian foliation. Its leaves have
an induced structure of 3-Sasakian manifolds.

In fact, each generalized Hopf structure (M, g, Iα) induces a Sasakian structure
on the leaves. The three Killing vector fields IαB restricted to each leaf are related
by the formulas

g(IλB, IµB) = δλµ, [IλB, IµB] = ενλµIνB.

This is precisely the definition of a 3-Sasakian structure. Then, using the results of
[Va3]:

Corollary 3.7. If B has compact leaves, M is a flat S1-principal bundle over a
3-Sasakian orbifold P = M/B. The projection map is a Riemannian submersion.

On the other hand, by [Bo-Ga-Ma1], also 3-Sasakian manifolds fiber on quater-
nion Kähler orbifolds of positive scalar curvature with 3-dimensional homogeneous
spherical space forms S3/Γ as fibers. Note that Γ is then one of the groups: Zm,
m ≥ 1, D4m, m ≥ 2, T24, O48, I120 appearing in Kato’s list. Also, observe that all
the compact hypercomplex Hopf surfaces classified by Ma. Kato are diffeomorphic
to S3/Γ-bundles over S1 ([Ka2], p. 95). By looking at the leaves of D and B, we
see then that the S3/Γ still appear as fibering any 3-Sasakian orbifold P = M/B
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which is the leaf space of a compact l.c.h.K. manifold M having all the leaves of B
compact. It follows:

Theorem 3.8. (i) Let M be a compact locally conformal hyperkähler manifold and
assume that the foliations D,V ,B have compact leaves. Then we have the follow-
ing commutative diagram of fibre bundles (and Riemannian submersions) in the
orbifold category:

Z

S2

P
S1

S3/ΓM

T 1
C S1

N

The fibres of M → N are Kato’s integrable hypercomplex Hopf surfaces S1×S3

G ,
not necessarily primary and not necessarily all homeomorphic.

(ii) Conversely, given a quaternion Kähler manifold N of positive scalar cur-
vature, there exists a commutative diagram as above with manifolds M ′, Z ′, P ′ re-
spectively, locally conformal hyperkähler, Kähler-Einstein and 3-Sasakian and with
fibers as described with Γ = G = Z2.

Proof. For the possibility of having nonprimary and nonequivalent fibers cf. Remark
3.4 and the example at the end of §6. As for statement (ii) consider the principal
SO(3)-bundle P ′ → N associated to H → N . Then P ′ has an associated 3-Sasakian
structure and any flat principal S1-bundle M ′ → P ′ can be chosen to complete the
diagram together with the twistor space of N . The obstruction to lifting P ′ → N
to a principal S3-bundle is the Marchiafava-Romani class ε ∈ H2(N ;Z2) [Ma-Ro].
Note that all arrows appearing in the diagram are canonical, except M → Z, which
depends on the choice of a compatible complex structure on M .

Remark 3.9. (i) This diagram holds also if dim(M) = 8. In this case N is still
Einstein by the above discussion. The integrability of the complex structure on
its twistor space implies it is also self-dual (cf. [Be]). Then just recall that a 4-
dimensional N is usually defined to be quaternionic Kähler if it is Einstein and
self-dual.

(ii) It is proved in [Bo-Ga-Ma1] that in every dimension 4k − 5, k ≥ 3, there
are infinitely many distinct homotopy types of complete inhomogeneous 3-Sasakian
manifolds. Thus, by simply making the product with S1, we obtain infinitely many
nonhomotopically equivalent examples of compact l.c.h.K. manifolds.

A first consequence of this diagram in Theorem 3.8 concerns cohomology. Here
we restrict to manifolds, thus assuming all foliations regular in Palais’ sense.

Note first that the property ∇ω = 0 implies the vanishing χ(M) = 0 of the Euler
characteristic. Then, applying twice the Gysin sequence in the upper triangle one
finds the relations between the Betti numbers of M and Z [Va3]:

bi(M) = bi(Z) + bi−1(Z)− bi−2(Z)− bi−3(Z) (0 ≤ i ≤ 2n− 1),

b2n(M) = 2[b2n−1(Z)− b2n−3(Z)].
(3.10)
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On the other hand, since N has positive scalar curvature, both N and its twistor
space Z have zero odd Betti numbers [Be]. The Gysin sequence of the fibration
Z → N then yields

b2p(Z) = b2p(N) + b2p−2(N).

Together with (3.10) this implies

Theorem 3.11. Let M be a compact locally conformal hyperkähler manifold with
regular foliations B and D. Then the following relations hold good:

b2p(M) = b2p+1(M) = b2p(N)− b2p−4(N) (0 ≤ 2p ≤ 2n− 2),

b2n(M) = 0

(Poincaré duality gives the corresponding equalities for 2n + 2 ≤ 2p ≤ 4n). In
particular b1(M) = 1. Moreover, if n is even, M cannot carry any quaternion
Kähler metric.

Remark 3.12. (i) Under the hypotheses of Theorem 3.11 we obtain in particular
b2p−4(N) ≤ b2p(N) for 0 ≤ 2p ≤ 2n − 2. Since any compact quaternion Kähler
N with positive scalar curvature can be realized as the quaternion Kähler base of
a compact l.c.h.K. M (Theorem 3.8(ii)), this implies, in the positive scalar curva-
ture case, the Kraines-Bonan inequalities for Betti numbers of compact quaternion
Kähler manifolds (cf. [Be]).

(ii) b1(M) = 1 is a much stronger restriction on the topology of compact l.c.h.K.
manifolds in the larger class of compact generalized Hopf manifolds. For the latter
the only restriction is b1 odd and the induced Hopf bundles over compact Riemann
surfaces of genus g provide examples of generalized Hopf manifolds with b1 = 2g+1
for any g [Va3].

Remark 3.13. The properties b1 = 1 and b2n = 0 have the following consequences:
(i) Let (M, I1, I2, I3) be a compact hypercomplex manifold that admits a locally

and nonglobally conformally hyperkähler metric. Then none of the compatible
complex structures J = a1I1 + a2I2 + a3I3, a2

1 + a2
2 + a2

3 = 1, can support a Kähler
metric. In particular, (M, I1, I2, I3) does not admit any hyperkähler metric.

(ii) Let M be a 4n-dimensional C∞ manifold that admits a locally and nonglob-
ally conformal hyperkähler structure (I1, I2, I3, g). Then, for n even, M cannot
admit any quaternion Kähler structure and, for n odd, any quaternion Kähler
structure of positive scalar curvature.

4. The homogeneous case

We call M a locally conformal hyperkähler homogeneous manifold if there exists a
Lie group which acts transitively and effectively on the left on M by hypercomplex
isometries.

Theorem 4.1. On a compact locally conformal hyperkähler homogeneous manifold
the foliations D, V and B are regular in Palais’ sense and in diagram 3.8 all orbifolds
N , Z, P are homogeneous manifolds, compatibly with the respective structures.

Proof. Let J ∈ H be a compatible complex structure on M . Then (M, g, J) is a
generalized Hopf homogeneous manifold and by [Va4, Theorem 3.2] we have the
regularity of both the foliations VJ and B. Therefore, M projects on homogeneous
manifolds ZJ and P . In particular, the projections of IαB on P are regular Killing
vector fields. Then Lemma 11.2 in [Ta] assures that the 3-dimensional foliation
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spanned by the projections of I1B, I2B, I3B is regular. This, in turn, implies that
N is a homogeneous manifold; thus D is regular on M .

Note that Theorem 4.1 implies in particular that all the leaves of the foliations
involved are compact (cf. [Pa]).

Starting with the Wolf classification of quaternion Kähler homogeneous man-
ifolds, it is possible to classify 3-Sasakian homogeneous manifolds [Bo-Ga-Ma1].
This applies to our context and gives:

Proposition 4.2. The class of complex locally conformal hyperkähler homo-
geneous manifolds coincides with that of flat principal S1-bundles over one of the
following 3-Sasakian homogeneous manifolds : S4n−1, RP 4n−1, the flat manifolds
SU(m)/S(U(m − 2) × U(1)), m ≥ 3, SO(k)/(SO(k − 4) × Sp(1)), k ≥ 7, the
exceptional spaces G2/Sp(1), F4/Sp(3), E6/SU(6), E7/ Spin(12), E8/E7.

The flat principal S1-bundles over P are characterized by having zero or torsion
Chern class c1 ∈ H2(P ;Z) and are classified by it. The integralH2 of the 3-Sasakian
homogeneous manifolds can be computed by the following argument, suggested to
the authors by Krzysztof Galicki. Look at the long homotopy exact sequence

· · · → π2(H)→ π2(G)→ π2(G/H)→ π(H)→ π(G)→ · · ·
for the 3-Sasakian homogeneous manifolds G/H listed in Proposition 4.2. Since
π2(G) = 0 for any compact Lie group G, one obtains the following isomorphisms
[Bo-Ga-Ma2]:

H2

(
SU(m)

S(U(m− 2)× U(1)

)
∼= Z, H2(RP 4n−1) ∼= Z2

and H2(G/H) = 0 for all the other 3-Sasakian homogeneous manifolds. Combined
with Proposition 4.2 this gives

Corollary 4.3. Let M be a compact locally conformal hyperkähler homogeneous
manifold. Then M is one of the following:

(i) A product (G/H)×S1, where G/H can be any of the 3-Sasakian homogeneous
manifolds S4n−1, RP 4n−1, SU(m)/S(U(m− 2) × U(1)), m ≥ 3, SO(k)/(SO(k −
4)× Sp(1)), k ≥ 7, G2/Sp(1), F4/Sp(3), E6/SU(6), E7/ Spin(12), E8/E7.

(ii) The Möbius band, unique nontrivial principal S1-bundle over RP 4n−1.

For example in dimension 8 one obtains S7 × S1, RP 7 × S1, {SU(3)/S(U(1)×
U(1))}×S1 and the Möbius band over RP 7. The first exceptional example appears
in dimension 12: the trivial bundle {G2/Sp(1)} × S1 whose 3-Sasakian base is
diffeomorphic to the Stiefel manifold V2(R7) of the orthonormal 2-frames in R7.

5. The locally conformal quaternion Kähler fibration

The structure Theorem 3.8 on compact locally conformal hyperkähler manifolds
allows us to give a precise description of the more general case of compact locally
conformal quaternion Kähler manifolds M . In fact, by referring to the fibrations
of Theorem 2.1 we obtain:

Theorem 5.1. Let M be a compact locally conformal quaternion Kähler mani-
fold and assume that the foliation D has compact leaves. Then the base orbifold
N = M/D is quaternion Kähler and the fibers are conformally flat 4-manifolds
(H− {0})/G where G is a discrete subgroup of GL(1,H) · Sp(1) inducing an inte-
grable quaternionic structure.
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The integrability of the quaternionic structure is here understood in the sense
of the G-structures; i.e. an atlas of quaternionic coordinates is required to exist
such that the jacobians of the changes of coordinates belong to GL(1,H) · Sp(1).
Statement 5.1 then yields examples of such integrable structures. Note that, in ac-
cordance with a well-known result by Marchiafava-Kulkarni, the universal covering
is an open subset of HPn (cf. [Ma] or [Be], Theorem 14.64).

Proof. According to Remark 2.2, we choose on M local hypercomplex structures
I1, I2, I3 integrable and parallel with respect to D. It follows that we may per-
form the same computations as in the l.c.h.K. case and locally project the bundle
H ⊂ End(TM) on the Riemannian base N . Since H is global on M , we obtain a
quaternion Kähler orbifold N of positive scalar curvature. Now let F be a fiber of
the above fibration. Due to the parallelism of ω it is a totally geodesic submanifold
in M . We denote by ω0 (resp. g0) the restriction of the Lee form (resp. l.c.q.K.

metric g) to F and by B0 = ω\0. Around a point x ∈ F we may consider a local or-
thonormal basis of tangent vector fields of the form {B0, I1B0, I2B0, I3B0}. Using
the parallelism of ω0 we easily compute the curvature tensor RD of the Weyl connec-
tion on this basis and obtain: RD(IαB0, IβB0)IγB0 = 0, RD(IαB0, IβB0)B0 = 0,
RD(IαB0, B0)IβB0 = 0, RD(IαB0, B0)B0 = 0. Thus, the curvature of the Weyl
connection vanishes on F . This proves that F is conformally flat. Furthermore, the
well-known formula connecting the curvature tensors of two conformal metrics now
gives the form of the curvature tensor R0 (we again use the fact that F is totally
geodesic):

R0(X,Y )Z = ω0(X)ω0(Z)Y − ω0(Y )ω0(Z)X − ω0(X)g0(Y, Z)B0

+ ω0(Y )g0(X,Z)B0 + g0(Y, Z)X − g0(X,Z)Y.
(5.2)

It follows that the Ricci tensor S0 = g0−ω0⊗ω0 is g0-parallel and that the sectional
curvature is ≥ 0 and strictly positive on an {IαB0, IβB0}-plane. The universal
Riemannian coverings of conformally flat Riemannian manifolds with parallel Ricci
curvature have been classified by J. Lafontaine in [La]. By the above curvature

discussion and the reducibility of F , due to ∇B0 = 0, we conclude that F̃ is R×S3,
isometric with R4 − {0} with the conformally flat metric g = (hh̄)−1 dh⊗ dh̄.

Riemannian manifolds with universal covering Rn − {0} have been considered
in the contexts of local similarity manifolds [Va-Re] and, in dimension n = 4, of
Einstein-Weyl structures [Gau2]. In fact, it is proved in [Va-Re] that the curvature
formula (5.2) implies that the allowed groups G of covering transformations of
R4 − {0} consists of conformal transformations

x̃i = ρ
∑
j

aijx
j ,(5.3)

where ρ > 0 and aij ∈ SO(4). More precisely,

G = {htk0 ; h ∈ H, k ∈ Z},(5.4)

where t0 is a conformal transformation with maximal module 0 < ρ < 1 and H is
one of the finite subgroups of U(2) classified by M. Kato [Ka1]. To conclude that
F has an induced integrable quaternionic structure one has only to recall that the
conformal group CO+(4) of transformations (5.3) coincides with the 1-dimensional
quaternionic group GL(1,H) · Sp(1).
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Accordingly, we call a real 4-dimensional Hopf manifold any quotient of R4−{0}
by one of the discrete groups G ⊂ CO+(4) described above. Therefore, the leaves
F of the foliation D on a compact l.c.q.K. manifold are such and, in particular, they
may be complex Hopf surfaces (cf. Proposition 6.1) or hypercomplex Hopf surfaces
as in the l.c.h.K. case.

6. Examples: hypercomplex and quaternionic Hopf manifolds

We now describe some natural examples of 4n-dimensional l.c.q.K. manifolds.
We already noted that any real 4-dimensional Hopf manifold is an integrable quater-
nionic Hopf 4-manifold, i.e. a quotient of H−{0} ≡ R4−{0} by a discrete subgroup
G of GL(1,H) ·Sp(1) ≡ CO+(4). Moreover, since the metric g = (hh̄)−1 dh⊗ dh̄ =
(
∑
i x

2
i )
−1
∑
i(dxi)

2 is invariant by the action of G, any real 4-dimensional Hopf
manifold is a compact locally conformal quaternion Kähler manifold. More gen-
erally, consider the quaternion Hopf manifold M = (Hn − {0})/G, where G is
a discrete group of type (5.4) acting diagonally on the quaternionic coordinates
(h0, . . . , hn−1). Endow M with the metric g = (

∑
α hαh̄α)−1

∑
α dhα ⊗ dh̄α and

assume the foliation D to have compact leaves.

Proposition 6.1. The quaternion Hopf manifold M = (Hn − {0})/G with the
metric g is a compact locally conformal quaternion Kähler manifold and the leaves F
of D are integrable quaternionic Hopf 4-manifolds. The leaf space N is a quaternion
Kähler orbifold quotient of HPn−1, whose set of singular points is generally the
RPn−1 ⊂ HPn−1. In particular :

(i) If G is one of the groups listed in Kato’s Theorem 3.2, then M is a locally
conformal hyperkähler manifold, the leaves F of D are integrable hypercomplex Hopf
surfaces, and N is HPn−1.

(ii) If G ⊂ GL(n,H) ·U(1), e.g. G = Γc×Zm with Γc acting on the left and Zm
on the right on the quaternionic coordinates, then the locally conformal quaternion
Kähler manifold M admits a compatible global complex structure and the leaves F
of D are complex Hopf surfaces. Here the set of singular points of the orbifold N
is the CPn−1 ⊂ HPn−1.

Proof. In fact, in the general case, G turns out to be a discrete subgroup of
GL(n,H) · Sp(1), thus preserving the quaternionic structure of the universal cov-
ering. The structure of the leaves follows from Theorem 5.1. Since the two factors
GL(n,H) and Sp(1) act respectively on the left and on the right of the quaternionic
coordinates of Hn − {0}, the induced action of G on the projective space HPn−1

identifies each point of it with finitely many other points, fixing those which can
be represented in real coordinates. In the case (i), G is a subgroup of GL(n,H),
thus preserving the hypercomplex structure of the universal covering and inducing
the same structure on the leaves (cf. Proposition 3.1). The equality N = HPn−1

follows as in Proposition 3.3, where the group Γ2 is replaced by Γc. The case (ii) is
obtained by the inclusion GL(n,H) ·U(1) ⊂ GL(2n,C), assuring the existence of a
global integrable complex structure on M and on the leaves of D. These are real
Hopf 4-manifolds with a complex structure, hence complex Hopf surfaces, as clas-
sified in [Ka1]. The induced action of G in this case fixes all the points of complex
coordinates.

We point out that quaternionic Kähler orbifolds that are finite quotients of
HPn−1 may appear as leaf spaces N = M/D also of locally conformal hyperkähler
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M = (Hn − {0})/G̃. Assume for example (cf. [Pe-Po-Sw], Remark 3.4) n = 2 and

G̃ generated by (h0, h1) 7→ (2e2πi/3h0, 2e
4πi/3h1). Then the leaf space N = M/D is

a Z3-quotient of HP 1. Note that the leaves of D, standard Hopf surfaces S3 × S1

over the regular points of the orbifold, are nonprimary (S1 × S3)/Z3 only over the
two singular points [1 : 0] and [0 : 1] of N = HP 1/Z3.
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P.le A. Moro, 2, I-00185 Roma, Italy

E-mail address: piccinni@axrma.uniromas.it


