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Abstract A locally conformally Kähler (LCK) manifold is a complex manifold covered
by a Kähler manifold, with the covering group acting by homotheties. We show that if such
a compact manifold X admits a holomorphic submersion with positive-dimensional fibers at
least one of which is of Kähler type, then X is globally conformally Kähler or biholomorphic,
up to finite covers, to a small deformation of a Vaisman manifold (i.e., a mapping torus over
a circle, with Sasakian fiber). As a consequence, we show that the product of a compact
non-Kähler LCK and a compact Kähler manifold cannot carry a LCK metric.
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1 Introduction and statement of results

Locally conformally Kähler (LCK) manifolds are Hermitian manifolds (X, g, J ), such that
the fundamental two-form ω = g ◦ J satisfies the integrability condition

dω = θ ∧ ω, for a closed one-form θ,

where θ is called the Lee form.
This definition is known to be equivalent with a covering space X̃ of (X, J ) to carry

a global Kähler metric � with respect to which the covering group � acts by holomorphic
homotheties (see [4,6,12] for a recent survey). As such, the LCK structure defines a character
associating with each covering transformation its scale factor:

χ : � −→ R
+, χ(γ ) = γ ∗�

�
. (1.1)

If θ is exact, the metric ω is globally conformal to a Kähler metric (we say that the
Hermitian manifold (X, ω) is GCK for short). In particular, X admits a Kähler metric (i.e.,
it is of Kähler type).

In a LCK manifold, if θ is moreover parallel with respect to the Levi-Civita connection of
the LCK metric, the manifold is called Vaisman. Compact Vaisman manifolds are mapping
tori over the circle with fibers isometric with a Sasakian manifold (see [11]). The topology
of compact Vaisman manifolds is very different from the topology of Kähler manifolds, e.g.,
their first Betti number is always odd.

Almost all compact complex surfaces in class VII are LCK, and many of them (e.g.,
diagonal Hopf, Kodaira) are Vaisman (see [2,3]). In higher dimensions, main examples are
diagonal Hopf manifolds (which are Vaisman), non-diagonal Hopf manifolds (non-Vaisman,
see [15]), Oeljeklaus-Toma manifolds (see [10,17]).

On a Vaisman manifold X , the Lee field θ� (the g-dual of θ ) is analytic and Killing and
hence generates a complex, totally geodesic foliation F = {θ�, Jθ�}. If F is regular (and in
this case, the manifold X itself is called regular), then X admits a holomorphic submersion
(which is moreover a principal bundle map) over a projective orbifold. But, in general, very
little is known about the existence of holomorphic submersions from compact LCK manifolds
(papers like [8,9] assume the existence of the submersion and are mainly concerned with the
structure it imposes on the total space or on the base and by the geometry of the fibers).

In this note, we partially solve the existence problem. Our principal result is the following:

Theorem Let X be a compact complex manifold which admits a homolorphic submersion
π : X −→ B with positive-dimensional fibers. Assume one of the fibers of π is of Kähler
type. If X has an LCK metric g, then g is GCK or X is biholomorphic to a finite quotient of
a small deformation of a Vaisman manifold.

This result is rather general, as it does not assume that the submersion relates in any way
the Riemannian geometries of the total and base spaces (we do not restrict to Riemannian or
conformal submersions, for example).

There is no natural product construction in the category of LCK manifolds, because
CO(m) × CO(n) �⊂ CO(m + n). The following by-product of the Theorem (already proven
differently in [18]) is, therefore, an useful information:

Corollary 1 Let X1, X2 be compact regular Vaisman manifolds. Then, X1 × X2 carries no
LCK metric.
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But more can be said. Applying the above Theorem to the projection of the first factor
of a product X × Y where X is a compact LCK (non-Kähler) manifold and Y is compact
Kähler, both positive-dimensional, one obtains:

Corollary 2 The product of a compact LCK non-Kähler manifold with a compact Kähler
manifold admits no LCK metric.

2 Proof of the Theorem

The main ingredient is the following “lemma on fibrations.”

Lemma Let X be a compact complex manifold which admits a homolorphic submersion
π : X −→ B with positive-dimensional fibers. If X has an LCK metric g whose Lee form θ

is (cohomologically) a pull-back, [θ ] = π∗([η]), [η] ∈ H1(B), then g is GCK.

Proof The proof is basically the same as in [16], but since the statement is a little bit different,
we include the details here.

First, let us fix some notations. If M is any manifold and α ∈ H1(M) is arbitrary, we will
denote by α∗ : H1(M, Z) −→ R the morphism given by

α∗([γ ]) =
∫

γ

α.

Notice that in our setup, we have

η∗ ◦ π∗ = θ∗

where π∗ : H1(X, Z) −→ H1(B, Z) is the map induced at homology by π.

Moreover, we will denote by Mab its maximal abelian cover, whose fundamental group
is just [π1(M), π1(M)]. Observe that the deck group of Mab over M is H1(M, Z).

Now, let K = ker(η∗); it is a subgroup of H1(B, Z) so letting B = Bab/K we see
H1(B, Z) ∼= H1(Bab, Z)/K . In particular, the pullback η of η to B is exact, since η∗ ≡ 0.

Now let X = B ×B X, i.e.,

X −−−−→ X

π

⏐⏐�
⏐⏐�π

B −−−−→ B

Then, X is a cover of X , and the fibers of the induced map π : X −→ B are the same as the
fibers of π , thus π is proper as well. Let θ be the pullback of θ to X . Since [θ ] = π∗([η]),
we see that θ is also exact, as η is exact. This implies that the pullback g of g to X is globally
conformal to a Kähler metric ω.

Assume now that g is not GCK. Then, there exists a deck transformation ϕ of X acting
on ω by a non-isometric homothety:

ϕ∗(ω) = 
 · ω, ρ �= 1. (2.1)

Let F be any fiber of π. Since F is also a fiber of π , it is compact, hence its volume Volω(F)

is finite. Let F ′ = ϕ(F). Then, F ′ is also a fiber of π , and since ω is Kähler, we have

Volω(F) = Volω(F ′).
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But from (2.1), we get

Volω(F) = 
dimC(F)Volω(F ′),

a contradiction. �

Proof of the Theorem We shall prove the following facts:

1) If the fibers are at least 2-dimensional, then g is GCK.
2) If the fibers are 1-dimensional and their genus is not 1, g is again GCK. And finally,
3) If the fibers are 1-dimensional and their genus is 1, then X is biholomorphic to a GCK

manifold or to a finite quotient of a small deformation of a Vaisman manifold.

To prove 1), let F0 be a fiber of Kähler type and let F be any fiber of π . Also, let i0 and i be
the respective immersions of the fibers in X . As B is arcwise connected, from Ehresmann’s
theorem, it follows that F and F0 have the same homotopy type, which implies the exact
sequence

0 −−−−→ H1(B)
π∗−−−−→ H1(X)

i∗−−−−→ H1(F).

But Vaisman proved [19] that if a compact LCK manifold of dimension at least 2 is of Kähler
type, then the LCK metric is actually GCK. Hence, if F0 has dimension at least 2, it follows
that i∗0 ([θ ]) = 0. From the exact sequence above, we see [θ ] is a pullback, and hence, the
above Lemma implies that g is GCK.

To prove 2), observe that if the genus of F is 0 then π∗ is an isomorphism between H1(B)

and H1(X), so the Lemma applies again.
If the genus is at least 2, we argue as follows. First, by Uniformization Theorem, after a

conformal change of g, we may assume g|F has (negative) constant curvature. On the other
hand, by [17], we get that [θ ]|F is the Poincaré dual of the character χ of g|F (see (1.1) for
the definition of the character). But this character is trivial, since the Riemannian universal
cover of (F, g|F ) is the Poincaré half plane with the metric of negative constant curvature
with respect to which every homothety is an isometry. Hence, [θ ]|F = 0, and so again [θ ] is
a pullback from B.

We now prove 3). As the j−invariant is a holomorphic map and B is compact, we see
that all the fibers are isomorphic, and hence, by Fischer-Grauert theorem [7], the map π is a
locally trivial fibration. Hence, X has a finite cover X ′ (which is still LCK, begin a cover of
X ) and is a principal elliptic bundle and the fiber F acts holomorphically on X ′. Notice that
the fiber F, which is a complex torus T 1

C
, acts holomorphically on X ′. In particular, every

S1 ⊂ F acts holomorphically on X ′. At this point, we need the following result (which we
reformulate in the present paper terms):

Theorem [13] Let M be a compact complex manifold, equipped with a holomorphic S1

-action and an LCK metric (not necessarily compatible). Suppose that this S1-action lifts to
the universal covering M̃ to a non-trivial action by homotheties. Then, M admits an LCK
metric with an automorphic potential.

We apply this result to M = X ′. Hence, if X ′ is not GCK, it admits a Kähler covering
with Kähler metric given by an automorphic global potential. On the other hand, a compact
LCK manifold admitting a Kähler covering with automorphic global potential has a small
deformation of its complex structure to one which has a compatible Vaisman metric (cf
[14]). �

Remark Consider a Hopf surface X with fundamental group generated by (z1, z2) �→
(αz1, βz2), 0 < |α| � |β| < 1.
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As shown in [5, Thm. 1], for any choice of α and β as above, X has a Vaisman metric,
while, as shown in (e.g.,) [1, Prop. 18.2, p. 226], X has an elliptic fibration if and only if
there are m, n ∈ Z, (m, n) �= (0, 0) such that αn = βm . Actually, more can be shown: if no
(m, n) as above exists, then the Hopf surface has finitely many curves, two, more exactly!

Accordingly, for a “general choice” of (α, β), the resulting Hopf surface will be Vaisman
but not elliptic.

Finally, let us give the

Proof of Corollary 1 Assume the product X1 × X2 has a LCK structure. As X1 and X2

are regular compact Vaisman manifolds, they are total spaces of holomorphic submersions
πi : X1 −→ Bi , i = 1, 2 onto (compact Hodge) manifolds B1, B2 with fibers elliptic curves
F1, F2. But then

π : X1 × X2 −→ B1 × B2, π(x1, x2) = (π1(x1), π2(x2))

is a holomorphic submersion with typical fiber F1 × F2 which is a 2-dimensional torus and is
of Kähler type. As the first Betti number of a compact Vaisman manifold is odd, b1(X1 × X2)

is even, and we see that X1 × X2 is not biholomorphic to a Vaisman manifold. Then, from
the above Theorem, it follows that X1 × X2 is of Kähler type. But this forces X1, X2 to be
of Kähler type as well, which is absurd. �


3 Appendix on elliptic bundles and elliptic curves

A. Let us first recall some facts about elliptic bundles. Fix a genus one curve E and let
E0 = (E, O) be the elliptic curve obtained by fixing some arbitrary point O ∈ E . Fixing O
allows us to give a group structure on E . The group of automorphisms Aut(E) is given by
the extension

0 −→ Trans(E) −→ Aut(E) −→ Aut(E0) −→ 0

where Trans(E) is the subgroup of Aut(E) given by translations, and Aut(E0) is the group
of automorphisms of E fixing O. Now, the group Aut(E0) is usually Z2 (and consists of the
antipodal map x �→ −x) except for some cases when Aut(E0) is finite of order 4 or 6 (these
particular kind of elliptic curves are called “curves with complex multiplication”). See [1, p.
143].

For an arbitrary complex manifold M , let PBunE (M), respectively, BunE (M) be the set
of principal bundles, respectively, the set of elliptic bundles on M with fiber E . The above
exact sequence implies

0 −→ PBunE (M) −→ BunE (M) −→ H1(M, Aut(E0))

See again [1, p. 143].
As Aut(E0) is a finite group, we see that for any elliptic bundle X −→ M , there is a finite

cover M ′ of M such that X ′ = X ×M M ′ is a principal bundle, in other words, any elliptic
bundle has a finite cover which is an elliptic principal bundle (see [1, p. 147]).

B. We now recall some classical facts about the j-invariant. Let E = C/〈1, τ 〉, τ ∈
C, Imτ > 0 be a framed elliptic curve. Its j-invariant is the complex function

j (E) = j (τ ) = 1728
g3

2(E)

�(E)
,
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where

g2(E) = g2(τ ) = 60
∑

(m,n)∈Z\{0}
(m + nτ)−4,

g3(E) = g3(τ ) = 160
∑

(m,n)∈Z\{0}
(m + nτ)−6,

these two series being known to be absolutely convergent, and

�(E) = g3
2(E) − 27g2

4(E).

From the very definition, the j-invariant is an analytic function of τ .
If now π : X −→ T is an analytic family of elliptic curves, one defines J : T −→ C by

J (t) = j (Et ). As T is a manifold and hence locally simply connected, we may suppose the
analytic family to be analytically framed. This implies that J is analytic, as a composition of
the analytic maps τ �→ j (τ ) and the period map t �→ τ(t).
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