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Abstract. Let (M, g, H) be a quaternion Hermitian manifold. The additional datum of a torsion-free
connectionD preserving both the quaternionic structdfeand the conformal class gfdefines on

M the structure ofjuaternion Hermitian—Weyl manifaltynder the compactness assumption of both
M and the leaves of a canonical foliatia¥,is here shown to project onlacally 3-Sasakiarorbifold

P. ThenM is proved to admit both a compatible global complex structure and a finite covering
carrying ahyperhermitian—Weystructure. The uniqueness of the Weyl structure compatible with a
given quaternion Hermitian metric and some restrictions on the Betti numbers are also obtained.
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1. Introduction and Statement of Results

In a previous paper [24] we studied the extension in quaternionic geometry of the
locally conformal Kéhler condition, already well understood on complex manifolds
(cf., for example, the monograph [8]). The quaternionic situation presents of course
the two possibilities of choosing whether the conformality is required with local
hyperkahler or with local quaternion Kéhler metrics. ManifoM$® carrying such
types of metrics bear two remarkable canonical foliatigsD — of dimensions
one and four, respectively — and the dichotomy hyperk&hler—quaternion Kahler is
here reflected on different structures in the fibrescof M — N = M /D, the
projection to the leaf space.

The present work is devoted to the global geometry of compact locally confor-
mal quaternion Kahler manifolds. The main properties we obtain are collected in
Theorems A and B. They display a rather strong similarity between these manifolds
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and the subclass of compact locally conformal hyperkahler manifolds. This is in
sharp contrast with the quite different global geometries carried by compact hyper-
kahler and compact quaternion Kahler manifolds, the two non-locally conformal
counterparts of the manifolds here studied and mentioned in the title.

We begin by recalling some basic definitions.

A Weyl manifold(M, [¢], D) consists of a conformal clagg] of Riemannian
metrics on the2> manifold M and of a torsion-free connectidn preservingg]:
thenDg = w ® g, w = associated 1-forrwith respect to the representatiye

In quaternionic geometry one considers manifald® equipped withhyper-
complex structuresly, I», I3) or with quaternionic structureg?. The former are
by definition triples of global integrable complex structufgsatisfying the quater-
nionic identities:/2 = —id, 1,15 = I, (¢, B, ¥) = (1,2, 3) and cyclic permuta-
tions (we shall use the abbreviation “c.p.” hereafter). The latter are 3-dimensional
subbundles? of End(T M), locally spanned by (not necessarily integrable) almost
complex structureg,, I, I3, again satisfying the quaternionic identities and related
on the intersections of trivializing open sets by matriceS @13). A Riemannian
metric g on a hypercomplex manifoldM, I, I,, I3) is hyperhermitianif it is
Hermitian, hyperkahlerif it is Kahler, with respect td,, « = 1, 2, 3. Similarly,
on a quaternionic manifoldM, H) the metricg is quaternion Hermitianf it is
Hermitian with respect to the locdl, andquaternion Kahleiif H is parallel with
respect to the Levi—Civita connection¥® of g. We refer to [9] and to [3] for the
basic theories of Weyl manifolds and of hypercomplex and quaternionic manifolds.

The requirement of compatibility between quaternionic and Weyl struc-
tures is expressed by the following definitions. A hyperhermitian manifold
(M, g, I, I, I3) is calledhyperhermitian—Weyif a torsion-free connectio is
given on M satisfyingDg = w ® g, DI, = 0, fora = 1,2, 3. A quater-
nion Hermitian manifold(M, g, H) is said to bequaternion Hermitian—\Weyif
a torsion-free connectiol is given onM satisfyingDg = w ® g, DxH C H for
any vector fieldX.

The associated 1-form of a hyperhermitian—-WeyM*" (with the requirement
M compact fom = 1) is necessarily closed [27]. Thet is hyperhermitian—\Weyl
if and only if g is locally conformal hyperkéhler.e.,

g\U, — efigl{

with g/ hyperkahler metrics over open neighbourhodds} covering M. The
associated 1-form is then locally reconstructed ag, = df;.

Similarly, aM**, n > 2, is quaternion Hermitian—Weyl if and only if it iscally
conformal quaternion Kahleri.e., g, = efig/, with g/ quaternion Kahler. The
differentialsd f; again glue together to the associated 1-farm

We shall use both the “Hermitian—Weyl” and the “locally conformal” terminolo-
gies, keeping in mind that the former moves the accent from the metric properties
to those of the canonically associated Weyl connection.
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Due to the Einstein property of the local quaternion Kahler metrics, the quater-
nion Hermitian—Weyl manifolds ar&instein—Weyli.e., the Ricci tensor oD is
a multiple of g. In particular, the hyperhermitian—Weyl manifolds &eci-flat—
Weyl We mention that on compact hyperhermitian—Weyl and compact quaternion
Hermitian—Weyl manifolds a result of [13, p. 10], allows us to choose a repre-
sentativeg in the conformal class so that the associated 1-fernif not exact,
is V&-parallel. This choice enables us to recognize that compact hyperhermitian—
Weyl and compact quaternion Hermitian—Weyl manifolds are endowed with the
following canonical Riemannian foliations: a 1-dimensional foliati®ngenerated
by the Lee vector fieldB = «*; a 4-dimensional foliationD, locally spanned
by B, I,B, I,B, I3B; a 2-dimensional foliatioriV, spanned byB, J B in the hy-
percomplex case, or more generally when a global complex strudtuegists
compatible with the quaternionic one (cf. Theorem A, (ii)).

We can now state the theorems.

THEOREM A.Let M*" be a compact locally conformal quaternion Kahler man-
ifold that is not quaternion Kéhler and such that the foliatioBsand £ have all
closed leaves. Then:

(i) M admits a finite locally conformal hyperkahler coverifgentering in the
commutative diagram:

M
1 $3/G

ML>P—>

1—S3H—
SN

|

with finite coverings as vertical arrows and Riemannian submersions over orb-
ifolds as horizontal arrows. The orbifoldB, P carry, respectively, a globally and

a locally 3-Sasakian structure (cf. Section 2), and project over quaternion Kéah-
ler orbifolds with positive scalar curvatur®, N. The fibres of these projections are
3-dimensional spherical space forms, respectively homogengtus (for some
finite subgroupH c $%), and generally inhomogeneo§$/G (hereG C SO(4)),

in the two cases.

Accordingly, the fibres of the composite horizontal maps are locally confor-
mal hyperkéhler Hopf surfaced — 0/ T" for the mapM — N, and real Hopf
4-manifoldsR* — 0/T for M — N. The groupsI', discrete and subgroups re-
spectively ofGL(1,H) and GL(1,H) - Sp(1), act without fixed points on the
universal covering, preserving its hypercomplex or its quaternionic structure, in
the two cases.

(i) M admits a global integrable compatible complex structure, it is locally
conformal Kéahler with respect to it, and projects in 1-dimensional complex tori
over the twistor spac& of N.
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THEOREM B.Let M* be a compact quaternionic manifold.

(i) For each quaternion Hermitian metric Qi there is at most one compatible
quaternion Hermitian—\Wey! structure.

(i) If a quaternion Hermitian—Weyl structure exists dhsuch thatB and D
are regular foliations, then the Betti numbers &f and N = M/D satisfy the
relations:

bop(M) = bopa(M) = by (N) — bzp—a(N), (0=2p <2n-2),

by, (M) = 0,

n—1

Zk(n —k+1)(n — 2k + Dby (M) = 0.
k=1

Let us mention a few points entering in the proofs.

A basic fact concerning compact gquaternion Hermitian—-Weyl and non-
quaternion Ké&hler manifolds is the Ricci-flatness of the Weyl structure. This
follows from a result of Gauduchon [13, p. 10], and it is proved also in [24].
Another ingredient is the notion of locally 3-Sasakian manifold, here introduced to
describe the structure of the leaf spad¢¢B. The simplest examples of locally 3-
Sasakian manifolds are quotients of sphei®$2/G, whereG c SO(4), G ¢ S°
is a finite group acting freely and diagonally. The topological constrains in Theo-
rem B extend results known in the hyperhermitian—Weyl case [11, 24]. Examples
of compact quaternion Hermitian—Weyl manifolds are indicated in [23, 24].

Itis also worth mentioning that the hypotheses of closed leaves and of regularity
for foliations on compact manifolds assure to have leaf spaces that are respectively
orbifolds or manifolds. The definition and basic properties of orbifolds, also in
connection with foliations with all the leaves compact, can be found in [20, 34],
or in the recent survey [6]. For convenience, we recall here thatlianensional
foliation ¥ on aC* manifold M is said to beegularif eachp € M has a neigh-
bourhoodU such that: (a)U is acubical neighbourhood centered gt i.e., the
local coordinatesxy, ..., x,) of U satisfy|x;| < a andm = (0,0, ...,0); (b) U

is flat with respect tof, i.e.,d/dx1, ..., 3/dx; IS a basis for the tangent spaces to
F in U; and (c) each leaf of* intersectsU in at most onegp-dimensional slice
Xk4l = byt ooy Xp = b, (fee1, - - -, 1, CONstants). This hypothesis, on compact

manifolds M, allows us to recognize both the compactness of all the leaves and
the property ofc>° submersion of the projectioW — M /¥ to the leaf space, cf.
[26].
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2. Locally 3-Sasakian Manifolds

We introduce the following class of manifolds:

DEFINITION 2.1 Let(P, g) be a Riemannian manifold with tangent bund@l®,
and letK C TP be a rank 3 vector subbundle. ThéR, g, K) is said to be a
locally 3-Sasakian manifolif the following conditions are satisfied:

() K is locally spanned by orthonormal Killing vector fieldg, X,, X3, de-
fined over open set§ C P such that[X,, Xz] = 2X, for (o, B,y) = (1,2,3)
and c.p. On the intersectio@ N U’:

X; = Z fmxw
"

and(fy,) : UNU — SO(3) are C* functions.
(i) The local tensor fieldsF, = VX, ,a = 1,2,3 andV = Levi—Civita
connection ok, satisfy

(VyF)Z =no(2)Y — g(Y, Z)Xa,
wheren, = XZ.

When K — P is globally trivialized by such Killing vector fieldXi, Xo, X3,
then P is a3-Sasakian manifoldn [7] and the bibliography therein all the useful
information is given concerning (globally) 3-Sasakian manifolds. In particular, ex-
amples of compact 3-Sasakian manifolds with a wide range of topologies have
been constructed on structus®) (3)-bundles over orbifolds carrying a quater-
nion Kéhler metric of positive scalar curvature. For each of these examples, a
hyperhermitian—Weyl structure exists on any flat principabundle over it. Recall
also that 3-Sasakian manifolds are Einstein with positive scalar curvature [17].
Moreover, if the leaves of the foliation locally spannedXy X,, X3 are compact,
they project over positive quaternion Kahler orbifolds with fibres homogeneous
3-dimensional spherical space forms [7, 15].

The following properties, established in [7, 16] in the global case, hold good
with respect to the local Killing vector fieldX,, X,, X3 on locally 3-Sasakian
manifolds:

Vx, Xpg = Xy, (2.1a)
dne(Y, Z) = 2g(F,Y, Z), (2.1b)
§(FY, Z)+g(Y, F, Z) =0, (2.1c)
FooFy=Xy®ns—F,, (2.1d)

for any cyclic permutation ofe, 8, v) = (1, 2, 3) and any vector field¥, Z.

LEMMA 2.2. The transition functions of the vector bundie— P over a locally
3-Sasakian manifol@ can be chosen to be locally constant.
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Proof. Let (X1, X2, X3), (X3, X5, X3) be local orthonormal triples of Killing
vector fields defining the local 3-Sasakian structure. TXee= > | f5,X,, X;, =
>, fus X and hence:

(X, X0 =Y [fioXo(fuo) = FuoXo ()Xo + Y fip fuol X, Xo1.

p,o p.0

Moreover, since(f;,) € SO(Q) and for (A, u,v) = (1,2,3) and cyclic
permutations:

Zf)\pf,ua[xpvxa] = Z (fkpf,ua - f)\crf,up)[xpvxa]
p,0

(p,0,7)

= 2 Z (f)\pf;w - fkafup)xr = ZXL‘

(p,0,7)

It follows:

> o Xo(fuo) = fupXo(fra)] =0,
o

thatis foranyx, 1, o = 1, 2, 3: X5 (f.s) — X}, (fio) = 0, and then alsaX, (f},,) —
X, (f),) = 0. It follows:

X)\(fau) - Xu(fo)») =0. (2.2a)
On the other hand, the Killing condition

ZXp(fAM)g(X;u XU’) + ZXU(fAM)g(X;u Xp) = 0,
© ©

yields for alli, p, 0 =1, 2, 3:

X, (fao) + Xo(fip) = 0. (2.2b)
Then from formulae (2.2a) and (2.2b) we have fonalp,o = 1, 2, 3:

Xo(fro) =0,
as to be proved. O

REMARK 2.3. The flatness of the vector bundé — P, given by Lemma 2.2,

can be applied in particular to the case dima= 3, so that the whole tangent bundle

T P is flat. On the other hand, the 3-dimensional globally 3-Sasakian manifolds are
known to reduce to homogeneous spherical space forms [32], so that it is natural
to compare the flatness @fP with the fact that any 3-dimensional spherical space
form is orientable [34, p. 452], and hence parallelizable by a classical theorem of
Stiefel. In this respect, note that no parallelizatior¥'d@t by a triple of orthonormal
Killing vector fields giving a global 3-Sasakian structure is generally guaranteed.
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This happens for the inhomogeneous 3-dimensional spherical space forms, that are
parallelizable but locally and non-globally 3-Sasakian (cf. the discussion following
Proposition 3.2).

The flatness of the vector bundlé — P, given by Lemma 2.2, shows that the
dichotomy hyperkahler—quaternion Kahler of quaternionic geometry finds in the
above definitions of globally and locally 3-Sasakian manifolds only a partial odd-
dimensional analogue. As will be better clarified by Lemma 4.1, locally 3-Sasakian
manifolds parallel in some respects the rolelafally hyperkahler manifolden
guaternionic geometry [3, 19].

By the mentioned curvature properties of globally 3-Sasakian manifolds, and
by Myers’ theorem, we have:

LEMMA 2.4. Let(P, g, K) be a complete locally 3-Sasakian manifold. Thers
a compact Einstein manifold with positive scalar curvature.

Any locally 3-Sasakian manifold bears a canonical 3-dimensional Riemannian fo-
liation X, locally spanned by the Killing vector field§;, X», Xs. If all the leaves

of X are compact, then the leaf spage= P/.X is an orbifold. For each section

o :V C N — P and tripleX,, X5, X3 of Killing vector fields defined orv

the (1, 1)-tensorsF, = VX,, a = 1, 2, 3, define onV an almost hypercomplex
structureJy, J,, J3. This is given by the formula:

Ja(Yp) =dn (Fa\a(p)(?a(p))> s

where?a(p) is the unique horizontal lift ot,,. Then local almost hypercomplex
structures defined oW either by different sections,¢’ : VNV Cc N - P

or by different local 3-Sasakian structures@m U’ C P are related oV NV’

by matrices ofSO(3). Also, sinceX is spanned by local Killing vector fields,
the metricg of P projects to a metrigy that is quaternion Kéhler in the quater-
nionic structure given by the local almost hypercomplex struct@esJ,, Js) .
Therefore, the fibrations studied in [7, 15] for global 3-Sasakian manifolds can be
extended to our case as follows:

PROPOSITION 2.5 Let (P, g, K) be a locally 3-Sasakian manifold such that
all the leaves ofK are compact. TherP projects over the quaternion Kahler
orbifold N = P/.K of positive scalar curvature, and the fibres are (generally
inhomogeneous) 3-dimensional spherical space forms.

3. Proof of Theorems A (ii) and B

Letnowr : M — P be a flat principalS*-bundle over a compact locally 3-
Sasakian manifoldP. If u is a closed 1-form o/ defining the flat connection of
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the bundle, define the metrig, = n*gp + u ® u. Thengy is Hermitian with
respect to the quaternionic structuke having the following compatible almost
complex structures:

1,Y = —F,Y —n,(Y)B, I,B=X, (3.1a)

(Y horizontal vector field an® = »* ). A quaternion Hermitian—Wey! structure is
then defined o/ by the torsion-free connection

DxY =VyY — % uX)Y +u(¥)X — g(X, Y)u}, (3.1b)

where X, Y are any two vector fields oé. On the other hand, compact quater-
nion Hermitian—Weyl manifolds are known to be Ricci-flat—Weyl [13, 24], hence
locally conformal locally hyperk&hleiNote that this terminology does not require
the existence of any global hypercomplex structure (that is assumed lioctily
conformal hyperkahlecase). The vector bundl# — M is thus flat with respect

to the Levi—Civita connectioV of g,,. Hence, similarly to the complex case
[36], the following correspondence is deduced:

THEOREM 3.1 The class of compact quaternion Hermitian—Weyl manifalts
that are not quaternion Kahler and have the foliati@regular, coincides with that
of flat principal S*-bundles over compact locally 3-Sasakian manifatds: M/ B.

In particular, the compact hyperhermitian—Weyl manifaldsnot hyperk&hler and
having 8 regular, coincide with the flat princip&t-bundles over compact globally
3-Sasakian manifold® = M/B.

Recall now that if the leaves @b are compact, there exists a fibratibh— N
over a quaternion Kahler orbifold of positive scalar curvature, with fibres real Hopf
4-manifolds, i.e.(R* — 0)/T", I' a discrete subgroup o&L(1,H) - Sp(1) =
C O™ (4) acting without fixed points (cf. [24] as well as the statement of The-
orem A). This, together with the above statement and with Proposition 2.5,
gives:

PROPOSITION 3.2 Let M be a compact quaternion Hermitian—Weyl manifold
having all the leaves o8 and of » compact. Then the projectioW — N =
M /D can be obtained by composition:

Sl
M — P — N

through the locally 3-Sasakian orbifold = M /8, that fibres over the quaternion
Kahler basisN in generally inhomogeneous 3-dimensional spherical space forms.

If the foliations B , O are assumed to be regular, thenN are manifolds. How-
ever, even in the orbifold case, the quoted result from [24] assures that the leaves of
D are Hopf real 4-manifolds. These are examplesigrablequaternionic man-
ifolds, i.e., they admit a local coordinate system such that the Jacobian matrices of



COMPACT HYPERHERMITIAN-WEYL AND QUATERNION HERMITIAN-WEYL MANIFOLDS 391

the coordinate transformations belong to the quaternionic géaugl, H) - Sp(1).
Their universal coveringd — 0 is in fact, in accordance to a well known result, an
open set of the quaternionic projective lide?* (cf. [18] as well as [3, p. 411]). For
a discussion of admissible groups acting-br 0 to obtain Hopf real 4-manifolds,
see [24, 38].

Thus, in order to clarify the structure of compact quaternion Hermitian—\Weyl
manifolds, a more precise description of the projectfor> N may be useful. An
essential step is the study of the leaves of the foliaionthat are 3-dimensional
spherical space forms. Their classification, that goes back to the works of Seifert
and Threlfall and of Hattori, is summarized in [39, pp. 226—227]. They also ap-
pear naturally in the context of 3-dimensional geometric structures according to
Thurston (cf., for example, [34, pp. 449-457]).

We now recall some aspects of this classification in order to point out how the
globally 3-Sasakian structure 6f induces similar structures on the space forms
$3/G with G finite subgroup ofSO(4). Thefinite subgroupsd C $° (besides
the identity, they are cyclic groups of any order, or binary dihedral, tetrahedral,
octahedral and icosahedral groups) yieldhbenogeneou3-dimensional spherical
space formss®/H, all carrying a global 3-Sasakian structure (cf. [7, 32]).

The problem of the whole classification of 3-dimensional spherical space forms
is in fact to classify all the finite subgrougs Cc SO(4) = Sp(1) - Sp(1) that act
freely onss.

This can be done through the following result (cf. [34, thm. 4.10 and the
subsequent classification]):

PROPOSITION 3.3LetG be a finite subgroup of O (4) acting freely ons3. Then
G is conjugate inSO(4) to a subgroup of"; = U(1) - Sp(1) or of ', = Sp(2) -
U@.

It is relevant to us that botR; andT", are isomorphic td/(2) through the right
and left isomorphism$l = C2. It follows that any finite subgroup c I'y, I'»
preserves two structures 6 ¢ C2: the local 3-Sasakian structure induced by the
hypercomplex structure df?, and a global Sasakian structure induced by some
complex structure o€? belonging to the given hypercomplex structure. Now if
the subgroug” is altered by conjugation i§ O (4) — and any finite groujs; acting
freely onS® is thus obtained — the same mentioned structure$®are preserved,
but the global Sasakian structure has to be looked at as induced by a conjugate
complex structure oR*.

Therefore:

PROPOSITION 3.4 The compact leaves ok carry the structure of a locally
3-Sasakian 3-dimensional spherical space form with a global Sasakian structure.

It follows that a locally 3-Sasakian manifol®l having all the leaves oK' compact
admits a global unit vector field that is Killing and Sasakian on the leaves. Since
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such aX belongs to the locally 3-Sasakian distributi®nc T P, we say that the
global Sasakian structuredgempatiblewith the locally 3-Sasakian one. This gives:

COROLLARY 3.5 Any locally 3-Sasakian manifold having all the leaves of
compact admits a global compatible Sasakian structure.

The above discussion enables us to complete the proof of statement (ii) in The-
orem A. Let M be a compact quaternion Hermitian—Weyl and non-quaternion
Kéahler manifold such thaB is a regular foliation andi has all the leaves com-
pact onP = M/8B. Look at M as a flatS*-bundle overP. Let X be the global
compatible Sasakian structure éngiven by Corollary 3.5. Formulae (3.1a) and
(3.1b) allow us then to define a global compatible almost complex strudtane
M, which is parallel with respect to the torsion-free connectfinrit follows that
J is integrable and compatible with both the quaternion Hermitian and the Weyl
structures of\f. The complex manifoldM, J) is therefore Hermitian—Weyl with
respect to the conformal clagg] and the connectio®, and a generalized Hopf
manifold with respect to any metric iig] making the 1-formw parallel.

The twistor spac& of the quaternion Kahler bage, for such manifoldsV/,
serves also as a Kahler—Einstein base of the complex tori fibratiomduced on
M by the compatible global complex structufeHence:

COROLLARY 3.6. The structure of compact quaternion Hermitian—\Weyl mani-
folds M satisfying the hypotheses of Proposition 3.2 is described by the diagram
of sphere bundles:
1 1 2

M= p 2z 5N,
whereP, Z, N are orbifolds carrying respectively a locally 3-Sasakian, a complex
Kahler, a quaternion Kahler structure, all Einstein with positive scalar curvature.
The fibres of the compositiol — Z are the tori7Z that are leaves of the foliation
V, those ofP — N are generally inhomogeneous 3-dimensional spherical space
formsS3/G.

The proof of statement (ii) in Theorem B can now be carried out. The identities
involving the single Betti numbers @f are obtained from the restrictions on Betti
numbers of compact quaternion Kéhler manifolds (see, for example, [3, pp. 417—
419]) and the Gysin sequences of the fibrations. The point is the existence of a
global compatible complex structure allowing to projg&tbver the twistor spacgé

of the quaternion Kahler orbifoldd = M/D. In particular,b;(M) = 1, an identity
satisfied by any compact Ricci-flat—Weyl manifold [28, thm. 2.4]. Cf. also [24] for
the corresponding identities in the hyperhermitian—Weyl case. The last identity is
obtained by applying Salamon’s constrains on compact positive quaternion Kéhler
manifolds to the same diagram described above (cf. [11] for the hyperhermitian—
Weyl case).
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As regards statement (i) in Theorem B, the uniqueness of the compatible Weyl
structure, we first recall that on hypercomplex manifolds there is a unique torsion-
free connection preserving the three complex structdgesThis is the Obata
connectionD whose explicit expression is given, for example, in [1]. Thus, once a
hyperhermitiarg is chosen on a hypercomplé¥, I, I», I3), there is at most one
Weyl structure([g], D) compatible with thel,: D = D is the unique compatible
Weyl structure if and only iDg = o ® g.

On a quaternionic manifoldM, H) admitting a compatible torsion-free con-
nection the space of such connections is an affine space modelled on the space
of real 1-forms [1, p. 260]. However, once a quaternion Hermitian metric is
fixed, again the uniqueness of a compatible Weyl structure holds. We thank S.
Marchiafava for bringing this problem to our attention.

Clearly, the statement to be proved is equivalent to the uniqueness of a torsion-
free connectionD preserving bothH and the conformal clagg]. Let D,, D, be
two such connections, sothBtg = w1 ® g, D2g = w> ® g and the Kahler 4-form
Qof (H, g) satisfiesdQ = w1 A Q = wo A Q[27, p. 318]. Thus ifL : A'T*M —
AST*M is the multiplication by, it follows L (w1 — w) = 0. The formal adjoint
A of L satisfiesAL = (n — 1)id [4], so thatL is injective. Thusv; = w, and then
D1 = D, by the formula:

which expresse® in terms ofw and of the Levi—Civita connectioW of g. The
proof of Theorem B is now complete.

REMARK 3.7 Statement (i) in Theorem B can also be deduced from the following
formula, relating two torsion-free connections preserving the quaternionic struc-
ture H on a manifoldM with local compatible almost hypercomplex structures
(I3, I, I3):

DaxY — DixY = EX)Y +EWV)X = ) [EUX) LY +E(IY) [ X],

whereg¢ is any 1-form onM (cf. [1, prop. 5.1]). In fact, ifD; and D, preserve also
the conformal claske], one has:

1
DoxY = Dix¥ = 3 [w1(X) = w2(X)IY
1
+ 5 1Y) = w2(V)]X — g(X. Y)lw] — b,

and the two formulae together gige= w; = w, = 0 andD; = D.
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4. Proof of Theorem A (i) and Some Diagrams

We prove first the following:

LEMMA 4.1. LetK — P be the pullback of the locally 3-Sasakian vector bundle
K — P to the universal covering of the locally 3-Sasakian manifoll. Thenk
is globally trivialized by a global 3-Sasakian structure Bn

Proof.SinceK — P is a flat vector bundle (Lemma 2.2), we know that its pull-
back toK — P is a trivial vector bundle. This fact is not sufficient to insure that a
trivialization can be given by a global 3-Sasakian structure (cf. Remark 2.3). How-
ever, the following argument can be used. There is an induced locally 3-Sasakian
structure onP, whose Einstein metric insures the analiticity of the data. This allows
us, according to a well known result by Nomizu [22], to extend any local Killing
vector field uniquely to all oP. This extension gives a global 3-Sasakian structure.
In fact, one global Sasakian structure, compatible with the local 3-Sasakian one, is
actually given by Corollary 3.5. I is the corresponding global Killing vector
field, the extensiorX, of a second local Sasakian vector field turn out to remain
in the vector bundl& everywhere, and to be normal ¥,. Moreover, it follows
easily from Lemma 2.2 thaX , generates a second global Sasakian structure. Thus,
X3 = [X1, X»]/2 completes the global 3-Sasakian structure trivialiZhg O

The proof of statement (i) in Theorem A now goes as follows. Consider the pro-
jection M — P to the leaf space® = M/B, assuming firstB to be regular.

P is then a compact Einstein manifold with positive Ricci curvature and Myers’
theorem assures that the universal coverihgs compact and the fundamental
group of P is finite. It follows that the pullbackk — P of the flat vector bundle

K — P is trivial. Hence, by Lemma 4.1P is globally 3-Sasakian. Look then

at the pullbackM — P of the S'-bundleM — P. Since this is a flat principal
S-bundle over a globally 3-Sasakian manifold, the maniftdccan be endowed
with a structure of hyperhermitian—-Weyl manifold (cf. the remark following The-
orem 3.1). By construction such hyperhermitian—Weyl structure projects to the
quaternion Hermitian—Weyl structure &f. Then, under the regularity assumption
for the foliation B, Proposition 2.5 and the discussion on 3-dimensional spherical
space forms complete the proof.df is also a regular foliation, the two bas¥s
andN, both simply connected compact quaternion Kahler manifolds with positive
scalar curvature, necessarily coincide.

Consider now the weaker assumption in the statement of Theorem A, namely
that B8 has all the leaves compact. The proof can still proceed as indicated, but
some attention has to be paid to the fact thRaand N are now Riemannian orb-
ifolds. (The reference [33] contains the extension of basic concepts of Riemannian
geometry to orbifolds — originally called V-manifolds — while in [34] the theory of
orbifold coverings and fundamental groups is developed.) Look first at the orbifold
P, again compact with positive Ricci curvature. Uriversal orbifold covering

P°® inherits a structure of complete Riemannian orbifold with positive Ricci cur-
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vature. Then a regult of Borzellino [5, cor. 21] assures that the diame{&r"6f
is finite. Thus,P°" is compact (andP has a finite orbifold fundamental group).
Look again at the flat vector bundie — P. Its pull-backk — P °”is a trivial

vector bundle and the arguments used in Lemma 4.1 showPihiais a globally

3-Sasakian orbifold. Then, as in the case of manifolds, a flat prinsipalndle

M — P is obtained, and a hyperhermitian—-Wey! structure is inducesfohlote

thatM, constructed as a hyperhermitian—Weyl orbifold, is actually a finite covering

manifoldof the original quaternion Hermitian—Weyl. This completes the proof.
Thus, if also the leaves df are all compact, the following diagram is deduced

from Corollary 3.6:

S PS 7SN

| | | |

1 1 1 1 (4.1)
st st 52

M — P — — N

Note that, ifZ,N are manifolds, they necessarily coincide withN . The vertical

arrows in the diagram are in any case finite coverings. The structures carried by
the orbifolds in the diagram are as follow®, Z, N are globally 3-Sasakian,
Kahler-Einstein, quaternion Kahler structure, respectively, all with positive scalar
curvature.P is locally 3-Sasakian. By composing the second and third horizontal
arrows one obtainsP — N with fibres S°/H, P — N with fibres $3/G. The

finite subgroups C S%, G C SO(4) are as indicated in Section 3, and the
fibres are then 3-dimensional spherical space forms, respectively homogeneous and
generally inhomogeneous.

With the exceptions of andZ, the manifolds or orbifolds in the above diagram
carry a structure described by a rank 3 real vector bundle: this is the quaternionic
structureH for M, M, N, N and the globally or locally 3-Sasakian structufeof
P andP. The associated?-bundles (a natural Euclidean metric is defined on both
H andK) are thetwistor spacescombining in:

st st 52
Zﬁ e ZF e Zf e Zﬁ

[ @

st st N
Zy — Zp — Zz — Zy

that projects over diagram (4.1).
In particular, one has a diagram of sphere bundles:
1 1 2
Iu - Zp > 7, 5 Zy
| | | |
1 1 2
M= p S oz 5N
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that pointwise and up to finite coverings reduces to the lower part of the following
one:

7 1 st 7 st 3 §? 1
S’'x S — S — CP — HP

I I I I

SBxs2xst S us2 S o2ns2 B g2

| | l l

2
sxst S S e 5
where the two compositions® x §? x S* — $2 are both holomorphic maps with
fibres complex Hopf surfaces [30]. We prove now the following:

THEOREM 4.2 The products® x §? x S* can be endowed with a structure of con-
formally Ricci-flat and non-conformally flat locally conformal Ké&hler manifold.
This can be obtained as a product & with S x $2, on which the Sasakian—
Einstein metrigg = (2/3)g0 — (2/9)n0 ® 1o is defined through the standard metric
go induced bys” and the 1-formy, that is the dual with respect tgy of the Killing
vector field generating the Hopf fibratigiil — CP3.

Proof. Observe first thas® x S? is diffeomorphic to the total spack® of the
restriction of the Hopf fibratior§” — CP3 to the quadric surfac€ P! x CP?,
imbedded inCP?2 by the Segre mag[xo, x11, [yo, y11} — [z0 = Xoyo, 21 =
X1Y0, 22 = XoY1,23 = Xx1y1]. Look also at the fibratiol€P® — HP! and fix
[yo, y1]1 = [1,0] so that the line/=[zo, z1, 0, 0] of CP3 projects to the point
[1,0] € HPL. Its fibre S2 in the Hopf fibrations” — HP?! is the family of all
the circlesS? that are fibres overof S” — CP3. Letting[yo, y1] vary inCP?, the
stated equivalence is obtained.

Next, the metricgo induced byS” on X° turns out to be-Einstein as a metric
projecting with totally geodesic fibres to the K&hler—Einstein metric of the quadric
CP! x CP![3, pp. 255-256]. This means that the Ricci tensopRicgy satisfies
Ricy = 2gg + 219 ® no, Whereng is the dual 1-form of the Killing vector field,
projectingS’ to C P3. This induced Hopf bundle inherits a Sasakian structure from
S [37, thm. 3.5 and the subsequent remark]. Then a computation shows that
(2/3)go — (2/91n0 ® ng is Sasakian and satisfies the Einstein condition-Ritg.

Note also that the induced Hopf-bundleg : X> — CP! x CP! has Chern
classci(B) = i*a = ay + ap, wherei : CP! x CP! — CP3 is the inclusion
anda, ay, a, are the canonical generators of tH&(CP3) and of theH? of the
two factorsC P! in the quadric surface. Note furthermore ti&tis diffeomorphic
to the Stiefel manifoldV,(R*) of the orthonormal 2-frames iR*, projecting in
circlesS* overC P! x CP* (cf. [10, p. 277] or [2, pp. 95-96]). This is recognized
by the Chern class; (y) of this latter circle bundle’ : V»(R*) — CP! x CP?,
that is /2 of the first Chern class; of the Segre surface. Sineg = 2(a; + ap), it
follows that the bundleg andy are isomorphic. The structure of generalized Hopf
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manifold onS® x §2 x S is then deduced as in [37] by looking at it as a product
of a circle with the Sasakian—Einstein manifdidi x $2. 0

REMARK 4.3. The locally conformal Kahler structure just describeddmi 2 x

St is not consistent with its twistor complex structure over the Hopf surfdce

S1. Indeed, the properties of Hermitian metrics on twistor spaces over oriented
Riemannian 4-manifolds exclude the locally conformal Kahler possibility, at least
by looking at metrics defined by means of the Levi—Civita connection [21]. On the
other hand, by using the Weyl connection of the Hopf surfsite S*, the lifted
Hermitian metric ons® x $? x S turns out to be standard and locally conformal
semikahler, but not locally conformal K&hler. This is obtained from formulas in
the appendix of [12], namely from its lemma 12 and corollary 2, pp. 618-619. We
wish to thank Paul Gauduchon for a very helpful conversation about this point.
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