
LOCAL ALMOST CONTACT METRIC 3-STRUCTURESPAOLA MATZEU AND LIVIU ORNEAAbstra
t. We study an odd-dimensional analogue of quaternion-K�ahler geometry. We show that su
h manifolds are Einstein withpositive s
alar 
urvature, hen
e, if 
omplete, they are 
ompa
twith �nite fundamental group. Moreover, under some regularityassumption, they �ber with 3-dimensional spheri
al spa
e formsover Einstein orbifolds with positive s
alar 
urvature. As a by-produ
t, we derive a non-existen
e result for a 
ertain type of realhypersurfa
e of a quaternion-K�ahler manifold.1991 Mathemati
s Subje
t Classi�
ation: 53C15, 53C25.Key words and phrases: Quaternion-K�ahler manifold, almost
onta
t stru
ture, Einstein manifold, Riemannian foliation, warpedprodu
t, Riemannian submersion.1. Introdu
tionOne 
ould see in re
ent years a renewed interest 
on
erning (almost)
onta
t 3-stru
tures, espe
ially motivated and stimulated by the workof Ch. Boyer, K. Gali
ki, B. Mann ([Bo-Ga-Ma℄). They su

eededin throwing a new light on 3-Sasakian geometry, 
onstru
ting a wide
lass of 
ompa
t examples with di�erent homotopy types. On the otherhand, they made pre
ise the relation between 3-Sasakian geometry,quaternioni
 geometry and 
omplex (K�ahler) geometry. One of theirmajor novelty was to work in the orbifold 
ategory. 3-Sasakian stru
-tures are indu
ed on totally umbili
al real hypersurfa
es of hyperk�ahlermanifolds. Also, the
ône over a 3-Sasakian manifold 
an be 
anoni
allyendowed with a hyperk�ahler stru
ture. In the same spirit G. Hernan-dez was interested in manifolds 
arrying three "nested" f -stru
tures([He℄).In the same time, the study of weaker (than the Sasakian ones)geometri
al 
onditions imposed to a 
onta
t 3-stru
ture was developedby other authors: Geiges and Thomas related hyper
onta
t stru
turesto gauge theory ([Ge-Th℄) and A. Banyaga 
ontinued this line (
f. [Ba℄).All these stru
tures have some 
ommon features: they are global,thus being odd-dimensional analogues of hyperhermitian or hyperk�ahler1



2 PAOLA MATZEU AND LIVIU ORNEAgeometries and they rely on a spe
i�
, good de�nition of normality de-rived from the stru
ture indu
ed on a real hypersurfa
e (usually totallyumbili
al) of an appropriate type of hyperhermitian manifold.On the 
ontrary, in this note we try to understand the lo
al 
ase.A previous attempt was made in [Or-Pi℄ where a notion of lo
al 3-Sasakian stru
ture was introdu
ed, arising from the study of lo
ally
onformal quaternion-K�ahler stru
tures. We also want to propose anatural odd-dimensional analogue of quaternion-K�ahler stru
tures. Asimilar lo
al stru
ture was studied by A. Bejan
u under the name ofgeneralized 3-Sasakian stru
tures, [Be℄, but his viewpoint is that ofsubmanifold theory.In the sequel all manifolds we deal with are 
onne
ted. The manifoldsand the geometri
 obje
ts they 
arry on are of di�erentiability 
lass C1.2. The normality 
onditionsLet us �rst introdu
eDe�nition 2.1. Let (M; g) be a Riemannian manifold of real dimen-sion 4n + 3 endowed with: a rank 3 subbundle � of TM , a rank 3subbundle � of End(TM) su
h that, on any trivializing open set Ugood for both � and �, there exist a lo
al orthonormal basis �1; �2; �3for � and a lo
al basis '1; '2; '3 for � satisfying the relations (hereand in the sequel �i = �[i ):(1)'i'j � �j 
 �i = �'j'i + �i 
 �j = �ijk'k; �i'j = �ijk�k; 'i�j = �ijk�k(2)'2i = �Id + �i 
 �i; �i'i = 0; 'i�i = 0; g('i�; 'i�) = g(�; �)� �i(�)�i(�);where (i; j; k) is any permutation of (1; 2; 3). Then we say that (M; g)has a lo
al almost 
onta
t metri
 3-stru
ture.The global version of this de�nition was given in [Ku℄.Following the same method as was already done for 3-Sasakian spa
es( 
f. [Bo-Ga-Ma℄), we now 
onsider the produ
t N =M�R+ endowedwith the 
one metri
 G = t2��1g + ��2dt2 where �1 (resp. �2) is the
anoni
al proje
tion on M (resp.R). One 
an de�ne, lo
ally, threealmost 
omplex stru
tures as follows:Ii(X; f ddt) = ('iX + ft �i;�t�i(X) ddt)where X 2 X (M) and f is a real fun
tion on N . It is easily seen thatIiIj + IjIi = �2Æij; G(Ii�; Ii�) = G(�; �)



LOCAL ALMOST CONTACT METRIC 3-STRUCTURES 3thus, denoting with H the subbundle of End(TN) generated by the Ii,(N;G;H) is a quaternion Hermitian manifold. We request that thisstru
ture be quaternion-K�ahler. Hen
e, letting D (resp. r) be themetri
 
onne
tion of G (resp. g) we must have DH = H. Togetherwith the relations between D and r (see [On℄, p.206):(3) D ddt ddt = 0; D ddtX = DX ddt = 1tX; DXY = rXY � tg(X; Y ) ddtthis implies the existen
e of some lo
al one-forms �i satisfyingDIi = �k 
 Ij � �j 
 Ik:On the other hand, the well-known relations between D and r implythat the pulled-ba
k forms ���i (for simpli
ity denoted equally �i)satisfy the equation:(4) r'i = Id
 �i � g 
 �i + �k 
 'j � �j 
 'k;This motivates the followingDe�nition 2.2. A lo
al almost 
onta
t metri
 3-stru
ture is 
allednormal if on any trivializing open set good for both � and � thereexist three lo
al one forms �i satisfying (4).Remark 2.1. 1) On a quaternioni
 Hermitian manifold (N;G;H) thetwo-forms !i(X; Y ) = G(X; IiY ) are lo
al, but the four-form ! =P3i=1 !i^!i is global and the quaternion-K�ahler 
ondition is equivalentwith the parallelism of !. Similarly, on a manifold with a lo
al almost
onta
t metri
 3-stru
ture one de�nes the lo
al two-forms  i(X; Y ) =g(X; IiY ) and these produ
e the global four-form  = P3i=1  i ^  i.One may dire
tly 
ompute the following expression for the 
ovariantderivative of  : 2rT = �
 ^P3i=1  i ^ �i, where 
 = iTg. Then,for T 2 �?, (rT )(�1; �2; �3; T ) = �3. Hen
e, the normality 
onditiondoes not imply the parallelism of  .2) Moreover, let us denote �ij := �i Æ 'j and, abusing a little, put�i ^'i = �i
'i�'i
�i. Now a straightforward 
omputation provesthat the Nijenhuis tensors N'i of 'i on a normal lo
al almost 
onta
tmetri
 3-stru
ture satisfy the following three 
onditions:N'i + d�i 
 �i = �ki ^ 'j � �ji ^ 'k � �j ^ 'j � �k ^ 'k:3) The following equations are, also, a 
onsequen
e of normality:(5) r�i = 'i + �k 
 �j � �j 
 �k:



4 PAOLA MATZEU AND LIVIU ORNEA3. Embedding in quaternion-K�ahler manifoldsRetra
ing our steps we immediately �nd that our manifolds 
an beembedded as real hypersurfa
es of quaternion-K�ahler manifolds.Proposition 3.1. If M has a normal lo
al almost 
onta
t metri
 3-stru
ture, then M �R+ with the 
one metri
 has a natural quaternion-K�ahler stru
ture.As in [Bo-Ga℄, this allows us to give the following:Equivalent de�nition 3.1. A 4n + 3-dimensional Riemannian man-ifold (M; g) admits a normal lo
al almost 
onta
t metri
 3-stru
tureif and only if the holonomy of the 
one metri
 G on N = M �R+ isin
luded in Sp(n+ 1) � Sp(1).For the "only if part" one has only to note that the hypothesis onthe holonomy is equivalent to (N;G) being quaternion K�ahler . Then,identifying M with the sli
e M � 1 of N , one de�nes a lo
al almost
onta
t 3-stru
ture by:(6) �i = Ii ddt ; 'iX = tan(IiX)for any X tangent to M . The rest of the proof pro
eeds as in theprevious paragraph. The "if part" is obvious.>From the third relation in (3) we see that the se
ond fundamen-tal form of the embedding of M in the 
one is h = �tg, hen
e theembedding is totally umbili
al, with mean 
urvature ve
tor �t.On the other hand, let M be an oriented real hypersurfa
e of aquaternion-K�ahler manifold N , with lo
al unit normal ve
tor �eld C.Then a lo
al almost 
onta
t 3-stru
ture is 
anoni
ally indu
ed on Mby(7) 'iX = tan(IiX); �i = �IiC:Note that the previous embedding of M in the 
one M �R+ is notof this type, be
ause in (6) ddt is not a unit ve
tor �eld for the 
onemetri
.Letting A be the shape operator of the hypersurfa
e, the Gauss andWeingarten formulae imply:(8) (rX'i)Y = �i(Y )AX� g(AX; Y )�i+�k(X)'j(Y )��j(X)'k(Y )(9) rX�i = 'iAX + �k(X)�j � �j(X)�kIfM is totally umbili
al, with A = Id, it is trivially normal. Conversely,suppose the indu
ed stru
ture onM normal. Then there exist the lo
al



LOCAL ALMOST CONTACT METRIC 3-STRUCTURES 5one-forms �j su
h that the equations (4), (5) are satis�ed with � insteadof �. Comparing the expressions of (r�i'i)�i obtained from (4) and(8) we derive �k(�i) = �k(�i); A�i = ai�iHen
e the one-forms �i, �i 
oin
ide, respe
tively, on �. We then let Xbe normal to � and using the expressions of (rX'i)�i as well as thesymmetry of the shape operator we 
on
lude �j(X) = �j(X). Thus,the normality of the hypersurfa
e implies the equality of the 
onsideredone-forms. This moreover yields 'iAY = 'iY for any Y 2 X (M).Letting Y = �j we easily infer that A is the identity on �. If Yis in �?, then 'iY 2 �?, and the same holds for AY . Finally, from'2iAY = '2iY we obtain that A = Id on �? too. The two 
onstru
tionsare one-to-one. Summing up we have proved:Theorem 3.1. The lo
al almost 
onta
t metri
 stru
ture indu
ed by(7) on a real orientable hypersurfa
e of a quaternion-K�ahler manifold isnormal if and only if the hypersurfa
e is totally umbili
al with 
onstantmean 
urvature 1.Remark 3.1. This result is to be 
ompared with the similar one in [He℄,p. 320 and with Thm. 1 in [Be℄.Re
all that totally umbili
al submanifolds with 
onstant mean 
ur-vature are parti
ular 
ases of extrinsi
 spheres, a type of submanifoldstudied by many authors, e.g. [Ch℄, p.69 and forward.4. Main propertiesFrom now on (M; g;�;�) will denote a 4n+3-dimensional Riemann-ian manifold endowed with a normal lo
al almost 
onta
t metri
 3-stru
ture. The embedding pro
edure in the 
one 
an be used to deter-mine the 
urvature properties of M .3-Sasakian manifolds are always Einstein. This is the 
ase for ourstru
ture too. Pre
isely:Proposition 4.1. Lo
al almost 
onta
t metri
 3-stru
tures are Ein-stein with positive s
alar 
urvature 4n+ 2Proposition 4.2. We embed M in N = M � R as above. Then(N;G) is warped produ
t with warp fun
tion f = t. The Ri

i tensorof N is 
omputed in [On℄, p. 211. Parti
ularly, Ri
N (X; ddt) = 0 forany proje
table X on M . As G is known to be Einstein, this impliesRi
N = 0. Moreover,Ri
M(X; Y ) = Ri
N(X�; Y �) +G(X�; Y �)F;



6 PAOLA MATZEU AND LIVIU ORNEAwhere F = �f + (dimM � 1)G(gradf; gradf)f 2 ;and X� are proje
table ve
tor �elds on X, Y . In our 
ase F = 4n+ 2,hen
e the desired result. �From Myers' theorem we now dedu
e:Corollary 4.1. Complete manifolds 
arrying a normal almost 
onta
tmetri
 3-stru
ture are 
ompa
t, with �nite fundamental group.Let us now re
all the following result of N. Koiso:Theorem 4.1. (
f. [Ko℄) Let (M; g) be a totally umbili
al Einsteinhypersurfa
e in a 
omplete Einstein manifold (M; g). Then the onlypossible 
ases are:(a) g has positive Ri

i 
urvature. Then g and g have 
onstant se
-tional 
urvature;(b) g has negative Ri

i 
urvature. If M is 
ompa
t or (M; g) ishomogeneous, then g and g have 
onstant se
tional 
urvature;(
) g and g have zero Ri

i 
urvature.Note that this does not apply to the embedding in the 
one, be
ausethe 
one metri
 is not 
omplete.However, 
ombining Koiso's theorem with our previous result andwith Theorem 3.1, we obtain the following statement (whi
h 
an alsobe viewed as a non-existen
e result):Proposition 4.3. A totally umbili
al real hypersurfa
e, with mean 
ur-vature 1, of a 
omplete quaternion-K�ahler manifold is ne
essarily apositive spa
e form. Moreover, the ambient spa
e is a spa
e form too.Hen
e, more interesting examples 
an be looked for as hypersurfa
esof non-
omplete quaternion-K�ahler manifolds.The above is to be 
ompared to other non-existen
e results for hy-persurfa
es of quaternion-K�ahler manifolds, e.g. [Ort-Pe℄.We 
olle
t some 
omputational fa
ts in the next:Lemma 4.1. For any trivializing open set U good for both � and �one has:(10) �j(�j) = �k(�k) for any j 6= k:(11) [�i; �j℄ = �2(1� �j(�j))�k + �k(�j)�j + �k(�i)�i:Moreover, �i are Killing if and only if �k(�i) = 0 for any k 6= i:



LOCAL ALMOST CONTACT METRIC 3-STRUCTURES 7Proposition 4.4. We 
ompute the Lie derivative of the metri
 on thedire
tion of �i. The result is:(12) L�ig = �k 
 �j � �j 
 �k + �j 
 �k � �k 
 �j:Applying on (�j; �k) we get:(L�ig)(�j; �k) = ��j(�j) + �k(�k):Now the LHS of the above is symmetri
 and the RHS is antisymmetri
.This proves (10) and the last assertion. As for (11), it is a dire
t
onsequen
e of (5). �5. The leaves of �From (11) it is 
lear that � determines a 3-dimensional foliation onM . Let F be any of its leaves. From (5) we see that F is totallygeodesi
 in M . A dire
t 
omputation of the 
urvature tensor of Mshows that R(X; Y )�i is tangent to F for X, Y 2 X (M) any i. On theother hand, for any totally geodesi
 submanifold P p of a Riemannianmanifold P p+k one has the relation:Ri
P (X; Y ) = Ri
P (X; Y )� p+kXp+1 g(RP (X;Ei)Y;Ei)where fEig is a lo
al orthonormal basis adapted to the submanifold.Hen
e, if one knows that RP (X;Ei)Y is tangent to the submanifold,the last term vanishes and the two Ri

i tensors are equal on the sub-manifold. It is the 
ase for F in P (just put X = �i, Y = �j). As any3-dimensional Einstein manifold has 
onstant s
alar 
urvature we maystate:Proposition 5.1. The leaves of the foliation generated by � are spa
eforms of positive se
tional 
urvature 2n+ 1.Hen
e, if 
ompa
t, the leaves are spheri
al spa
e forms S3=�.A dire
t 
omputation of the 
urvature tensor of M givesRi
M (Y; �i) = 2(2n+ 1)�i(Y ) + 2 fd�k + (�i ^ �j)g (�j; Y )�� 2 fd�j � (�i ^ �k)g (�k; Y ):Together with the above proposition, this proves that the lo
al one-forms �i are subje
t to some 
onditions, their restri
tions to F (denotedby the same letters) must satisfy the following equations:(d�i + �k ^ �j)(�j; �i) = 0(d�i + �k ^ �j)(�k; �i) = 0(d�i + �k ^ �j)(�k; �j) = �



8 PAOLA MATZEU AND LIVIU ORNEA(d�j + �k ^ �i)(�i; �j) = 0(d�j + �k ^ �i)(�k; �j) = 0(d�j + �k ^ �i)(�k; �i) = �(d�k + �i ^ �j)(�i; �k) = 0(d�k + �i ^ �j)(�j; �k) = 0(d�k + �i ^ �j)(�j; �i) = �where � = 12S
alM � (2n + 1). These formulae may be put into themore 
ompa
t form: d�i + �k ^ �j = ��k ^ �jd�j + �k ^ �i = ��k ^ �id�k + �i ^ �j = ��j ^ �iFrom (12) we see that L�g(X; Y ) = 0 for any X; Y orthogonal to�. Hen
e the metri
 is proje
table on the leaf spa
e, when this exists.However, we 
an say nothing about other proje
table stru
tures on theeventual leaf spa
e. We 
an only state:Proposition 5.2. LetM be a Riemannian manifold 
arrying a normalalmost 
onta
t metri
 3-stru
ture. If the leaves of the foliation � are
ompa
t, then the proje
ted metri
 on the orbifold P = M=� is Ein-stein with positive s
alar 
urvature. The 
anoni
al proje
tion is a Rie-mannian totally geodesi
 submersion whose leaves are 3-dimensionalspheri
al spa
e forms.Proof. Everything was already proven ex
ept for the Einstein propertyof P . We use the following formula 
onne
ting the Ri

i tensors of thetotal spa
e and of the base spa
e in a Riemannian submersion withtotally geodesi
 �bers, 
f. [Bes℄, p.250:Ri
M(X; Y ) = Ri
P (X�; Y �)� 2g(AX�; AY �):Here � denotes horizontal lift of ve
tor �elds and A is the O'Neill tensorde�ned by 2AEF = verti
alpartof [E; F ℄. A lo
al orthonormal basisfor the verti
al spa
e is f�1; �2; �3g, hen
e:g(AX�; AY �) = P g(AX��i; AY ��i) =P g(HrX��i;HrY ��i) == P g('iX�; 'iY �) = 3g(X�; Y �):Finally this yields:Ri
P = (S
alM + 6)g = (4n+ 8)gand the proof is 
omplete. �
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