
HARMONICITY AND MINIMALITY OF VECTOR FIELDS ANDDISTRIBUTIONS ON LOCALLY CONFORMAL K�AHLER ANDHYPERK�AHLER MANIFOLDSLIVIU ORNEAy AND LIEVEN VANHECKEAbstra
t. We show that on any lo
ally 
onformal K�ahler (l.
.K.) manifold (M;J; g)with parallel Lee form the unit anti-Lee ve
tor �eld is harmoni
 and minimal and deter-mines a harmoni
 map into the unit tangent bundle. Moreover, the 
anoni
al distributionlo
ally generated by the Lee and anti-Lee ve
tor �elds is also harmoni
 and minimal whenseen as a map from (M; g) with values in the Grassmannian Gor2 (M) endowed with theSasaki metri
. As a parti
ular 
ase of l.
.K. manifolds, we look at lo
ally 
onformalhyperk�ahler manifolds and show that, if the Lee form is parallel (that is always the
ase if the manifold is 
ompa
t), the naturally asso
iated three- and four-dimensionaldistributions are harmoni
 and minimal when regarded as maps with values in appro-priate Grassmannians. As for l.
.K. manifolds without parallel Lee form, we 
onsiderthe Tri
erri metri
 on an Inoue surfa
e and prove that the unit Lee and anti-Lee ve
tor�elds are harmoni
 and minimal and the 
anoni
al distribution is 
riti
al for the en-ergy fun
tional, but when seen as a map with values in Gor2 (M) it is minimal, but notharmoni
.Keywords: lo
ally 
onformal K�ahler manifold, Lee and anti-Lee �eld, harmoni
 ve
tor �eldand distribution, minimal ve
tor �eld and distribution, stability.2000 Mathemati
s Subje
t Classi�
ation: 53C20, 58E15, 53C55.1. Introdu
tionThe theory of harmoni
 maps is by now well settled: existen
e and uniqueness theoremswere proved, examples were produ
ed in any dimension of the domain and 
odomain. Still,it is important to 
ontinue enlarging the 
lass of expli
it examples.Oriented distributions on Riemannian manifolds, unit ve
tor �elds in parti
ular, provedto be a very fruitful sour
e of su
h examples in two dire
tions. On the one hand, they 
anprovide examples of 
riti
al points of natural generalizations of the usual energy and vol-ume fun
tionals. On the other hand, they 
an provide examples of harmoni
 maps and/orminimal immersions in appropriate oriented Grassmannians endowed with the Sasaki met-ri
 (in the tangent or unit tangent bundle when we redu
e to ve
tor �elds). Based onthe fundamental work done previously in [6℄, [8℄, [19℄, su
h approa
h was systemati
allydeveloped by one of the present authors and by his 
ollaborators (see, for example, [3℄,y Member of EDGE, Resear
h Training Network HRPN-CT-2000-00101, supported by the EuropeanHuman Potential Programme. 1



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 2[7℄ and [10 { 12℄ and the referen
es therein). We give the ne
essary de�nitions in Se
tion2. One 
lass of Riemannian manifolds naturally endowed with distinguished ve
tor �eldsand distributions is the lo
ally 
onformal K�ahler (l.
.K.) 
lass (see [4℄). A leading exampleof su
h a manifold is the Hopf manifold. De�nitions, examples and basi
 propertiesof l.
.K. stru
tures are given in Se
tion 3. The Hermitian-Weyl stru
ture of a l.
.K.manifold 
anoni
ally determines a one-form (
alled the Lee form) and two ve
tor �elds,the Lee ve
tor �eld and its orthogonal by the 
omplex stru
ture, the anti-Lee ve
tor �eld.Together they generate a distribution whi
h in some 
ases is a foliation (for example whenthe Lee form is parallel or for the Tri
erri metri
 on the Inoue surfa
e). It is natural toask for their Riemannian properties with respe
t to the harmoni
ity and minimality.The aim of this paper is to use the l.
.K. manifolds, with and without parallel Lee form,to exhibit new examples of harmoni
 and minimal unit ve
tor �elds and distributions.In Se
tion 4, we dis
uss l.
.K. manifolds with parallel Lee form. The Lee ve
tor �eldbeing parallel, it trivially has all desired properties. But the anti-Lee ve
tor �eld is neverparallel and we show that it is harmoni
 and minimal, but unstable for both asso
iatedfun
tionals and determines a harmoni
 map from the manifold into its unit tangent bundleendowed with the Sasaki metri
. When the Lee �eld of a 
ompa
t l.
.K. manifold isregular, the manifold �bers (and the proje
tion is a Riemannian submersion) in 
ir
lesover an �-Sasakian manifold whose 
hara
teristi
 �eld is the proje
tion of the anti-Lee�eld. Even if the 
hara
teristi
 �eld of a Sasakian manifold is known to be harmoni
 andminimal, one 
annot derive dire
tly the 
on
lusion for the anti-Lee �eld be
ause a theoryof the behaviour of harmoni
 and minimality properties of ve
tor �elds and distributionsin a Riemannian submersion is still la
king. Moreover, most of the known examples ofl.
.K. manifolds with parallel Lee form are non-regular.A parti
ular 
ase of l.
.K. manifolds with parallel Lee form is formed by the lo
ally
onformal hyperk�ahler (l.
.h.K.) manifolds. They bear three "nested" l.
.K. stru
tures,thus giving rise to a three-dimensional and a four-dimensional distribution whi
h 
an beshown to be harmoni
 and minimal as maps with values in the appropriate Grassmannians.In the last se
tion of this paper, we work on an Inoue surfa
e endowed with the Tri
errimetri
. This is an expli
it example of a l.
.K. metri
 without parallel Lee form on a
ompa
t manifold. Still we 
an prove that the Lee and anti-Lee ve
tor �elds are harmoni
and minimal and the 
anoni
al distribution is 
riti
al for the energy fun
tional and, whenseen as a map with values in Gor2 (M) it is minimal, but not harmoni
.We stress that usually l.
.K. manifolds are regarded in the framework of 
onformalgeometry and the properties of the 
omplex 
onformal stru
ture are studied by means ofthe Weyl 
onne
tion. But here we are interested merely in the Riemannian geometry of a�xed metri
, the one whi
h is lo
ally 
onformal with K�ahler ones, hen
e we shall negle
tall 
onformal setting.Aknowledgements. This work has been done in the framework of the agreement be-tween the Royal Flemish A
ademy of Belgium for S
ien
es and Arts and the Romanian
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ademy. The authors thank both A
ademies for their support. The �rst author alsothanks the members of the Se
tion of Geometry of the Department of Mathemati
s,Catholi
 University Leuven, for their warm hospitality during his visit there in May 2002.2. Harmoni
 and minimal se
tions of tensor bundlesLet (N; g) be a Riemannian manifold and denote by r its Levi Civita 
onne
tion. Thetangent bundle TN is naturally endowed with the Sasaki metri
 gS whi
h is also naturallyindu
ed on the hypersurfa
e T1N of unit ve
tors. Now, any se
tion � 2 �(Q) (where Qstands here for TN or T1N) may be understood as a map � : (N; g) ! (Q; gS) betweenRiemannian manifolds. As su
h, one may ask about some of its spe
i�
 properties: har-moni
ity, shape and volume of its image as an immersed submanifold, et
. We de�ne theoperators '�; L� 2 End(TN) (see [3℄, [6℄, [8℄ for details) by'� := �r�;L� := Id+'t� Æ '�and may 
ompute, for 
ompa
t N , the energy and volume of �:E(�) = 12 ZN TrL� �g;Vol(�) = ZNpdetL� �g;where �g is the volume form of (N; g). The 
riti
al point 
onditions for the two fun
tionalswere found in [19℄ and [8℄. De�ning K� = �pdetL�L�1� Æ 't�, these 
onditions readrespe
tively: Tr(Z 7! (rZ't�)) vanishes on �?;(2.1) Tr(Z 7! (rZK�)) vanishes on �?:(2.2)A unit ve
tor �eld � is then 
alled:� a harmoni
 ve
tor �eld if (2.1) is satis�ed. If moreover, Tr(Z 7! R�'�ZX) = 0 forallX, then � is a harmoni
 map from (N; g) into (T1N; gS). Here and in the sequelwe use the 
onventions RXY = [rX ;rY ℄�r[X;Y ℄, R(X; Y; Z;W ) = g(RXYZ;W ).� a minimal ve
tor �eld if it satis�es (2.2) (this is equivalent to the image of � beinga minimal submanifold in (T1N; gS)).A stronger 
ondition 
an be imposed, namely g(rX'�)Y; Z) = 0 for any X; Y; Z ? �. Inthis 
ase we say that � is strongly normal. The motivation of 
onsidering this 
onditionand naming it like this 
an be found in [10℄. It has been proved that a a strongly normalunit geodesi
 ve
tor �eld is harmoni
 and minimal (see [10℄, [11℄).These notions 
an be generalized for se
tions of any tensor bundle � : Q ! N overN . One may endow Q with a generalization gS of the Sasaki metri
 (in the sense that
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tly the Sasaki metri
). It 
an be de�ned using Dombrowski's
onne
tion map K of the Levi Civita 
onne
tion of g as (see [7℄, for example):gS(�1; �2) = g(���1; ���2) + g(K�1; K�2):We now give the ne
essary de�nitions and formulas for these Riemannian properties of �a

ording to [7℄.A p-dimensional oriented distribution � on N 
an be viewed as a map � : N ! Gorp (N).If fE1; : : : ; Eng is a positive orthonormal lo
al frame su
h that � is lo
ally generated byfE1; : : : ; Epg, then � 
an be identi�ed with the p-ve
tor E1 ^ � � � ^Ep and, as su
h, it 
anbe 
onsidered as a se
tion of the tensor bundle �p(N). De�ne�� = nXi;j=1 g(REiEj�;rEj�)Ei;�� = nXi=1 (r2�)(Ei; Ei):Moreover, let S0�(x) be the subspa
e generated in �p(TxN) by �(x) and let S1�(x), S2�(x) bethe subspa
es S generated respe
tively by the multive
tors�aj (x) = E1 ^ � � � ^ Ea�1 ^ Ep+j ^ Ea+1 ^ � � � ^ Ep;�abij (x) = E1 ^ � � � ^ Ea�1 ^ Ep+i ^ Ea+1 ^ � � � ^ Eb�1 ^ Ep+j ^ Eb+1 ^ � � � ^ Ep;where a; b = 1; : : : p and i; j = 1; : : : n� p. We then have:Proposition 2.1. [7, Prop. 3.2℄i) The map � : (N; g) ! (Gorp (N); gS) is a harmoni
 map if and only if �� = 0 and��(x) belongs to the subspa
e S0�(x) � S2�(x) for all x 2 N . � is a harmoni
 distribution ifand only if ��(x) belongs to the subspa
e S0�(x) � S2�(x) for all x 2 N .ii) The immersion � : (N; g)! (Gorp (N); gS) is minimal if and only ifnXi=1 frEirPEi� �rPrEiEi�gbelongs to the subspa
e S0�(x) � S2�(x) for all x 2 N and for P := L�1��gS = pdetAA�1,where (��gS)(X; Y ) = g(AX; Y ) = g(X; Y ) + g(rX�;rY �).3. Lo
ally 
onformal K�ahler manifoldsLet (M;J; g) be a 
onne
ted Hermitian manifold of 
omplex dimension n � 2. Wedenote by 
 its fundamental two-form given by 
(X; Y ) = g(X; JY ).(M;J; g) is 
alled lo
ally 
onformal K�ahler, l.
.K. for short, if for ea
h point x of Mthere exists an open neighbourhood U of x and a positive fun
tion fU on U so that the
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al metri
 gU = e�fUgjU is K�ahler. We refer to [4℄ for a general overview. Equivalently,(M;J; g) is l.
.K. if and only if there exists a 
losed one-form ! su
h that(3.1) d
 = ! ^ 
:Of 
ourse, lo
ally, !jU = dfU .The one-form ! is 
alled the Lee form and its metri
ally equivalent ve
tor �eld B = !℄is 
alled the Lee ve
tor �eld. We shall also 
onsider the anti-Lee ve
tor �eld JB. Usingthem, one 
an give a third equivalent de�nition in terms of the Levi Civita 
onne
tion rof the metri
 g. Namely, (M;J; g) is l.
.K. if and only if the following equation is satis�edfor any X; Y 2 X (M):(3.2) (rXJ)Y = 12f!(JY )X � !(Y )JX + g(X; Y )JB � 
(X; Y )Bg:Note that the above equation shows that l.
.K. manifolds belong to the 
lass W4 of the
elebrated Gray-Hervella 
lassi�
ation [13℄.A stri
tly smaller 
lass of l.
.K. manifolds is the one formed by those with parallel (withrespe
t to the Levi Civita 
onne
tion) Lee form, also 
alled Vaisman manifolds be
auseI. Vaisman was the �rst to study them sytemati
ally under the name of generalized Hopfmanifolds [18℄. On su
h a manifold, the length of the Lee ve
tor �eld is 
onstant and weshall always assume it is nonzero. Hen
e, in what follows, we shall normalize and 
onsiderthat on a Vaisman manifold kBk = kJBk = 1. The next proposition gathers the essentialfa
ts we shall need.Proposition 3.1. Let (M;J; g) be a Vaisman manifold. Then the Lee and anti-Lee ve
tor�elds 
ommute ([B; JB℄ = 0), are Killing (LBg = LJBg = 0) and holomorphi
 (LBJ =LJBJ = 0). Consequently, the distribution generated by B and JB is a holomorphi
Riemannian foliation.We shall denote by F the foliation generated by B and JB. We also note that theleaves of the foliation generated by the nullity of the Lee form 
arry an indu
ed �-Sasakianstru
ture (see [2℄ as 
on
erns metri
 
onta
t manifolds) with JB as 
hara
teristi
 ve
tor�eld.Examples of (
ompa
t), non-K�ahler, l.
.K. manifolds are now abundant. Let �i 2 C ,i = 1; : : : n, 1 <j ��11 j� � � � �j ��1n j and let � = (�1; : : : ; �n). Then all the Hopf manifolds(C n n 0)=��, with �� generated by zi 7! ��1i zi, are known to admit Vaisman metri
s(see [14℄ for the general 
ase and [5℄ for the surfa
e 
ase). Note that these manifoldsare di�eomorphi
 to S1 � S2n�1 and hen
e 
annot be K�ahler. In the simplest 
ase,when �i = 1=2, one re
overs the standard Hopf manifold with l.
.K. metri
 (read on C n)g0 = (P jzij2)�1P dzi 
 d�zi and Lee form !0 = �(P jzij2)�1P(�zidzi + zid�zi); here theLee �eld is the one tangent to the S1 fa
tor.More generally, the total spa
e of a 
at prin
ipal 
ir
le bundle over a 
ompa
t Sasakianmanifold 
arries a Vaisman metri
 whose Lee form is identi�ed with the 
onne
tion formof the bundle.
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ompa
t 
omplex surfa
es whi
h admit l.
.K. metri
s with parallel Leeform was given in [1℄. It in
ludes the proper ellipti
 surfa
es, the primary and se
ondaryKodaira surfa
es and the ellipti
 Hopf surfa
es.Belgun also proved that the Inoue surfa
es 
annot admit Vaisman metri
s. However,it was shown by Tri
erri in [17℄ that some Inoue surfa
es admit l.
.K. metri
s with non-parallel Lee form. We brie
y re
all this 
onstru
tion. Let H = fw = (w1; w2) 2 C jw2 > 0g and let A = (aij) 2 SL(3;Z) having one real eigenvalue � > 1 with eigenve
tor(a1; a2; a3), and a non-real 
omplex eigenvalue �, with eigenve
tor (b1; b2; b3). The group�A generated by the transformations(w; z) 7! (�w; �z);(w; z) 7! (w + aj; z + bj)a
ts on H � C and the quotient is a 
ompa
t 
omplex surfa
e, the Inoue surfa
e SA. Themetri
 g = w�22 dw
d �w+w2dz
d�z on H� C is globally 
onformal K�ahler with Lee form! = d logw2. Being 
ompatible with the a
tion of �A, it indu
es a l.
.K. metri
 on SA.A l.
.K. manifold is naturally endowed with two distinguished ve
tor �elds, B andJB, whi
h also generate a two-dimensional distribution. It is thus natural to look fortheir properties of minimality and harmoni
ity. Note that if the Lee form is parallel, theproperties of B are trivial, so in that 
ase we restri
t to looking only at JB.A parti
ularly signi�
ant 
lass of l.
.K. manifolds appears in the 
ontext of quaternionHermitian geometry. Namely, a hyperhermitian manifold (M4n; g; J1; J2; J3) is 
alled lo-
ally 
onformal hyperk�ahler, l.
.h.K. for short, if for ea
h point x of M there exists anopen neighbourhood U of x and a positive fun
tion fU on U so that the lo
al metri
gU = e�fUgjU is hyperk�ahler (see [15℄ for the fundamental properties, formulas and exam-ples). The Lee form lo
ally de�ned by !jU = dfU here satis�es the equation(3.3) d� = ! ^ �;where � = P3i=1 
i ^ 
i and 
i is the fundamental 2-form of the Hermitian stru
ture(M; g; Ja), a = 1; 2; 3. It 
an be shown that ea
h of the Hermitian stru
tures (g; Ja) isl.
.K. Moreover, ifM is 
ompa
t, in the 
onformal 
lass of a l.
.h.K. metri
 there is alwaysa metri
 whose asso
iated Lee form is parallel (see [16℄) and hen
e, when working on
ompa
t l.
.h.K. manifolds, we shall assume that the Lee form is parallel (and normalizedsu
h that the Lee �eld has length 1).For a l.
.h.K. manifold with parallel Lee form, (3.2) holds for ea
h Ja. Moreover,[B; JaB℄ = 0; [JaB; JbB℄ = J
B;where (a; b; 
) is any 
y
li
 permutation of (1; 2; 3). Hen
e, in addition to the three two-dimensional foliations Fa, asso
iated to ea
h single Vaisman stru
ture (g; Ja), we have athree-dimensional foliation D lo
ally generated by JaB and a four-dimensional foliation�D lo
ally generated by B and JaB, a = 1; 2; 3. We shall study the harmoni
ity andminimality properties of the 
orresponding distributions at the end of the next se
tion.
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ity and minimality on Vaisman manifoldsLet (M;J; g) be a 
onne
ted Vaisman manifold of real dimension 2n. Re
all that B isa parallel unit ve
tor �eld.4.1. The anti-Lee ve
tor �eld. We shall study the Riemannian properties of the anti-Lee ve
tor �eld JB. For simpli
ity, denote ' := 'JB = �r(JB). Then (3.2) togetherwith (rJ)B = r(JB) imply(4.1) 'X = 12fJX � !(JX)B � !(X)JBg:Note that 'B = '(JB) = 0.Repeated use of (3.2) and (4.1) gives the formula for the 
ovariant derivative of ':(4.2) (rX')Y = 14f!(JY )X � !(X)!(JY )B + [g(X; Y )� !(X)!(Y )℄JBg:Consequently, we obtaing((rX')Y; Z) = 0 for any X; Y; Z ? JB;proving that JB is a strongly normal (sin
e Killing) and geodesi
 ve
tor �eld. This,moreover, implies that JB is a harmoni
 and minimal ve
tor �eld [10℄, [11℄.We now show that JB, viewed as a map from M to T1M , is a harmoni
 map. To thisend, we have to show (in the notations of Se
tion 2) that P g(RAJBEiJBJB;Ei) = 0 forany lo
al orthonormal frame fEig. But sin
eg(RAJBEiJBJB;Ei) = R('Ei; JB; JB;Ei) = g(RJB'EiJB;Ei);it is enough to show that P g(RJBEiJB; 'Ei) = 0. Sin
e JB is a Killing ve
tor �eld, weget RJBXY = �r2XY JB = (rX')Y and using (4.1) and (4.2), we obtainRJBEiJB = 14f�Ei + !(Ei)B + g(Ei; JB)JBg;'Ei = 12fJEi � !(JEi)B � !(Ei)JBg:So, the desired result follows at on
e. Summing up, we have proved:Proposition 4.1. On a Vaisman manifold (M; g), the anti-Lee ve
tor �eld is a harmoni
and minimal ve
tor �eld. Moreover, it is a harmoni
 map from (M; g) into the unittangent bundle (T1M; gS).Remark 4.1. For a 
ompa
t M , we may also determine the volume and energy of JB.As ' is skew-symmetri
, we have L = I �'t' = I �'2. But, sin
e 'B = 'JB = 0, (4.1)gives '2X = 12'(JX) and hen
e we have(4.3) '2X = 14f�X + !(X)B � !(JX)JBg:



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 8Then one easily 
omputes: L = 54 Id�14! 
B + 14! Æ J 
 JB;L�1 = 45 Id+15! 
 B � 15! Æ J 
 JB:(4.4)Note that in an adapted lo
al frame of the form(4.5) fE1; : : : ; E2n�2; E2n�1 = B;E2n = JBg;the matrix of LJB is diag(54 ; : : : ; 54 ; 1; 1). Hen
e, we haveE(JB) = 12 ZM TrLJB �g = 5n� 14 Vol(M);Vol(JB) = ZMpdetLJB �g = �54�n�1Vol(M):Moreover, the Hessian forms for the energy and volume were 
omputed in [19℄ and [9℄,respe
tively. (See also [12℄.) We have:(HessE)�(X) = ZM(krXk2 � kXk2k'�k2)�g;(Hess Vol)�(X) = ZM hkXk2��(�) + (detL�)� 12 ((Tr(K� Æ rX))2 � Tr(K� Æ rX)2)+Tr(L�1� Æ (rX)t Æ '� ÆK� Æ rX) + (detL�) 12 Tr(L�1� Æ (rX)t Æ rX)i�g;
(4.6)
where we have put ��(X) = Tr(Z 7! (rZK�)X) and X ? �. In general, a unitharmoni
 (respe
tively minimal) � is 
alled stable if (HessE)�(X) � 0 (respe
tively(Hess Vol)�(X) � 0) for any X ? �. In our 
ase, with � = JB, it is easily seen thatfor X = B one obtains (HessE)JB(B) < 0 and (Hess Vol)JB(B) < 0, hen
e JB is notstable neither as a harmoni
 map nor as a minimal submanifold.4.2. Harmoni
ity and minimality of the distribution asso
iated to the foliationF . We shall denote by � the bive
tor B ^ JB.We �rst 
ompute � := �� = Pr2EiEi� for any lo
al orthonormal frame fEig. Wesu

essively have:rX� = �B ^ 'X = 12B ^ f�JX + !(X)JBg;rYrX� = 12B ^ f�rY (JX)� 12!(X)JY + [Y (!(X) + 12!(X)!(Y )℄JBg;rrXY � = 12B ^ f�JrXY + !(rXY )JBg:(4.7)



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 9We use these formulas and a lo
al frame of the form (4.5) to 
ompute Pr2EiEi� =P(rEirEi� �rrEiEi�). We obtainXrEirEi� = 12B ^XfEi(!(Ei))JB �rEi(JEi)g;XrrEiEi� = 12B ^Xf�JrEiEi + !(rEiEi)JBg:Hen
e � = �12B ^P(rEiJ)Ei whi
h, using (3.2), gives� = �n� 12 �:Next we show that � := g(X;��) =P g(RXEi�;rEi�) = 0 for all X.As RXEi = r2XEi �r2EiX , we may use (4.7) 
ombined with (3.2) to deriveRXEi� = 14B ^ f!(JX)Ei � !(JEi)Xg:Now, re
all that g(X1 ^ X2; X3 ^ X4) = det(g(Xi; Xj), i = 1; 2, j = 3; 4. Then, by astraightforward 
omputation, it follows that � = 0.Finally, 
ompute � := PfrEirPEi� � rPrEiEi�g, with P as in Proposition 2.1. Astraightforward 
omputation shows that A is given by putting L := A in (4.4).It will again be 
onvenient to 
onsider the lo
al orthonormal basis of the form (4.5).Note that under this assumption, we have!(rEiEi) = 0 as !(Ei) = g(B;Ei) = 
onst:,!(JrEiEi) = �g(Ei; 'Ei) = 0 as ' is skew-symmetri
.With this, we have for the se
ond term:A�1rEiEi = 45rEiEi;rA�1rEiEi(JB) = �25JrEiEi:So, we obtain(4.8) XrA�1rEiEi� =XB ^ rA�1rEiEi(JB) = �25B ^XJrEiEi:As for the �rst term, a similar 
omputation, in whi
h we take into a

ount the formulasrA�1Ei(JB) = �'(A�1Ei) and 'B = 'JB = 0, yieldsrA�1Ei(JB) = �25fJEi � !(JEi)B � !(Ei)JBg;rEirA�1Ei(JB) = �25frEi(JEi) + !(Ei)'Eig:With (3.2) and re
alling the type of basis we are using, we �ndX(rEiJ)Ei = (n� 1)JB:
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e, we obtain XrEirA�1Ei� = �2(n� 1)5 � � 25B ^X JrEiEi:Together with (4.8), this yields � = �2(n� 1)5 �:Note that neither � nor � are zero be
ause n � 2. A

ording to the Proposition 2.1 wethus proved:Proposition 4.2. The map � : (M; g) ! (Gor2 (M); gS) is harmoni
 and its image is aminimal submanifold.4.3. Harmoni
ity and minimality of the distributions D and �D on a l.
.h.K.manifold with parallel Lee form. Let now (M4n; g; J1; J2; J3) be a l.
.h.K. manifoldwith parallel Lee form and denote with � and �� the multive
tors 
orresponding to thedistributions D, �D. Hen
e, � = J1B ^ J2B ^ J3B and �� = J1B ^ J2B ^ J3B ^ B.We shall essentially perform the same kind of 
omputations as in the previous subse
-tion. We start with �.Let here 'a := �r(JaB). We have(4.9) 'aX = �rX(JaB) = 12fJaX � !(JaX)B � !(X)JaBg:It will be 
onvenient to 
onsider an orthonormal basis of the form: fEa; E3+j j a =1; 2; 3; j = 1; : : : 4n� 3g (we shall keep this 
onvention for the indi
es a; j).Note that the 
ondition that a tensor belongs to the subspa
e S0�(x)�S2�(x) is equivalentto that of being orthogonal to S1�. So, in order to show that � is 
riti
al for the energyfun
tional, we have to show that g(�; �aj ) = 0. To 
ompute � =Pir2EiEi�, we start withthe general formula [7, (3.6)℄:g(r2XY �; �aj ) = g(r2XYEa; Eq+j)+ qXb=1fg(rXEa; Eb)g(rYEq+j; Eb) + g(rYEa; Eb)g(rXEq+j; Eb)g:In our 
ase p = 3. Now, put X = Y to getg(r2XX�; �aj ) = g(r2XXEa; E3+j) + 2 3Xb=1fg(rXEa; Eb)g(rXE3+j; Eb)= g(r2XXEa; E3+j)� 2 3Xb=1fg(rXEa; Eb)g(rXEb; E3+j);where we note that we 
an assume b 6= a. From (4.9) we obtaing(rXEb; E3+j) = 12f�g(JbX;E3+j)� g(X; JbB)g(B;E3+j)g:



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 11Moreover, for a 6= b, we haveg(rXEa; Eb) = �12g(JaX; JbB);and hen
e, we obtaing(r2XX�; �aj ) = g(r2XXEa; E3+j)� 12 3Xb=1fg(X; JaJbB)[g(X; JbE3+j) + g(X; JbB)g(B;E3+j)℄g:Next, put X = El and sum with respe
t to l to getXl g(r2ElEl�; �aj ) =Xl g((r2ElElJa)B;E3+j):But, sin
e(r2XY Ja)Y = 12f!(rXJa)Y )X�!(Y )(rY Ja)X� g(X; (rXJa)Y )B+ g(X; Y )(rXJa)Bg;we haveXl (r2ElElJa)B = �12Xl f(rElJa)El � g(El; 'aEl)B)Bg = �12Xl (rElJa)El;be
ause 'a is skew-symmetri
. So, we �ndg(Xl r2ElElJa)B;E3+j) = �12Xl g((rElJa)El; E3+j) = 0;by a straightforward expli
itation of (rElJa)El. This �nally assures that � is orthogonalto S1� and hen
e that � is 
riti
al for the energy fun
tional.We now show that � is minimal. To this end, we 
ompute � := P4nl=1frElrPEl �rPrElElg with P de�ned as in Proposition 2.1. By the above 
omputations we obtainA = 74 Id�34! 
 B � 34Xa !a 
 JaB:Hen
e, we have A�1 = 47 Id+34! 
 B + 34Xa !a 
 JaB:Note that rB� = rJaB� = 0, so that we get� = 47pdetAXl (rElrEl �rrElEl)� = 47pdetA�;and thus, � is orthogonal to S1�.Now, in order to show that � is a harmoni
 map we still have to prove that � :=Pl g(RXEl�;rEl�) = 0: By the above note, we only need to sum over those El orthogonal



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 12to fB; J1B; J2B; J3Bg. Let �aT denote the multive
tor � in whi
h the fa
tor on the positiona is repla
ed by the �eld T . Then we have by dire
t 
omputation:rEl� = �12f�1J1El + �2J2El + �3J3Elg;RXEl� = �1RXElJ1B + �2RXElJ2B + �3RXElJ3B;so that we obtain�2� =Xl fR(X;El; J1B; J1El) +R(X;El; J2B; J2El) +R(X;El; J3B; J3El):We have su

essively, using (4.9):R(X;El; JaB; JaEl) = g(�rX('aEl) +rEl('aX) + 'a(rXEl �rElX); JaEl);�rX('aEl) = �rX(JaEl)= 12fg(X; JaEl)B � g(X;El)JaBg � JarXEl;and hen
e, g(�rX('aEl); JaEl) = 0:Similarly, we obtain g(rEl('aX); JaEl) = 12g(rElX;El);g('a(rXEl �rElX); JaEl) = �12g(rElX;El):Hen
e R(X;El; JaB; JaEl) = 0 for ea
h a, and thus � = 0.To dis
uss the properties of ��, it is 
onvenient to work with an orthonormal basis ofthe form fEa; E4 = B;E4+jg where again a = 1; 2; 3 and now j = 1; : : : 4n� 4. As before,we have g(r2XX��; ��aj ) = g(r2XXEa; E4+j)� 2 4Xb=1 g(rXEa; Eb)g(rXEb; E4+j)= g(r2XXEa; E4+j)� 2 3Xb=1 g(rXEa; Eb)g(rXEb; E4+j);g(r2XX��; ��4j ) = g(rXXB;Eb)� 2 3Xb=1 g(rXB;Eb)g(rXEb; E4+j) = 0:This means that our 
omputations redu
e to the ones already performed for �, that is, tog(r2XX�; �aj ) and so, this vanishes.



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 13To show the minimality, we �rst need to determine the form of P . In the abovenotations, we obtain: rX �� = �12f��1J1X + ��2J2X + ��3J3X � 3!(X)��gand hen
e, rB�� = 0;rX �� = �12f��1J1X + ��2J2X + ��3J3Xg for X ? B:So we have the same results as for � and the minimality follows. Similar 
omputations
on
erning the 
urvature prove that � = 0 for �� too.So, taking into a

ount Proposition 2.1, we have proved:Proposition 4.3. On a lo
ally 
onformal hyperk�ahler manifold (M; g; J1; J2; J3) withparallel Lee form, the distributions D and �D lo
ally generated respe
tively by fJaBg,fJaB;Bg, a = 1; 2; 3, determine harmoni
 maps and minimal immersions of (M; g) into(Gor3 (M); gS) and (Gor4 (M); gS), respe
tively.5. The Inoue surfa
eLet SA be the Inoue surfa
e endowed with the metri
g = dw 
 d �ww22 + w2dz 
 d�zdes
ribed in Se
tion 3. Unless on a Vaisman manifold, were B is parallel and thus of nointerest for our problem, here it has interesting properties. On the other hand, it turnsout that also the anti-Lee ve
tor �eld has good properties. Namely we prove:Proposition 5.1. On an Inoue surfa
e SA endowed with the Tri
erri metri
, the followingproperties hold:i) the Lee and anti-Lee ve
tor �elds are harmoni
 and minimal;ii) the distribution lo
ally generated by the Lee and anti-Lee ve
tor �elds is harmoni
and determines a minimal immersion of (SA; g) into (Gor2 (SA); gS).The proof is 
omputational. It is 
onvenient to work lo
ally, in an orthonormal framein
luding B and to use the Cartan equations. We 
hoose the orthonormal frame B (seealso [4℄) as follows:E1 = w2 ��w1 ; E2 = w2 ��w2 = B; E3 = 1pw2 ��z1 ; E4 = 1pw2 ��z2 :



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 14Note that jBj = 1, but B is not a Killing ve
tor �eld. For 
onvenien
e, we list the mutualbra
kets [Ei; Ej℄:[E1; E2℄ = �E1; [E2; E3℄ = �12E3; [E2; E4℄ = �12E4;[E1; E3℄ = [E1; E4℄ = [E3; E4℄ = 0:(5.1)The dual frame B� is given by�1 = dw1w2 ; �2 = dw2w2 ; �3 = pw2dz1; �4 = pw2dz2:For the stru
ture equations, we use the 
onvention1d�i = �ik ^ �k;d�ij = ��kj ^ �ik +Rij;(5.2)with 
onne
tion forms given by rXEj = ��kj (X)Ek and where Rij = Pk<lRijkl�k ^ �l.Using the �rst stru
ture equations, we obtain the list of 
onne
tion forms:�12 = ��21 = �1; �23 = ��32 = 12�3; �24 = ��42 = 12�4; the other ones being zero:Further, this givesrEjB = rEjE2 = ��k2 (Ej)Ek = �Æ1jE1 + 12Æ3jE3 + 12Æ4jE4;and hen
e the list of the 
ovariant derivatives of B:rE1B = E1; rE2B = 0; rE3B = 12E3; rE4B = 12E4:B is the only auto-parallel �eld in the frame. Indeed, we have(5.3) rE1E1 = E2; rE3E3 = �12E2; rE4E4 = �12E2:As B = E2, we now set '2X = �rXB. To 
he
k that B is a harmoni
 ve
tor �eld, weneed to show that P g((rEi'2)Ei; Z) = 0 for any Z = Ej with j = 1; 3; 4. With theabove formulas we have:'2X = �1(X)E1 � 12�3(X)E3 � 12�4(X)E4;(rY'2)X = (rY �1)(X)E1 � 12(rY �3)(X)E3 � 12(rY �4)(X)E4+ [�1(X)�1(Y ) + 14�3(X)�3(Y ) + 14�4(X)�4(Y )℄E2:(5.4)We thus obtain X(rEi'2)Ei = E2 + 14E2 + 14E2 = 32E2;1All indi
es run from 1 to 4 and we use Einstein's summation 
onvention.
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e the result follows.Remark 5.1. Using also the se
ond stru
ture equations 
ombined with the �rst of (5.4),one shows that PR(B;'2Ei)Ei 6= 0 and hen
e, B is not a harmoni
 map from SA toT1SA.In order to show that B is minimal, we need to prove that P(rEiK2)Ei is a multipleof B, with K2 = �pdetL2 Æ L�12 Æ 't2 and L2 = Id+'t2 Æ '2.From (5.4) we see that the matrix of '2 in the spe
i�ed basis is diag(1; 0;�12 ;�12)and hen
e '2 = 't2. Then it is immediate that the matrix of L2 is diag(2; 1; 54 ; 54) anddetL2 = 5016 . Further, the matrix of L�12 is diag(12 ; 1; 45 ; 45). All in all we �ndK2X = �5p28 �1(X)E1 + 1p2�3(X)E3 + 1p2�4(X)E4:Now, we easily deriveK2E1 = �5p28 E1; K2E2 = 0; K2E3 = 1p2E3; K2E4 = 1p2E4:With (5.3), this gives XrEi(K2Ei) = �9p28 E2:As for ea
h i, rEiEi is a multiple of E2 and K2E2 = 0, we �nally �ndX(rEiK2)Ei = �9p28 E2;as desired.As SA is 
ompa
t, from the previous 
omputations we also obtain (as in Remark 4.1):E(B) = 12 ZSA TrL2 �g = 114 Vol(SA);Vol(B) = ZSApdetL2 �g = 5p24 Vol(SA):Finally, we dis
uss the stability for the energy and for the volume of B. We take X =JB = E1 in the �rst formula of (4.6). As rEiE1 = �1(Ei)E2, we obtain krE1k = 1. Fromthe �rst formula of (5.4) we have k'2k2 = 32 . Hen
e, by (4.6) we get (Hess(E)B)(JB) =�12 Vol(SA) < 0 and thus B is not stable for the energy fun
tional.As for the volume fun
tional (the se
ond formula of (4.6)), we �rst observe that theimage of the endomorphism rEi is a in the span of E2 for i = 1; 3; 4. As K2E2 = 0, these
ond and third terms in the integrand are zero. For the �rst term, we have�B(B) = Tr(Z 7! (rZK2)B) =X g(�K2rEiE2; Ei) = �9p28 :



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 16On the other hand, letting X = JB, for the last term of the integrand we obtain 5p28 andso, �nally we get (Hess(Vol)B)(JB) = �p22 Vol(SA) < 0. Hen
e B is not stable for thevolume fun
tional.As regards JB, note �rst that JB = E1. Setting now '1 = �rE1 and letting L1, K1be the asso
iated operators, we �nd as above'1X = ��1(X)E2;(rY '1)X = [�1(rYX)� Y (�1(X))℄E2 + �1(X)[�1(Y )E1 � 12�3(Y )E3 � 12�4(Y )E4℄:Consequently, we have X(rEi'1)Ei = E1and hen
e JB is a harmoni
 ve
tor �eld. Further, the matrix of '1 is 0BB� 0 0 0 0�1 0 0 00 0 0 00 0 0 01CCAand hen
e the matrix of L1 is diag(2; 1; 1; 1). Then K1 a
ts as follows:K1E2 = � 1p2E1; K1Ei = 0 for i = 1; 3; 4:Using also (5.3), we obtain that P(rEiK1)Ei = 0, proving that JB is a minimal ve
tor�eld.Also, E(JB) = 52 Vol(SA) and Vol(JB) = p2Vol(SA).As for the stability of JB, k'1k = 1. Taking X = E3, we �nd krE3k2 = 14 , hen
e(Hess(E)JB)(E3) = �34 Vol(SA) < 0 and thus JB is not stable for the energy fun
tional.The stability problem for the volume fun
tional is more diÆ
ult and up to now we didnot obtain a result.Denote now by � the bive
tor E1 ^E2 = �B ^ JB. As in the previous se
tion, we �rst
ompute � =P4i=1r2EiEi�. We have su

essively:rX� = ��k1(X)Ek ^ E2 � �k2(X)E1 ^ Ek= 12�3(X)E1 ^ E3 + 12�4(X)E1 ^ E4;rYrX� = 12Y (�3(X))E1 ^ E3 + 12Y (�4(X))E1 ^ E4+ 12�3(X)rY (E1 ^ E3) + 12�4(X)rY (E1 ^ E4):



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 17But we also have rY (E1 ^ E3) = �1(Y )E2 ^ E3 � 12�3(Y )�;rY (E1 ^ E4) = �1(Y )E2 ^ E4 � 12�4(Y )�:So we get rYrX� = �14[�3(X)�3(Y ) + �4(X)�4(Y )℄�+ 12Y (�3(X))E1 ^ E3 + 12Y (�4(X))E1 ^ E4+ 12�3(X)�1(Y )E2 ^ E3 + 12�4(Y )�1(Y )E2 ^ E4:Putting here X = Y = Ei and summing up, we �nally �nd(5.5) � = �12�;whi
h proves that � is a harmoni
 distribution, that is, it is a 
riti
al point of the energyfun
tional restri
ted to the oriented Grassmannian Gor2 (SA) ([7, Prop. 3.2 b)℄).On the other hand, a similar 
omputation 
an be performed for �� whi
h is de�ned as� but for the metri
 ��gS(X; Y ) = g(X; Y )+g(rX�;rY �). The result is that also in this
ase �� is a multiple of �. A

ording to [7, Prop. 3.2 
)℄, this means that the immersion� : (SA; g)! (Gor2 (SA); gS) is minimal.Let us also note that, unlike on Vaisman manifolds, the tensor � =P4i=1 g(RXEi�;rEi�)does not vanish, so that the map � : (SA; g)! (Gor2 (SA); gS) is not harmoni
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