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A locally conformally Khler (LCK) manifold is a complex manifold which admits a cover-

ing endowed with a Kähler metric with respect to which the covering group acts through

homotheties. We show that the blow-up of a compact LCK manifold along a complex sub-

manifold admits an LCK structure if and only if this submanifold is globally conformally

Kähler. We also prove that a twistor space (of a compact four-manifold, a quaternion-

Kähler manifold, or a Riemannian manifold) cannot admit an LCK metric, unless it is

Kähler.

1 Introduction

1.1 Bimeromorphic maps and locally conformally Kähler structures

A locally conformally Kähler (LCK) manifold is a complex manifold M, dimC M > 1,

admitting a Kähler covering (M̃, ω̃), with the deck transform group acting on (M̃, ω̃) by

holomorphic homotheties. Unless otherwise stated, we shall consider only compact LCK

manifolds.
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2 L. Ornea et al.

In this paper, we are interested in the birational (or, more precisely, bimeromor-

phic) geometry of LCK manifolds.

An obvious question arises immediately.

Question 1.1. Let X ⊂ M be a complex subvariety of an LCK manifold, and M1 −→ M a

blow-up of M in X. Would M1 also admit an LCK structure? �

When X is a point, the question is answered in affirmative by Tricerri [13] and

Vuletescu [16]. When dim X > 0, the answer is not immediate. To state it properly, we

recall the notion of a weight bundle of an LCK manifold. Let (M̃, ω̃) be the Kähler cov-

ering of an LCK manifold M, and π1(M) −→ Map(M̃, M̃) the deck transform map. Since

ρ∗(γ )ω̃ = const · ω̃, this constant defines a character π1(M)
χ−→ R

>0, with χ(γ ) := ρ∗(γ )ω̃

ω̃
.

Definition 1.2. Let L be the one-dimensional local system on M with monodromy

defined by the character χ . We think of L as of a real bundle with a flat connection.

This bundle is called the weight bundle of M. �

One may think of the Kähler form ω̃ as of an L-valued differential form on M. This

form is closed, positive, and of type (1,1). Therefore, for any smooth complex subvariety

Z ⊂ M such that L|Z is a trivial local system, Z is Kähler.

The following two theorems describe how the LCK property behaves under

blow-ups.

Theorem 1.3. Let Z ⊂ M be a compact complex submanifold of an LCK manifold, and

M1 the blow-up of M with center in Z . If the restriction L|Z of the weight bundle is trivial

as a local system, then M1 admits an LCK metric. �

Proof. See Corollary 2.11. �

A similar question about blow-downs is also answered.

Theorem 1.4. Let D ⊂ M1 be an exceptional divisor on an LCK manifold, and let M be

the complex variety obtained as a contraction of D. Then the restriction L|D of the weight

bundle to D is trivial. �

Proof. Theorem 2.9. �
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Blow-ups of LCK Manifolds 3

This result is quite unexpected, and leads to the following theorem about a spe-

cial class of LCK manifolds called Vaisman manifolds (Section 2).

Claim 1.5. Let M be a Vaisman manifold. Then any bimeromorphic contraction M −→
M′ is trivial. Moreover, for any positive-dimensional submanifold Z ⊂ M, its blow-up M1

does not admit an LCK structure. �

Proof. Corollary 2.13 �

1.2 Positive currents on LCK manifolds

The proofs of Theorems 1.4 and 1.3 are purely topological. However, they were originally

obtained using a less elementary argument involving positive currents.

We state this argument here, omitting minor details of the proof, because we

think that this line of thought could be fruitful in other contexts too; for more informa-

tion and missing details, the reader is referred to [2–4].

A current is a form taking values in distributions. The space of (p, q)-currents

on M is denoted by D p,q(M). A strongly positive current is a linear combination

∑

I

αI (z ∧ z̄)I ,

where αI are positive, measurable functions, and the sum is taken over all multi-

indices I . An integration current of a closed complex subvariety is a strongly positive

current. In this paper, we shall often omit “strongly”, because we are only interested in

strong positivity.

It is easy to define the de Rham differential on currents, and check that its coho-

mology coincides with the de Rham cohomology of the manifold.

Currents are naturally dual to differential forms with compact support. This

allows one to define an integration (pushforward) map of currents, dual to the pullback

of differential forms. This map is denoted by π∗, where π : M −→ N is a proper morphism

of smooth manifolds.

Now, let π : M −→ N be a blow-up of a subvariety Z ⊂ N of codimension k, and

ω a Kähler form on M. Then (π∗ω)k has a singular part which is proportional to the

integration current of Z .

This follows from the Siu’s decomposition of positive currents [3]. Demailly’s

results on intersection theory of positive currents [2] are used to multiply the currents,

and the rest follows because the Lelong numbers of π∗ω along Z are nonzero.
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4 L. Ornea et al.

Applying this argument to a birational contraction M
φ−→ M′ of an LCK manifold

M, and denoting by M̃
φ̃−→ M̃′ the corresponding map of coverings, we obtain a closed,

positive current ξ := φ̃∗ω̃ on M̃′, with the deck transform map ρ acting on ξ by homoth-

eties. Then ρ would also act by homotheties on the current ξk, k= dim Z , where Z is the

exceptional set of φ̃.

Applying the above result to decompose ξk onto its absolutely continuous and

singular part, we obtain that the current of integration [Z ] of Z is mapped to const[Z ]

by the deck transform action. Since the current of integration of Z is mapped by the

deck transform to the current of integration of φ̃(Z) = Z , the constant const is trivial;

this implies that π(Z) ⊂ M′ is Kähler, with the Kähler metric obtained in the usual way

from ω̃.

1.3 Fujiki class C and LCK geometry

A compact complex variety X is said to belong to Fujiki class C if X is bimeromorphic to a

Kähler manifold. The Fujiki class C manifolds are closed under many natural operations,

such as taking a subvariety, or the moduli of subvarieties, and play an important role in

Kähler geometry.

This notion has a straightforward LCK analog.

Definition 1.6. Let M be a compact complex variety. It is called a locally conformally

class C variety if it is bimeromorphic to an LCK manifold. �

The importance of the Fujiki class C notion was emphasized by a more recent

work of Demailly and Păun [4], who characterized class C manifolds in terms of posi-

tive currents. Recall that a Kähler current is a positive (A (1, 1) current T is positive if

T(α) ≥ 0 for any (n− 1, n− 1) form, then n= dimC M. We write T − T ′ ≥ 0 when T − T ′ is

a positive current.), closed (1,1)-current φ on a complex manifold M such that φ ≥ ω for

some Hermitian form ω on M.

Demailly and Păun have proved that a compact complex manifold M belongs to

class C if and only if it admits a positive Kähler current.

For an LCK manifold, an analog of a Kähler current is provided by the following

notion (motivated by Definition 2.2).

Definition 1.7. Let M be a compact complex manifold, θ be a closed real 1-form on M,

Ξ be a positive, real (1,1)-current satisfying dΞ = θ ∧ Ξ and Ξ ≥ ω for some Hermitian

form ω on M. Then Ξ is called an LCK current. �
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Blow-ups of LCK Manifolds 5

It would be interesting to know if an LCK-analog of the Demailly–Păun theorem

is true.

Question 1.8. Let M be a complex compact manifold. Determine whether the following

conditions are equivalent.

(i) M belongs to locally conformally class C.

(ii) M admits an LCK current. �

2 Blow-ups and Blow-downs of LCK Manifolds

We start by repeating (in a more technical fashion) the definition of an LCK mani-

fold given in Section 1. See [5] for more details and several other versions of the same

definition, all of them equivalent.

Definition 2.1. A LCK manifold is a complex manifold X covered by a system of open

subsets Uα endowed with local Kähler metrics gα, conformal on overlaps Uα ∩ Uβ : gα =
cαβgβ . �

Note that, in complex dimension at least 2, as we always assume, cαβ are positive

constants. Moreover, they obviously satisfy the cocycle condition. Interpreted in coho-

mology, the cocycle {cαβ} determines a closed one-form θ , called the Lee form. Hence,

locally θ = dfα. It is easily seen that e− fα gα = e− fβ gβ on Uα ∩ Uβ , and thus determine a

global metric g which is conformal on each Uα with a Kähler metric. One obtains the

following equivalent:

Definition 2.2. A Hermitian manifold M is LCK if its fundamental two-form ω satisfies:

dω = θ ∧ ω, dθ = 0 (2.1)

for a closed one-form θ . �

If θ is exact, then M is called globally conformally Kähler (GCK).

As we work with compact manifolds and, in general, the topology of compact

Kähler manifolds is very different from the one of compact LCK manifolds, we always

assume θ 
= 0 on M.
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6 L. Ornea et al.

Let Γ −→ M̃
π−→ M be the universal cover of M with deck group Γ . As π∗θ is exact

on M̃, π∗ω is globally conformal with a Kähler metric ω̃. Moreover, Γ acts by holomorphic

homotheties with respect to ω̃. This defines a character

χ : Γ −→ R
>0, γ ∗ω̃ = χ(γ )ω̃. (2.2)

It can be shown that this property is indeed an equivalent definition of LCK manifolds,

see [11].

Clearly, an LCK manifold M is GCK if and only if Γ acts trivially on ω̃ (i.e.,

im χ = {1} ).

A particular class of LCK manifolds are the Vaisman manifolds. They are LCK

manifolds with the Lee form parallel with respect to the Levi-Civita connection of the

LCK metric. The compact ones are mapping tori over the circle with Sasakian fibre, see

[10]. The typical example is the Hopf manifold, diffeomorphic to S1 × S2n−1.

On a Vaisman manifold, the vector field θ� − √−1Jθ� generates a one-

dimensional holomorphic, Riemannian, totally geodesic foliation. If this is regular and

if M is compact, then the leaf space B is a Kähler manifold.

Example 2.3. On a Hopf manifold C
n \ {0}/〈zi 
→ 2zi〉, the LCK metric

∑
dzi⊗dzi

|∑ zi z̄i |2 is Vaisman

and regular; the leaf space is CP n−1.

We refer to [5] or to the more recent [11] for more details about LCK geometry. �

It is known, [13, 16], that the blow-up at points preserve the LCK class. The

present paper is devoted to the blow-up of LCK manifolds along subvarieties. In this

case, the situation is a bit more complicated and a discussion should be made according

to the dimension of the submanifold.

Definition 2.4. Let Y
j

↪→ M be a complex subvariety. We say that Y is of induced globally

conformally Kähler type (IGCK) if the cohomology class j∗[θ ] vanishes, where [θ ] denotes

the cohomology class of the Lee form on M. �

Remark 2.5. Note that a IGCK-submanifold of an LCK manifold is always Kähler. �

Remark 2.6. By a theorem of Vaisman [14], any LCK metric on a compact complex man-

ifold Y of Kähler type is GCK if dimC Y > 1. Therefore, the IGCK condition above for

smooth Y with dimC Y > 1 is equivalent to Y being Kähler. �
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Blow-ups of LCK Manifolds 7

Remark 2.7. Note that there may exist curves on LCK manifolds which are not IGCK,

despite being obviously of Kähler type. For instance, if M is a regular Vaisman manifold,

and if Y is a fiber of its elliptic fibration, then Y is not IGCK, as any compact complex

subvariety of a compact Vaisman manifold has an induced Vaisman structure (see, e.g.,

[15, Proposition 6.5]). �

The main goal of this paper is to prove the following two theorems.

Theorem 2.8. Let M be an LCK manifold, Y ⊂ M be a smooth complex IGCK subvariety,

and let M̃ be the blow-up of M centered in Y. Then M̃ is LCK. �

Proof. See the argument after Lemma 3.4. �

Theorem 2.9. Let M be a complex variety, and M̃ −→ M the blow-up of a compact sub-

variety Y ⊂ M. Assume that M̃ is smooth and admits an LCK metric. Then the blow-up

divisor Ỹ ⊂ M̃ is a IGCK subvariety. �

Proof. See Remark 3.3. �

Remark 2.10. In the situation described in Theorem 2.9, the variety Ỹ is of Kähler

type, because it is IGCK. When Y is smooth, Y is Kähler, as shown by Blanchard [1,

Théorème II.6]. Together with Remark 2.6, this implies the following corollary. �

Corollary 2.11. Let M be an LCK manifold, and Y ⊂ M a smooth compact subvariety,

such that the blow-up of M in Y admits an LCK metric. If dimC(Y) > 1, then Y is a IGCK

subvariety. �

Remark 2.12. Note that, from [15, Proposition 6.5], a compact complex submanifold Y

of a compact Vaisman manifold is itself Vaisman, and θ represents a nontrivial class in

the cohomology of Y, so there are no IGCK submanifolds of proper dimension dimC(Y) >

0. This implies the following corollary. �

Corollary 2.13. The blow-up of a compact Vaisman manifold along a compact complex

submanifold Y of dimension at least 1 cannot have an LCK metric. �

The proofs of these two theorems and of the corollary will be given in Section 3.

As a by-product of our proof, we obtain the following:
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8 L. Ornea et al.

Corollary 2.14. Let M be a twistor space of any of the following types: of a half-

conformally flat four-dimensional Riemannian manifold, of a quaternionic-Kähler mani-

fold, of a conformally flat manifold. If M admits a LCK metric, then this metric is actually

GCK. �

Proof. See Corollary 3.2. �

Remark 2.15. (i) A similar, weaker result is proved in [8]. Namely, the twistor space of

half-conformally flat four-dimensional Riemannian manifolds with large fundamental

group cannot admit LCK metrics with automorphic potential on the covering. The proof

uses different techniques from ours, and which cannot be generalized neither to higher

dimensions nor to quaternionic Kähler manifolds.

(ii) It was known from [6, 9] that the natural metrics (with respect to the twistor

submersion) cannot be LCK. Our result refers to any metric on the twistor space, not

necessarily related to the twistor submersion. On the other hand, as shown by Hitchin,

the twistor space of a compact four-dimensional manifold is not of Kähler type, unless

it is biholomorphic to CP 3 or to the flag variety F2 [7]. �

Remark 2.16. So far, we were unable to deal with the reverse statement of Theorem 2.8,

namely, to determine whether a smooth bimeromorphic contraction of an LCK manifold

is always LCK. In the particular case when an exceptional divisor is contracted to a

point, this has been proved to be true by Tricerri [13]; we conjecture that in the general

case this is false, but we are not able to find any example.

For GCK (i.e., Kähler) manifolds, the answer is well known: blow-downs of

Kähler manifolds can be non-Kähler, as one can see from any example of a Moishezon

manifold. �

Remark 2.17. We summarize the case of blow-up of curves on LCK manifolds. Since

rational curves are simply connected, they are IGCK submanifolds, so blowing-up a

rational curve on a LCK manifold always yields a manifold of LCK type. The case of

the elliptic curves was partially tackled in Corollary 2.13. If Y is a curve of arbitrary

genus contained in an exceptional divisor of a blow-up, then it is also automatically a

IGCK subvariety since the exceptional divisor is so; hence again, blowing it up yields a

manifold of LCK type.
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Blow-ups of LCK Manifolds 9

To our present knowledge, the only examples of curves Y on LCK manifolds M

with genus g(Y) ≥ 2 are curves belonging to some exceptional divisors. It would be inter-

esting to prove that this is the case in general, or to build out a counter-example. �

3 The Proofs

Lemma 3.1. Let M be an LCK manifold, B be a path connected topological space and

let π : M −→ B be a continuous map. Assume that either

(i) B is an irreducible complex variety, and π is proper and holomorphic.

(ii) π is a locally trivial fibration with fibers which are complex subvarieties

of M.

Suppose also that the map

π∗ : H1(B) −→ H1(M)

is an isomorphism, and the fibers of π are positive-dimensional. Then the LCK structure

on M is actually GCK. �

Proof. Denote by θ the Lee form of M, and let M̃ be the minimal GCK covering of X, that

is, the minimal covering M̃ −→ M such that the pullback of θ is exact. Since H1(B) ∼=
H1(M), there exists a covering B̃ −→ B such that the following diagram is commutative,

and the fibers of π̃ are compact:

M̃ −−−−→ M

π̃

⏐⏐�
⏐⏐�π

B̃ −−−−→ B

Let B̃0 ⊂ B̃ be the set of regular values of π̃ , and let Fb := π̃−1(b) be the regular fibers of π̃ ,

dimC Fb = k. Since B̃0 is connected, all Fb represent the same homology class in H2k(M̃).

Denote the Kähler form of M̃ by ω̃, conformally equivalent to the pullback of the

Hermitian form on X.

Since all Fb represent the same homology class, the Riemannian volume

Volω̃(Fb) :=
∫

Fb

ω̃k
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10 L. Ornea et al.

is independent from b ∈ B̃0. This gives (recall the definition of the character χ in (2.2))

Volω̃(Fb) =
∫

Fb

ω̃k =
∫

Fγ−1(b)

γ ∗ω̃k =
∫

Fγ−1(b)

χ(γ )kω̃k = χ(γ )kVolω̃(Fb),

hence the constant χγ is equal to 1 for all γ ∈ Γ . Therefore, ω̃ is Γ -invariant, and M is

GCK. �

The above lemma immediately implies Corollary 2.14.

Corollary 3.2. Let Z be the twistor space of M, understood in the sense of

Corollary 2.14. Assume that Z admits an LCK metric. Then this metric is GCK. �

Proof. There is a locally trivial fibration Z −→ M, with complex analytic fibers which

are compact symmetric Kähler spaces, hence Lemma 3.1 can be applied. �

Remark 3.3. In the same way one deals with the blow-ups: the fibers over an excep-

tional set of a blow-up map are positive-dimensional. Therefore, Lemma 3.1 implies

Theorem 2.9. �

We can now give the following:

Proof of Corollary 2.13. If dimC(Y) > 1, then the result follows from Corollary 2.11

and Remark 2.12. In the case dimC(Y) = 1 we cannot use this argument directly—see

Remark 2.7—so in this case we argue as follows.

Assume M̃ has an LCK metric ω̃ with Lee form η̃. By Theorem 2.9, the restric-

tion η̃|Z to the exceptional divisor Z is exact. Hence, after possibly making a conformal

change of the LCK metric, we can assume η̃|V = 0 where V is a neighborhood of Z . In par-

ticular, η̃ will be the pull-back of a one-form η on M. On the other hand, ω̃ gives rise to

a current on M̃ (see also Section 1.2) and its pushforward defines an LCK positive (1, 1)

current Ξ on M with associate Lee form η. Clearly, η|Y = 0.

Possibly conformally changing now Ξ , we can assume that η is the unique har-

monic form (with respect to the Vaisman metric of M) in its cohomology class. Possibly

η|Y is no longer zero, but remains exact.

We now show that η is basic with respect to the canonical foliation F generated

on M by θ� − √−1Jθ�. Indeed, from [14], we know that any harmonic form on a compact

 at C
entral U

niversity L
ibrary of B

ucharest on M
ay 5, 2012

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Blow-ups of LCK Manifolds 11

Vaisman manifold decomposes as a sum α + θ ∧ β where α and β are basic and transver-

sally (with respect to F ) harmonic forms. In particular, as a transversally harmonic

function is constant, we have

η = α + c · θ, (3.1)

where c ∈ R and α is basic, transversally harmonic (see [12] for the theory of basic Lapla-

cian and basic cohomology, etc.).

Let now S1 denote the unique homology class in H1(M) (call it the fundamental

circle of θ ) such that
∫

S1 θ = 1 and
∫

S1 α = 0 for every basic cohomology class α.

As any complex submanifold of a compact Vaisman manifold is tangent to the

Lee field and hence Vaisman itself, Y is Vaisman with Lee form θ|Y. Hence we deduce

that the fundamental circle of θ is the image of the fundamental circle of θ|Y under the

natural map H1(Y) → H1(M).

We now integrate (3.1) on any γ ∈ H1(Y) and take into account that η|Y is exact

to get c = 0. Hence, η basic. It can then be treated as a harmonic one-form on a Kähler

manifold (or use the existence of a transversal ddc-lemma). This implies dcη = 0.

But then one obtains a contradiction, as follows. Letting J to be the almost com-

plex structure of M, we see, on the one hand, we have

∫
M

d(Ξn−1) ∧ J(θ) =
∫

M
(n− 1)Ξn−1 ∧ θ ∧ J(θ) > 0,

since Ξ is positive. On the other hand, since d(J(θ)) = 0, it follows that d(Ξn−1) ∧ J(θ) is

exact so
∫

M d(Ξn−1) ∧ J(θ) = 0, a contradiction. �

The following result is certainly well known, but since we were not able to find

out an exact reference we include a proof here.

Lemma 3.4. Assume (U, g) is a Kähler complex manifold, Y ⊂ U a compact submanifold

and let c : Ũ −→ U be the blow-up of U along Y. Then, for any open neighborhood V ⊃ Y,

there is a Kähler metric g̃ on Ũ such that

g̃|Ũ\c−1(V) = c∗(g|U\V ). �

Proof. (due to Păun; see also [16]).

1. There is a (non-singular) metric on OŨ (−D) (where D is the exceptional divi-

sor of the blow-up) such that:
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12 L. Ornea et al.

(a) its curvature is zero outside c−1(V), and

(b) its curvature is strictly positive at every point of D and in any

direction tangent to D.

Indeed, if such a metric is found, everything follows, as the curva-

ture of this metric plus a sufficiently large multiple of c∗(g) will be positive

definite on Ũ .

2. To finish the proof, we note that the existence of a metric h with property

1(b) is clear, due to the restriction of OŨ (−D) to D.

Now let α be its curvature; then α − i∂∂̄τ = −[D] for some function τ , with at most

logarithmic poles along D, bounded from above, and nonsingular on Ũ \ D. Consider the

function τ0 := max(τ,−C ), where C is some positive constant, big enough such that on

Ũ \ c−1(V) we have τ > −C . Clearly, on a (possibly smaller) neighborhood of D we will

have τ0 = −C , such that the new metric e−τ0 h on OŨ (−D) also satisfies 1(a). �

Now we can give the following:

Proof of Theorem 2.8. Let c : M̃ −→ M be the blow up of M along the submanifold Y.

Let g be a LCK metric on M and let θ be its Lee form. Since Y is IGCK we see θ|Y is exact.

Let U be a neighborhood of Y such that the inclusion Y ↪→ U induces an isomorphism

of the first cohomology. Then θ|U is also exact, so, after possibly conformally rescaling

g, we may assume θ|U = 0 and hence g|U is Kähler. In particular, supp(θ) ∩ U = ∅. Now

choose a smaller neighborhood V of Y and apply Lemma 3.4. We get a Kähler metric g̃

on Ũ which equals c∗(g) outside c−1(V), so it glues to c∗(g) giving a LCK metric on M̃. �
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[9] Muşkarov, O. “Almost Hermitian structures on twistor spaces and their types.” Atti del Sem-

inario Matematico e Fisico dell’Universitá di Modena 37, no. 2 (1989): 285–97.
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