
HARMONICITY AND MINIMALITY OF VECTOR FIELDS ANDDISTRIBUTIONS ON LOCALLY CONFORMAL K�AHLER ANDHYPERK�AHLER MANIFOLDSLIVIU ORNEAy AND LIEVEN VANHECKEAbstrat. We show that on any loally onformal K�ahler (l..K.) manifold (M;J; g)with parallel Lee form the unit anti-Lee vetor �eld is harmoni and minimal and deter-mines a harmoni map into the unit tangent bundle. Moreover, the anonial distributionloally generated by the Lee and anti-Lee vetor �elds is also harmoni and minimal whenseen as a map from (M; g) with values in the Grassmannian Gor2 (M) endowed with theSasaki metri. As a partiular ase of l..K. manifolds, we look at loally onformalhyperk�ahler manifolds and show that, if the Lee form is parallel (that is always thease if the manifold is ompat), the naturally assoiated three- and four-dimensionaldistributions are harmoni and minimal when regarded as maps with values in appro-priate Grassmannians. As for l..K. manifolds without parallel Lee form, we onsiderthe Trierri metri on an Inoue surfae and prove that the unit Lee and anti-Lee vetor�elds are harmoni and minimal and the anonial distribution is ritial for the en-ergy funtional, but when seen as a map with values in Gor2 (M) it is minimal, but notharmoni.Keywords: loally onformal K�ahler manifold, Lee and anti-Lee �eld, harmoni vetor �eldand distribution, minimal vetor �eld and distribution, stability.2000 Mathematis Subjet Classi�ation: 53C20, 58E15, 53C55.1. IntrodutionThe theory of harmoni maps is by now well settled: existene and uniqueness theoremswere proved, examples were produed in any dimension of the domain and odomain. Still,it is important to ontinue enlarging the lass of expliit examples.Oriented distributions on Riemannian manifolds, unit vetor �elds in partiular, provedto be a very fruitful soure of suh examples in two diretions. On the one hand, they anprovide examples of ritial points of natural generalizations of the usual energy and vol-ume funtionals. On the other hand, they an provide examples of harmoni maps and/orminimal immersions in appropriate oriented Grassmannians endowed with the Sasaki met-ri (in the tangent or unit tangent bundle when we redue to vetor �elds). Based onthe fundamental work done previously in [6℄, [8℄, [19℄, suh approah was systematiallydeveloped by one of the present authors and by his ollaborators (see, for example, [3℄,y Member of EDGE, Researh Training Network HRPN-CT-2000-00101, supported by the EuropeanHuman Potential Programme. 1



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 2[7℄ and [10 { 12℄ and the referenes therein). We give the neessary de�nitions in Setion2. One lass of Riemannian manifolds naturally endowed with distinguished vetor �eldsand distributions is the loally onformal K�ahler (l..K.) lass (see [4℄). A leading exampleof suh a manifold is the Hopf manifold. De�nitions, examples and basi propertiesof l..K. strutures are given in Setion 3. The Hermitian-Weyl struture of a l..K.manifold anonially determines a one-form (alled the Lee form) and two vetor �elds,the Lee vetor �eld and its orthogonal by the omplex struture, the anti-Lee vetor �eld.Together they generate a distribution whih in some ases is a foliation (for example whenthe Lee form is parallel or for the Trierri metri on the Inoue surfae). It is natural toask for their Riemannian properties with respet to the harmoniity and minimality.The aim of this paper is to use the l..K. manifolds, with and without parallel Lee form,to exhibit new examples of harmoni and minimal unit vetor �elds and distributions.In Setion 4, we disuss l..K. manifolds with parallel Lee form. The Lee vetor �eldbeing parallel, it trivially has all desired properties. But the anti-Lee vetor �eld is neverparallel and we show that it is harmoni and minimal, but unstable for both assoiatedfuntionals and determines a harmoni map from the manifold into its unit tangent bundleendowed with the Sasaki metri. When the Lee �eld of a ompat l..K. manifold isregular, the manifold �bers (and the projetion is a Riemannian submersion) in irlesover an �-Sasakian manifold whose harateristi �eld is the projetion of the anti-Lee�eld. Even if the harateristi �eld of a Sasakian manifold is known to be harmoni andminimal, one annot derive diretly the onlusion for the anti-Lee �eld beause a theoryof the behaviour of harmoni and minimality properties of vetor �elds and distributionsin a Riemannian submersion is still laking. Moreover, most of the known examples ofl..K. manifolds with parallel Lee form are non-regular.A partiular ase of l..K. manifolds with parallel Lee form is formed by the loallyonformal hyperk�ahler (l..h.K.) manifolds. They bear three "nested" l..K. strutures,thus giving rise to a three-dimensional and a four-dimensional distribution whih an beshown to be harmoni and minimal as maps with values in the appropriate Grassmannians.In the last setion of this paper, we work on an Inoue surfae endowed with the Trierrimetri. This is an expliit example of a l..K. metri without parallel Lee form on aompat manifold. Still we an prove that the Lee and anti-Lee vetor �elds are harmoniand minimal and the anonial distribution is ritial for the energy funtional and, whenseen as a map with values in Gor2 (M) it is minimal, but not harmoni.We stress that usually l..K. manifolds are regarded in the framework of onformalgeometry and the properties of the omplex onformal struture are studied by means ofthe Weyl onnetion. But here we are interested merely in the Riemannian geometry of a�xed metri, the one whih is loally onformal with K�ahler ones, hene we shall negletall onformal setting.Aknowledgements. This work has been done in the framework of the agreement be-tween the Royal Flemish Aademy of Belgium for Sienes and Arts and the Romanian



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 3Aademy. The authors thank both Aademies for their support. The �rst author alsothanks the members of the Setion of Geometry of the Department of Mathematis,Catholi University Leuven, for their warm hospitality during his visit there in May 2002.2. Harmoni and minimal setions of tensor bundlesLet (N; g) be a Riemannian manifold and denote by r its Levi Civita onnetion. Thetangent bundle TN is naturally endowed with the Sasaki metri gS whih is also naturallyindued on the hypersurfae T1N of unit vetors. Now, any setion � 2 �(Q) (where Qstands here for TN or T1N) may be understood as a map � : (N; g) ! (Q; gS) betweenRiemannian manifolds. As suh, one may ask about some of its spei� properties: har-moniity, shape and volume of its image as an immersed submanifold, et. We de�ne theoperators '�; L� 2 End(TN) (see [3℄, [6℄, [8℄ for details) by'� := �r�;L� := Id+'t� Æ '�and may ompute, for ompat N , the energy and volume of �:E(�) = 12 ZN TrL� �g;Vol(�) = ZNpdetL� �g;where �g is the volume form of (N; g). The ritial point onditions for the two funtionalswere found in [19℄ and [8℄. De�ning K� = �pdetL�L�1� Æ 't�, these onditions readrespetively: Tr(Z 7! (rZ't�)) vanishes on �?;(2.1) Tr(Z 7! (rZK�)) vanishes on �?:(2.2)A unit vetor �eld � is then alled:� a harmoni vetor �eld if (2.1) is satis�ed. If moreover, Tr(Z 7! R�'�ZX) = 0 forallX, then � is a harmoni map from (N; g) into (T1N; gS). Here and in the sequelwe use the onventions RXY = [rX ;rY ℄�r[X;Y ℄, R(X; Y; Z;W ) = g(RXYZ;W ).� a minimal vetor �eld if it satis�es (2.2) (this is equivalent to the image of � beinga minimal submanifold in (T1N; gS)).A stronger ondition an be imposed, namely g(rX'�)Y; Z) = 0 for any X; Y; Z ? �. Inthis ase we say that � is strongly normal. The motivation of onsidering this onditionand naming it like this an be found in [10℄. It has been proved that a a strongly normalunit geodesi vetor �eld is harmoni and minimal (see [10℄, [11℄).These notions an be generalized for setions of any tensor bundle � : Q ! N overN . One may endow Q with a generalization gS of the Sasaki metri (in the sense that



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 4for Q = TN , gS is exatly the Sasaki metri). It an be de�ned using Dombrowski'sonnetion map K of the Levi Civita onnetion of g as (see [7℄, for example):gS(�1; �2) = g(���1; ���2) + g(K�1; K�2):We now give the neessary de�nitions and formulas for these Riemannian properties of �aording to [7℄.A p-dimensional oriented distribution � on N an be viewed as a map � : N ! Gorp (N).If fE1; : : : ; Eng is a positive orthonormal loal frame suh that � is loally generated byfE1; : : : ; Epg, then � an be identi�ed with the p-vetor E1 ^ � � � ^Ep and, as suh, it anbe onsidered as a setion of the tensor bundle �p(N). De�ne�� = nXi;j=1 g(REiEj�;rEj�)Ei;�� = nXi=1 (r2�)(Ei; Ei):Moreover, let S0�(x) be the subspae generated in �p(TxN) by �(x) and let S1�(x), S2�(x) bethe subspaes S generated respetively by the multivetors�aj (x) = E1 ^ � � � ^ Ea�1 ^ Ep+j ^ Ea+1 ^ � � � ^ Ep;�abij (x) = E1 ^ � � � ^ Ea�1 ^ Ep+i ^ Ea+1 ^ � � � ^ Eb�1 ^ Ep+j ^ Eb+1 ^ � � � ^ Ep;where a; b = 1; : : : p and i; j = 1; : : : n� p. We then have:Proposition 2.1. [7, Prop. 3.2℄i) The map � : (N; g) ! (Gorp (N); gS) is a harmoni map if and only if �� = 0 and��(x) belongs to the subspae S0�(x) � S2�(x) for all x 2 N . � is a harmoni distribution ifand only if ��(x) belongs to the subspae S0�(x) � S2�(x) for all x 2 N .ii) The immersion � : (N; g)! (Gorp (N); gS) is minimal if and only ifnXi=1 frEirPEi� �rPrEiEi�gbelongs to the subspae S0�(x) � S2�(x) for all x 2 N and for P := L�1��gS = pdetAA�1,where (��gS)(X; Y ) = g(AX; Y ) = g(X; Y ) + g(rX�;rY �).3. Loally onformal K�ahler manifoldsLet (M;J; g) be a onneted Hermitian manifold of omplex dimension n � 2. Wedenote by 
 its fundamental two-form given by 
(X; Y ) = g(X; JY ).(M;J; g) is alled loally onformal K�ahler, l..K. for short, if for eah point x of Mthere exists an open neighbourhood U of x and a positive funtion fU on U so that the



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 5loal metri gU = e�fUgjU is K�ahler. We refer to [4℄ for a general overview. Equivalently,(M;J; g) is l..K. if and only if there exists a losed one-form ! suh that(3.1) d
 = ! ^ 
:Of ourse, loally, !jU = dfU .The one-form ! is alled the Lee form and its metrially equivalent vetor �eld B = !℄is alled the Lee vetor �eld. We shall also onsider the anti-Lee vetor �eld JB. Usingthem, one an give a third equivalent de�nition in terms of the Levi Civita onnetion rof the metri g. Namely, (M;J; g) is l..K. if and only if the following equation is satis�edfor any X; Y 2 X (M):(3.2) (rXJ)Y = 12f!(JY )X � !(Y )JX + g(X; Y )JB � 
(X; Y )Bg:Note that the above equation shows that l..K. manifolds belong to the lass W4 of theelebrated Gray-Hervella lassi�ation [13℄.A stritly smaller lass of l..K. manifolds is the one formed by those with parallel (withrespet to the Levi Civita onnetion) Lee form, also alled Vaisman manifolds beauseI. Vaisman was the �rst to study them sytematially under the name of generalized Hopfmanifolds [18℄. On suh a manifold, the length of the Lee vetor �eld is onstant and weshall always assume it is nonzero. Hene, in what follows, we shall normalize and onsiderthat on a Vaisman manifold kBk = kJBk = 1. The next proposition gathers the essentialfats we shall need.Proposition 3.1. Let (M;J; g) be a Vaisman manifold. Then the Lee and anti-Lee vetor�elds ommute ([B; JB℄ = 0), are Killing (LBg = LJBg = 0) and holomorphi (LBJ =LJBJ = 0). Consequently, the distribution generated by B and JB is a holomorphiRiemannian foliation.We shall denote by F the foliation generated by B and JB. We also note that theleaves of the foliation generated by the nullity of the Lee form arry an indued �-Sasakianstruture (see [2℄ as onerns metri ontat manifolds) with JB as harateristi vetor�eld.Examples of (ompat), non-K�ahler, l..K. manifolds are now abundant. Let �i 2 C ,i = 1; : : : n, 1 <j ��11 j� � � � �j ��1n j and let � = (�1; : : : ; �n). Then all the Hopf manifolds(C n n 0)=��, with �� generated by zi 7! ��1i zi, are known to admit Vaisman metris(see [14℄ for the general ase and [5℄ for the surfae ase). Note that these manifoldsare di�eomorphi to S1 � S2n�1 and hene annot be K�ahler. In the simplest ase,when �i = 1=2, one reovers the standard Hopf manifold with l..K. metri (read on C n)g0 = (P jzij2)�1P dzi 
 d�zi and Lee form !0 = �(P jzij2)�1P(�zidzi + zid�zi); here theLee �eld is the one tangent to the S1 fator.More generally, the total spae of a at prinipal irle bundle over a ompat Sasakianmanifold arries a Vaisman metri whose Lee form is identi�ed with the onnetion formof the bundle.



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 6The full list of ompat omplex surfaes whih admit l..K. metris with parallel Leeform was given in [1℄. It inludes the proper ellipti surfaes, the primary and seondaryKodaira surfaes and the ellipti Hopf surfaes.Belgun also proved that the Inoue surfaes annot admit Vaisman metris. However,it was shown by Trierri in [17℄ that some Inoue surfaes admit l..K. metris with non-parallel Lee form. We briey reall this onstrution. Let H = fw = (w1; w2) 2 C jw2 > 0g and let A = (aij) 2 SL(3;Z) having one real eigenvalue � > 1 with eigenvetor(a1; a2; a3), and a non-real omplex eigenvalue �, with eigenvetor (b1; b2; b3). The group�A generated by the transformations(w; z) 7! (�w; �z);(w; z) 7! (w + aj; z + bj)ats on H � C and the quotient is a ompat omplex surfae, the Inoue surfae SA. Themetri g = w�22 dw
d �w+w2dz
d�z on H� C is globally onformal K�ahler with Lee form! = d logw2. Being ompatible with the ation of �A, it indues a l..K. metri on SA.A l..K. manifold is naturally endowed with two distinguished vetor �elds, B andJB, whih also generate a two-dimensional distribution. It is thus natural to look fortheir properties of minimality and harmoniity. Note that if the Lee form is parallel, theproperties of B are trivial, so in that ase we restrit to looking only at JB.A partiularly signi�ant lass of l..K. manifolds appears in the ontext of quaternionHermitian geometry. Namely, a hyperhermitian manifold (M4n; g; J1; J2; J3) is alled lo-ally onformal hyperk�ahler, l..h.K. for short, if for eah point x of M there exists anopen neighbourhood U of x and a positive funtion fU on U so that the loal metrigU = e�fUgjU is hyperk�ahler (see [15℄ for the fundamental properties, formulas and exam-ples). The Lee form loally de�ned by !jU = dfU here satis�es the equation(3.3) d� = ! ^ �;where � = P3i=1 
i ^ 
i and 
i is the fundamental 2-form of the Hermitian struture(M; g; Ja), a = 1; 2; 3. It an be shown that eah of the Hermitian strutures (g; Ja) isl..K. Moreover, ifM is ompat, in the onformal lass of a l..h.K. metri there is alwaysa metri whose assoiated Lee form is parallel (see [16℄) and hene, when working onompat l..h.K. manifolds, we shall assume that the Lee form is parallel (and normalizedsuh that the Lee �eld has length 1).For a l..h.K. manifold with parallel Lee form, (3.2) holds for eah Ja. Moreover,[B; JaB℄ = 0; [JaB; JbB℄ = JB;where (a; b; ) is any yli permutation of (1; 2; 3). Hene, in addition to the three two-dimensional foliations Fa, assoiated to eah single Vaisman struture (g; Ja), we have athree-dimensional foliation D loally generated by JaB and a four-dimensional foliation�D loally generated by B and JaB, a = 1; 2; 3. We shall study the harmoniity andminimality properties of the orresponding distributions at the end of the next setion.



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 74. Harmoniity and minimality on Vaisman manifoldsLet (M;J; g) be a onneted Vaisman manifold of real dimension 2n. Reall that B isa parallel unit vetor �eld.4.1. The anti-Lee vetor �eld. We shall study the Riemannian properties of the anti-Lee vetor �eld JB. For simpliity, denote ' := 'JB = �r(JB). Then (3.2) togetherwith (rJ)B = r(JB) imply(4.1) 'X = 12fJX � !(JX)B � !(X)JBg:Note that 'B = '(JB) = 0.Repeated use of (3.2) and (4.1) gives the formula for the ovariant derivative of ':(4.2) (rX')Y = 14f!(JY )X � !(X)!(JY )B + [g(X; Y )� !(X)!(Y )℄JBg:Consequently, we obtaing((rX')Y; Z) = 0 for any X; Y; Z ? JB;proving that JB is a strongly normal (sine Killing) and geodesi vetor �eld. This,moreover, implies that JB is a harmoni and minimal vetor �eld [10℄, [11℄.We now show that JB, viewed as a map from M to T1M , is a harmoni map. To thisend, we have to show (in the notations of Setion 2) that P g(RAJBEiJBJB;Ei) = 0 forany loal orthonormal frame fEig. But sineg(RAJBEiJBJB;Ei) = R('Ei; JB; JB;Ei) = g(RJB'EiJB;Ei);it is enough to show that P g(RJBEiJB; 'Ei) = 0. Sine JB is a Killing vetor �eld, weget RJBXY = �r2XY JB = (rX')Y and using (4.1) and (4.2), we obtainRJBEiJB = 14f�Ei + !(Ei)B + g(Ei; JB)JBg;'Ei = 12fJEi � !(JEi)B � !(Ei)JBg:So, the desired result follows at one. Summing up, we have proved:Proposition 4.1. On a Vaisman manifold (M; g), the anti-Lee vetor �eld is a harmoniand minimal vetor �eld. Moreover, it is a harmoni map from (M; g) into the unittangent bundle (T1M; gS).Remark 4.1. For a ompat M , we may also determine the volume and energy of JB.As ' is skew-symmetri, we have L = I �'t' = I �'2. But, sine 'B = 'JB = 0, (4.1)gives '2X = 12'(JX) and hene we have(4.3) '2X = 14f�X + !(X)B � !(JX)JBg:



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 8Then one easily omputes: L = 54 Id�14! 
B + 14! Æ J 
 JB;L�1 = 45 Id+15! 
 B � 15! Æ J 
 JB:(4.4)Note that in an adapted loal frame of the form(4.5) fE1; : : : ; E2n�2; E2n�1 = B;E2n = JBg;the matrix of LJB is diag(54 ; : : : ; 54 ; 1; 1). Hene, we haveE(JB) = 12 ZM TrLJB �g = 5n� 14 Vol(M);Vol(JB) = ZMpdetLJB �g = �54�n�1Vol(M):Moreover, the Hessian forms for the energy and volume were omputed in [19℄ and [9℄,respetively. (See also [12℄.) We have:(HessE)�(X) = ZM(krXk2 � kXk2k'�k2)�g;(Hess Vol)�(X) = ZM hkXk2��(�) + (detL�)� 12 ((Tr(K� Æ rX))2 � Tr(K� Æ rX)2)+Tr(L�1� Æ (rX)t Æ '� ÆK� Æ rX) + (detL�) 12 Tr(L�1� Æ (rX)t Æ rX)i�g;
(4.6)
where we have put ��(X) = Tr(Z 7! (rZK�)X) and X ? �. In general, a unitharmoni (respetively minimal) � is alled stable if (HessE)�(X) � 0 (respetively(Hess Vol)�(X) � 0) for any X ? �. In our ase, with � = JB, it is easily seen thatfor X = B one obtains (HessE)JB(B) < 0 and (Hess Vol)JB(B) < 0, hene JB is notstable neither as a harmoni map nor as a minimal submanifold.4.2. Harmoniity and minimality of the distribution assoiated to the foliationF . We shall denote by � the bivetor B ^ JB.We �rst ompute � := �� = Pr2EiEi� for any loal orthonormal frame fEig. Wesuessively have:rX� = �B ^ 'X = 12B ^ f�JX + !(X)JBg;rYrX� = 12B ^ f�rY (JX)� 12!(X)JY + [Y (!(X) + 12!(X)!(Y )℄JBg;rrXY � = 12B ^ f�JrXY + !(rXY )JBg:(4.7)



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 9We use these formulas and a loal frame of the form (4.5) to ompute Pr2EiEi� =P(rEirEi� �rrEiEi�). We obtainXrEirEi� = 12B ^XfEi(!(Ei))JB �rEi(JEi)g;XrrEiEi� = 12B ^Xf�JrEiEi + !(rEiEi)JBg:Hene � = �12B ^P(rEiJ)Ei whih, using (3.2), gives� = �n� 12 �:Next we show that � := g(X;��) =P g(RXEi�;rEi�) = 0 for all X.As RXEi = r2XEi �r2EiX , we may use (4.7) ombined with (3.2) to deriveRXEi� = 14B ^ f!(JX)Ei � !(JEi)Xg:Now, reall that g(X1 ^ X2; X3 ^ X4) = det(g(Xi; Xj), i = 1; 2, j = 3; 4. Then, by astraightforward omputation, it follows that � = 0.Finally, ompute � := PfrEirPEi� � rPrEiEi�g, with P as in Proposition 2.1. Astraightforward omputation shows that A is given by putting L := A in (4.4).It will again be onvenient to onsider the loal orthonormal basis of the form (4.5).Note that under this assumption, we have!(rEiEi) = 0 as !(Ei) = g(B;Ei) = onst:,!(JrEiEi) = �g(Ei; 'Ei) = 0 as ' is skew-symmetri.With this, we have for the seond term:A�1rEiEi = 45rEiEi;rA�1rEiEi(JB) = �25JrEiEi:So, we obtain(4.8) XrA�1rEiEi� =XB ^ rA�1rEiEi(JB) = �25B ^XJrEiEi:As for the �rst term, a similar omputation, in whih we take into aount the formulasrA�1Ei(JB) = �'(A�1Ei) and 'B = 'JB = 0, yieldsrA�1Ei(JB) = �25fJEi � !(JEi)B � !(Ei)JBg;rEirA�1Ei(JB) = �25frEi(JEi) + !(Ei)'Eig:With (3.2) and realling the type of basis we are using, we �ndX(rEiJ)Ei = (n� 1)JB:



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 10Hene, we obtain XrEirA�1Ei� = �2(n� 1)5 � � 25B ^X JrEiEi:Together with (4.8), this yields � = �2(n� 1)5 �:Note that neither � nor � are zero beause n � 2. Aording to the Proposition 2.1 wethus proved:Proposition 4.2. The map � : (M; g) ! (Gor2 (M); gS) is harmoni and its image is aminimal submanifold.4.3. Harmoniity and minimality of the distributions D and �D on a l..h.K.manifold with parallel Lee form. Let now (M4n; g; J1; J2; J3) be a l..h.K. manifoldwith parallel Lee form and denote with � and �� the multivetors orresponding to thedistributions D, �D. Hene, � = J1B ^ J2B ^ J3B and �� = J1B ^ J2B ^ J3B ^ B.We shall essentially perform the same kind of omputations as in the previous subse-tion. We start with �.Let here 'a := �r(JaB). We have(4.9) 'aX = �rX(JaB) = 12fJaX � !(JaX)B � !(X)JaBg:It will be onvenient to onsider an orthonormal basis of the form: fEa; E3+j j a =1; 2; 3; j = 1; : : : 4n� 3g (we shall keep this onvention for the indies a; j).Note that the ondition that a tensor belongs to the subspae S0�(x)�S2�(x) is equivalentto that of being orthogonal to S1�. So, in order to show that � is ritial for the energyfuntional, we have to show that g(�; �aj ) = 0. To ompute � =Pir2EiEi�, we start withthe general formula [7, (3.6)℄:g(r2XY �; �aj ) = g(r2XYEa; Eq+j)+ qXb=1fg(rXEa; Eb)g(rYEq+j; Eb) + g(rYEa; Eb)g(rXEq+j; Eb)g:In our ase p = 3. Now, put X = Y to getg(r2XX�; �aj ) = g(r2XXEa; E3+j) + 2 3Xb=1fg(rXEa; Eb)g(rXE3+j; Eb)= g(r2XXEa; E3+j)� 2 3Xb=1fg(rXEa; Eb)g(rXEb; E3+j);where we note that we an assume b 6= a. From (4.9) we obtaing(rXEb; E3+j) = 12f�g(JbX;E3+j)� g(X; JbB)g(B;E3+j)g:



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 11Moreover, for a 6= b, we haveg(rXEa; Eb) = �12g(JaX; JbB);and hene, we obtaing(r2XX�; �aj ) = g(r2XXEa; E3+j)� 12 3Xb=1fg(X; JaJbB)[g(X; JbE3+j) + g(X; JbB)g(B;E3+j)℄g:Next, put X = El and sum with respet to l to getXl g(r2ElEl�; �aj ) =Xl g((r2ElElJa)B;E3+j):But, sine(r2XY Ja)Y = 12f!(rXJa)Y )X�!(Y )(rY Ja)X� g(X; (rXJa)Y )B+ g(X; Y )(rXJa)Bg;we haveXl (r2ElElJa)B = �12Xl f(rElJa)El � g(El; 'aEl)B)Bg = �12Xl (rElJa)El;beause 'a is skew-symmetri. So, we �ndg(Xl r2ElElJa)B;E3+j) = �12Xl g((rElJa)El; E3+j) = 0;by a straightforward expliitation of (rElJa)El. This �nally assures that � is orthogonalto S1� and hene that � is ritial for the energy funtional.We now show that � is minimal. To this end, we ompute � := P4nl=1frElrPEl �rPrElElg with P de�ned as in Proposition 2.1. By the above omputations we obtainA = 74 Id�34! 
 B � 34Xa !a 
 JaB:Hene, we have A�1 = 47 Id+34! 
 B + 34Xa !a 
 JaB:Note that rB� = rJaB� = 0, so that we get� = 47pdetAXl (rElrEl �rrElEl)� = 47pdetA�;and thus, � is orthogonal to S1�.Now, in order to show that � is a harmoni map we still have to prove that � :=Pl g(RXEl�;rEl�) = 0: By the above note, we only need to sum over those El orthogonal



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 12to fB; J1B; J2B; J3Bg. Let �aT denote the multivetor � in whih the fator on the positiona is replaed by the �eld T . Then we have by diret omputation:rEl� = �12f�1J1El + �2J2El + �3J3Elg;RXEl� = �1RXElJ1B + �2RXElJ2B + �3RXElJ3B;so that we obtain�2� =Xl fR(X;El; J1B; J1El) +R(X;El; J2B; J2El) +R(X;El; J3B; J3El):We have suessively, using (4.9):R(X;El; JaB; JaEl) = g(�rX('aEl) +rEl('aX) + 'a(rXEl �rElX); JaEl);�rX('aEl) = �rX(JaEl)= 12fg(X; JaEl)B � g(X;El)JaBg � JarXEl;and hene, g(�rX('aEl); JaEl) = 0:Similarly, we obtain g(rEl('aX); JaEl) = 12g(rElX;El);g('a(rXEl �rElX); JaEl) = �12g(rElX;El):Hene R(X;El; JaB; JaEl) = 0 for eah a, and thus � = 0.To disuss the properties of ��, it is onvenient to work with an orthonormal basis ofthe form fEa; E4 = B;E4+jg where again a = 1; 2; 3 and now j = 1; : : : 4n� 4. As before,we have g(r2XX��; ��aj ) = g(r2XXEa; E4+j)� 2 4Xb=1 g(rXEa; Eb)g(rXEb; E4+j)= g(r2XXEa; E4+j)� 2 3Xb=1 g(rXEa; Eb)g(rXEb; E4+j);g(r2XX��; ��4j ) = g(rXXB;Eb)� 2 3Xb=1 g(rXB;Eb)g(rXEb; E4+j) = 0:This means that our omputations redue to the ones already performed for �, that is, tog(r2XX�; �aj ) and so, this vanishes.



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 13To show the minimality, we �rst need to determine the form of P . In the abovenotations, we obtain: rX �� = �12f��1J1X + ��2J2X + ��3J3X � 3!(X)��gand hene, rB�� = 0;rX �� = �12f��1J1X + ��2J2X + ��3J3Xg for X ? B:So we have the same results as for � and the minimality follows. Similar omputationsonerning the urvature prove that � = 0 for �� too.So, taking into aount Proposition 2.1, we have proved:Proposition 4.3. On a loally onformal hyperk�ahler manifold (M; g; J1; J2; J3) withparallel Lee form, the distributions D and �D loally generated respetively by fJaBg,fJaB;Bg, a = 1; 2; 3, determine harmoni maps and minimal immersions of (M; g) into(Gor3 (M); gS) and (Gor4 (M); gS), respetively.5. The Inoue surfaeLet SA be the Inoue surfae endowed with the metrig = dw 
 d �ww22 + w2dz 
 d�zdesribed in Setion 3. Unless on a Vaisman manifold, were B is parallel and thus of nointerest for our problem, here it has interesting properties. On the other hand, it turnsout that also the anti-Lee vetor �eld has good properties. Namely we prove:Proposition 5.1. On an Inoue surfae SA endowed with the Trierri metri, the followingproperties hold:i) the Lee and anti-Lee vetor �elds are harmoni and minimal;ii) the distribution loally generated by the Lee and anti-Lee vetor �elds is harmoniand determines a minimal immersion of (SA; g) into (Gor2 (SA); gS).The proof is omputational. It is onvenient to work loally, in an orthonormal frameinluding B and to use the Cartan equations. We hoose the orthonormal frame B (seealso [4℄) as follows:E1 = w2 ��w1 ; E2 = w2 ��w2 = B; E3 = 1pw2 ��z1 ; E4 = 1pw2 ��z2 :



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 14Note that jBj = 1, but B is not a Killing vetor �eld. For onveniene, we list the mutualbrakets [Ei; Ej℄:[E1; E2℄ = �E1; [E2; E3℄ = �12E3; [E2; E4℄ = �12E4;[E1; E3℄ = [E1; E4℄ = [E3; E4℄ = 0:(5.1)The dual frame B� is given by�1 = dw1w2 ; �2 = dw2w2 ; �3 = pw2dz1; �4 = pw2dz2:For the struture equations, we use the onvention1d�i = �ik ^ �k;d�ij = ��kj ^ �ik +Rij;(5.2)with onnetion forms given by rXEj = ��kj (X)Ek and where Rij = Pk<lRijkl�k ^ �l.Using the �rst struture equations, we obtain the list of onnetion forms:�12 = ��21 = �1; �23 = ��32 = 12�3; �24 = ��42 = 12�4; the other ones being zero:Further, this givesrEjB = rEjE2 = ��k2 (Ej)Ek = �Æ1jE1 + 12Æ3jE3 + 12Æ4jE4;and hene the list of the ovariant derivatives of B:rE1B = E1; rE2B = 0; rE3B = 12E3; rE4B = 12E4:B is the only auto-parallel �eld in the frame. Indeed, we have(5.3) rE1E1 = E2; rE3E3 = �12E2; rE4E4 = �12E2:As B = E2, we now set '2X = �rXB. To hek that B is a harmoni vetor �eld, weneed to show that P g((rEi'2)Ei; Z) = 0 for any Z = Ej with j = 1; 3; 4. With theabove formulas we have:'2X = �1(X)E1 � 12�3(X)E3 � 12�4(X)E4;(rY'2)X = (rY �1)(X)E1 � 12(rY �3)(X)E3 � 12(rY �4)(X)E4+ [�1(X)�1(Y ) + 14�3(X)�3(Y ) + 14�4(X)�4(Y )℄E2:(5.4)We thus obtain X(rEi'2)Ei = E2 + 14E2 + 14E2 = 32E2;1All indies run from 1 to 4 and we use Einstein's summation onvention.



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 15and hene the result follows.Remark 5.1. Using also the seond struture equations ombined with the �rst of (5.4),one shows that PR(B;'2Ei)Ei 6= 0 and hene, B is not a harmoni map from SA toT1SA.In order to show that B is minimal, we need to prove that P(rEiK2)Ei is a multipleof B, with K2 = �pdetL2 Æ L�12 Æ 't2 and L2 = Id+'t2 Æ '2.From (5.4) we see that the matrix of '2 in the spei�ed basis is diag(1; 0;�12 ;�12)and hene '2 = 't2. Then it is immediate that the matrix of L2 is diag(2; 1; 54 ; 54) anddetL2 = 5016 . Further, the matrix of L�12 is diag(12 ; 1; 45 ; 45). All in all we �ndK2X = �5p28 �1(X)E1 + 1p2�3(X)E3 + 1p2�4(X)E4:Now, we easily deriveK2E1 = �5p28 E1; K2E2 = 0; K2E3 = 1p2E3; K2E4 = 1p2E4:With (5.3), this gives XrEi(K2Ei) = �9p28 E2:As for eah i, rEiEi is a multiple of E2 and K2E2 = 0, we �nally �ndX(rEiK2)Ei = �9p28 E2;as desired.As SA is ompat, from the previous omputations we also obtain (as in Remark 4.1):E(B) = 12 ZSA TrL2 �g = 114 Vol(SA);Vol(B) = ZSApdetL2 �g = 5p24 Vol(SA):Finally, we disuss the stability for the energy and for the volume of B. We take X =JB = E1 in the �rst formula of (4.6). As rEiE1 = �1(Ei)E2, we obtain krE1k = 1. Fromthe �rst formula of (5.4) we have k'2k2 = 32 . Hene, by (4.6) we get (Hess(E)B)(JB) =�12 Vol(SA) < 0 and thus B is not stable for the energy funtional.As for the volume funtional (the seond formula of (4.6)), we �rst observe that theimage of the endomorphism rEi is a in the span of E2 for i = 1; 3; 4. As K2E2 = 0, theseond and third terms in the integrand are zero. For the �rst term, we have�B(B) = Tr(Z 7! (rZK2)B) =X g(�K2rEiE2; Ei) = �9p28 :



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 16On the other hand, letting X = JB, for the last term of the integrand we obtain 5p28 andso, �nally we get (Hess(Vol)B)(JB) = �p22 Vol(SA) < 0. Hene B is not stable for thevolume funtional.As regards JB, note �rst that JB = E1. Setting now '1 = �rE1 and letting L1, K1be the assoiated operators, we �nd as above'1X = ��1(X)E2;(rY '1)X = [�1(rYX)� Y (�1(X))℄E2 + �1(X)[�1(Y )E1 � 12�3(Y )E3 � 12�4(Y )E4℄:Consequently, we have X(rEi'1)Ei = E1and hene JB is a harmoni vetor �eld. Further, the matrix of '1 is 0BB� 0 0 0 0�1 0 0 00 0 0 00 0 0 01CCAand hene the matrix of L1 is diag(2; 1; 1; 1). Then K1 ats as follows:K1E2 = � 1p2E1; K1Ei = 0 for i = 1; 3; 4:Using also (5.3), we obtain that P(rEiK1)Ei = 0, proving that JB is a minimal vetor�eld.Also, E(JB) = 52 Vol(SA) and Vol(JB) = p2Vol(SA).As for the stability of JB, k'1k = 1. Taking X = E3, we �nd krE3k2 = 14 , hene(Hess(E)JB)(E3) = �34 Vol(SA) < 0 and thus JB is not stable for the energy funtional.The stability problem for the volume funtional is more diÆult and up to now we didnot obtain a result.Denote now by � the bivetor E1 ^E2 = �B ^ JB. As in the previous setion, we �rstompute � =P4i=1r2EiEi�. We have suessively:rX� = ��k1(X)Ek ^ E2 � �k2(X)E1 ^ Ek= 12�3(X)E1 ^ E3 + 12�4(X)E1 ^ E4;rYrX� = 12Y (�3(X))E1 ^ E3 + 12Y (�4(X))E1 ^ E4+ 12�3(X)rY (E1 ^ E3) + 12�4(X)rY (E1 ^ E4):



HARMONICITY AND MINIMALITY ON L.C.K. MANIFOLDS 17But we also have rY (E1 ^ E3) = �1(Y )E2 ^ E3 � 12�3(Y )�;rY (E1 ^ E4) = �1(Y )E2 ^ E4 � 12�4(Y )�:So we get rYrX� = �14[�3(X)�3(Y ) + �4(X)�4(Y )℄�+ 12Y (�3(X))E1 ^ E3 + 12Y (�4(X))E1 ^ E4+ 12�3(X)�1(Y )E2 ^ E3 + 12�4(Y )�1(Y )E2 ^ E4:Putting here X = Y = Ei and summing up, we �nally �nd(5.5) � = �12�;whih proves that � is a harmoni distribution, that is, it is a ritial point of the energyfuntional restrited to the oriented Grassmannian Gor2 (SA) ([7, Prop. 3.2 b)℄).On the other hand, a similar omputation an be performed for �� whih is de�ned as� but for the metri ��gS(X; Y ) = g(X; Y )+g(rX�;rY �). The result is that also in thisase �� is a multiple of �. Aording to [7, Prop. 3.2 )℄, this means that the immersion� : (SA; g)! (Gor2 (SA); gS) is minimal.Let us also note that, unlike on Vaisman manifolds, the tensor � =P4i=1 g(RXEi�;rEi�)does not vanish, so that the map � : (SA; g)! (Gor2 (SA); gS) is not harmoni.Referenes[1℄ F.A. Belgun, On the metri struture of non-K�ahler omplex surfaes, Math. Ann. 317 (2000),1{40.[2℄ D.E. Blair, Riemannian geometry of ontat and sympleti manifolds, Progress in Math. 203,Birkh�auser, Boston, Basel, 2002.[3℄ E. Boekx and L. Vanheke, Harmoni and minimal vetor �elds on tangent and unit tangentbundles, Di�erential Geom. Appl. 13 (2000), 77{93.[4℄ S. Dragomir and L. Ornea, Loally onformal K�ahler geometry, Progress in Math. 155, Birkh�auser,Boston, Basel, 1998.[5℄ P. Gauduhon and L. Ornea, Loally onformally K�ahler metris on Hopf surfaes, Ann. Inst.Fourier 48 (1998), 1107{1127.[6℄ O. Gil-Medrano, Relationship between volume and energy of vetor �elds, Di�erential Geom. Appl.15 (2001), 137{152.[7℄ O. Gil-Medrano, J.C. Gonz�alez-D�avila and L. Vanheke, Harmoniity and minimality of orienteddistributions, preprint 2002.[8℄ O. Gil-Medrano and E. Llinares-Fuster, Minimal unit vetor �elds, Tôhoku Math. J. 54 (2002),71{84.
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