
Loally onformal K�ahler redutionRosa Gini�, Liviu Orneay, Maurizio Parton�;y6th August 2002AbstratWe de�ne redution of loally onformal K�ahler manifolds, onsidered as onformal Hermitian manifolds,and we show its equivalene with an unpublished onstrution given by Biquard and Gauduhon. We showthe ompatibility between this redution and K�ahler redution of the universal over. By a reent resultof Kamishima and the seond author, in the Vaisman ase (that is, when a metri in the onformal lasshas parallel Lee form) if the manifold is ompat its universal over omes equipped with the strutureof K�ahler one over a Sasaki ompat manifold. We show the ompatibility between our redution andSasaki redution, hene desribing a subgroup of automorphisms whose ation indue redution to bear aVaisman struture. Then we apply this theory to onstrut a wide lass of Vaisman manifolds.Keywords: loally onformal K�ahler manifold, Vaisman manifold, Sasaki manifold, Lee form, momentum map, Hamil-tonian ation, redution, onformal geometry.AMS 2000 subjet lassi�ation: 53C55, 53D20, 53C25.1 IntrodutionSine 1974 when the lassial redution proedure of S. Lie was formulated in modern terms by J. Marsdenand A. Weinstein for sympleti strutures, this tehnique was extended to other various geometri struturesde�ned by a losed form. Extending the equivariant sympleti redution to K�ahler manifolds was mostnatural: one only showed the almost omplex struture was also projetable. Generalizations to hyperk�ahlerand quaternion K�ahler geometry followed. The extension to ontat geometry is also natural and an beunderstood via the sympletization of a ontat manifold. In eah ase, the momentum map is produed bya Lie group ating by spei� automorphisms of the struture.A loally onformal K�ahler manifold is a onformal Hermitian manifold (M; [g℄; J) suh that for one (andhene for all) metri g in the onformal lass the orresponding K�ahler form 
 satis�es d
 = ! ^
, where !is a losed 1-form. This is equivalent to the existene of an atlas suh that the restrition of g to any hartis onformal to a K�ahler metri.�Partially supported by EURROMMAT.yMember of EDGE, Researh Training Network HRPN-CT-2000-00101, supported by the European Human Potential Pro-gramme. 1



The 1-form ! 2 
1(M) was introdued by H.-C. Lee in [Lee43℄, and it is therefore alled the Lee form ofthe Hermitian struture (g; J).It was not obvious how to produe a quotient onstrution in onformal geometry. The �rst publishedresult we are aware of belongs to S. Haller and T. Rybiki who proposed in [HR01℄ a redution for loally on-formal sympleti strutures. Their tehnique is essentially loal: they redue the loal sympleti strutures,then glue the loal redued strutures. But even earlier, sine 1998, an unpublished paper by O. Biquardand P. Gauduhon proposed a quotient onstrution for loally onformal K�ahler manifolds [BG98℄. Theironstrution relies heavily on the language and tehniques of onformal geometry as developed, for example,in [CP99℄. The key point is the fat that a loally onformal K�ahler struture an be seen as a losed 2-formwith values in a vetor bundle (of densities).Our starting point was the paper [HR01℄. Following the lines of the K�ahler redution, we veri�ed that theomplex struture of a loally onformal K�ahler manifold an be projeted to the quotient. In setion 3 of thispaper we onstrut the momentum map assoiated to an ation by loally onformal K�ahler automorphisms,lying on the notion of twisted Hamiltonian ation given by I. Vaisman in [Vai85℄. In setion 4 we extendHaller-Rybiki onstrution to the omplex setting. Then, in setion 5 we present, rather in detail, due toits very restrited previous irulation, the Biquard-Gauduhon onstrution. The main result of this setionproves the equivalene between the Biquard-Gauduhon redution and ours.The universal over of a loally onformal K�ahler manifold has a natural (global) homotheti K�ahlerstruture. We exploit this fat in setion 6 in order to relate loally onformal K�ahler redution to the K�ahlerredution of its universal over.The study of loally onformal K�ahler manifolds started in the �eld of Hermitian manifolds. Most ofthe known examples of loally onformal K�ahler metris are on ompat manifolds and enjoy the additionalproperty of having parallel Lee form with respet to the Levi-Civita onnetion. Loally onformal K�ahlermetris with parallel Lee form were �rst introdued and studied by I. Vaisman in [Vai79, Vai82℄, so we allVaisman metri a loally onformal K�ahler metri with this property. Manifolds bearing a Vaisman metrishow a rih geometry. Suh are the Hopf surfaes H�;� desribed in [GO98℄, all di�eomorphi with S1�S3 (seealso [Par99℄). More generally, I. Vaisman �rstly showed that on the produt S1 � S2n+1 given as a quotientof C n r 0 by the yli in�nite group spanned by z 7! �z, where z 2 C n r 0 and j�j 6= 1, the projetion ofthe metri jzj�2P dzi 
 d�zi is loally onformal K�ahler with parallel Lee form �jzj�2P(zid�zi + �zidzi). Theomplete list of ompat omplex loally onformal K�ahler surfaes admitting parallel Lee form was given byF. Belgun in [Bel00℄ where it is also proved the existene of some ompat omplex surfaes whih do notadmit any loally onformal K�ahler metri.The de�nition of Vaisman metri is not invariant up to onformal hanges. A onformally equivalentnotion of Vaisman manifold is still missing, but a reent result by Kamishima and the seond author in[KO01℄ provides one in the ompat ase, generalizing the one �rst proposed by Belgun in [Bel00℄ in the aseof surfaes. We develop this notion in setion 7 where we analyze redution in this ase.Vaisman geometry is losely related with Sasaki geometry. In this ase the piture turns out to be the2



following. The ategory of ordinary loally onformal K�ahler manifolds an be seen as the image of theategory of pairs (K;�) of homotheti K�ahler manifolds with a subgroup � of homotheties ating freelyand properly disontinuously, with morphisms given by homotheti K�ahler morphisms equivariant by theations. What we prove in setion 6 is that under the funtor assoiating to (K;�) the loally onformalK�ahler manifoldK=� Hamiltonian ations go to twisted Hamiltonian ations, and vie versa, see theorem 6.5.So the images of subgroups produing K�ahler redution atually are subgroups produing loally onformalK�ahler redution (up to topologial onditions), and vie versa. The same way the ategory of (ompat)Vaisman manifolds an be seen as the image of the ategory of pairs (W;�), with W a Sasaki manifold and� a subgroup of (proper) homotheties of the K�ahler one W � R ating freely and properly disontinuously,with morphisms given by Sasaki morphisms equivariant by the ations. The funtor assoiating to (W;�) theVaisman manifold (W � R)=� is surjetive on objets but not on morphisms: we all Vaisman morphismsthe ones in the image. What we prove in setion 7 is that, up to topologial onditions, subgroups of Sasakiautomorphisms produing Sasaki redution go to subgroups produing Vaisman redution, and vie versa.This is partiularly remarkable sine, up to topologial onditions, Sasaki redution applies to any subgroupof automorphisms, that is, the momentum map is always de�ned. So we obtain that redution by Vaismanautomorphisms is always de�ned (up to topologial onditions) and produes Vaisman manifolds.This allows building a wide set of Vaisman manifolds, redued by irle ations on Hopf manifolds, insetion 8.Aknowledgements: We thank F. Belgun, C. Boyer, E. Ferrand, K. Galiki, P. Gauduhon, H. Peder-sen, T. S. Ratiu, A. Swann for many enlightening disussions during the elaboration of this paper.The very beginning of this paper arises to the visit of the third named author to the �Eole Polytehniquein Paris, and he wishes in partiular to thank Paul Gauduhon for giving him the opportunity to read hisunpublished paper.This work was then initiated during the visit of the �rst and third named author to the Institute ofMathematis \Simion Stoilow" of Buharest. They both would like to thank Vasile Br̂�nzanesu and PaltinIonesu for warm hospitality.Moreover, this work was ended during the visit of the third named author in Odense, Denmark. Hewishes to thank in partiular Henrik Pedersen and Andrew Swann, together with their families, for makinghis permanene so beautiful.2 Loally onformal K�ahler manifoldsLet (M;J) be any almost-omplex n-manifold, n � 4, let g be a Hermitian metri on (M;J). Let 
 be theK�ahler form de�ned by 
(X;Y ) def= g(JX; Y ). The map L : 
1(M)! 
3(M) given by the wedging with 
 isinjetive, so that the g-orthogonal splitting 
3(M) = ImL� (ImL)0 indues a well-de�ned ! 2 
1(M) givenby the relation d
 = ! ^ 
 + (d
)0. The 1-form ! 2 
1(M) is alled the Lee form of the almost-Hermitianstruture (g; J). 3



A relevant notion in this setting is that of twisted di�erential. Given a p-form  its twisted di�erential isthe (p+ 1)-form d! def= d � ! ^  :Remark that d! Æ d! = 0 if and only if d! = 0.A Hermitian metri g on a omplex manifold (M;J) is said to be loally onformal K�ahler if g is (loally)onformal to loal K�ahler metris. In this ase the loal forms d�U oming from the loal onformal fatorse�U paste to a global form ! satisfying d
 = ! ^ 
. Vie versa this last equation together with d! = 0haraterizes the loally onformal K�ahler metris. In other words a Hermitian metri is loally onformalK�ahler if and only if d! Æ d! = 0 and d!
 = 0: (1)De�nition 2.1 A onformal Hermitian manifold (M; [g℄; J) of omplex dimension bigger than 1 is said to bea loally onformal K�ahler manifold if one (and hene all of) the metris in [g℄ is loally onformal K�ahler.Remark 2.2 If, in partiular, the Lee form of one (and hene all) of the metris in [g℄ is exat, thenthe manifold is said to be globally onformal K�ahler. This is in fat equivalent to requiring that in theonformal lass there exists a K�ahler metri, that is, any metri in [g℄ is globally onformal to a K�ahlermetri. From [Vai80℄ it is known that for ompat manifolds possessing a K�ahler struture forbids existeneof loally non-globally onformal K�ahler strutures, so the two worlds are generally onsidered as disjoint. Inthis paper, however, the two notions behave the same way, so we onsider the global ase as a sublass of theloal ase.From now on, let (M; [g℄; J) be a loally onformal K�ahler manifold.Not unlike the K�ahler ase, loally onformal K�ahler manifolds ome equipped with a notable subset ofX(M): given a smooth funtion f the assoiated Hamiltonian vetor �eld is the 
-dual of df , and Hamiltonianvetor �elds are vetor �elds that admit suh a presentation. But the notion that works for redution, asshown in [HR01℄, is the one given in [Vai85℄ obtained by twisting the lassial. Given f its assoiated twistedHamiltonian vetor �eld is the 
-dual of d!f . The subset of X(M) of twisted Hamiltonian vetor �elds isthat of vetor �elds admitting suh a presentation.Remark 2.3 If M is not globally onformal K�ahler the funtion assoiating to f its twisted Hamiltonianvetor �eld is injetive. Indeed d!f = 0 implies ! = d log jf j on f 6= 0, so either f � 0 or ! is exat.De�ne a twisted Poisson braket on C1(M) byff1; f2g def= 
(℄d!f1; ℄d!f2) (2)The relation fff1; f2g; f3g+ fff2; f3g; f1g+ fff3; f1g; f2g = d!
(℄d!f1; ℄d!f2; ℄d!f3) = 0 (3)4



proves that this braket turns C1(M) into a Lie algebra. Remark that the �rst equality in (3) holds generallyon any almost-Hermitian manifold (M; g; J) under the only assumption d! = 0.Remark 2.4 Remark that the notion of Hamiltonian vetor �eld is invariant up to onformal hange of themetri, even though the funtion (possibly, the funtions) assoiated to a Hamiltonian vetor �eld hangesby the onformal fator. A straightforward omputation shows in fat that, if 
0 = e�
 and !0 = ! + d� isthe orresponding Lee form, the following relations holdd!f = e��d!0(e�f)℄
d!f = ℄
0d!0(e�f)fe�f1; e�f2g
0 = e�ff1; f2g
so that multipliation by e� yields an isomorphism between (C1(M); f ; g
) and (C1(M); f ; g
0) ommutingwith the orresponding maps ℄
d! and ℄
0d!0 in the spae of twisted Hamiltonian vetor �elds. In partiularifM is globally onformal K�ahler, then the twisted Hamiltonian vetor �elds ofM oinide with the ordinaryHamiltonian vetor �elds, sine the Lee form of a K�ahler metri is 0.De�nition 2.5 Given two loally onformal K�ahler manifolds (M; [g℄; J) and (M 0; [g0℄; J) a smooth maph from M to M 0 is a loally onformal K�ahler morphism if h�J 0 = J and [h�g0℄ = [g℄. We denote byAut(M; [g℄; J), or briey by Aut(M), the group of loally onformal K�ahler automorphisms of (M; [g℄; J).The group Aut(M) is a Lie group, ontained as a subgroup in the omplex Lie group of biholomorphismsof (M;J). However, unlike the Riemannian ase, the Lie algebra of Aut(M) is not losed for the omplexstruture. This will be used in the sequel.3 The loally onformal K�ahler momentum mapIn this paper we onsider (onneted) Lie subgroups G of Aut(M).Remark 3.1 It follows from [MPPS97℄ that whenever a loally onformal K�ahler manifold M is ompat,the group Aut(M) oinides with the isometries of the Gauduhon metri in the onformal lass, that is, theone whose Lee form is olosed. Hene, in partiular, Aut(M) is ompat. More generally if a subgroup G ofAut(M) is ompat then by using the Haar integral one obtains a metri in the onformal lass suh that Gis ontained in the group of its isometries. So the ase when G is not onstituted by isometries of a spei�metri an only happen if both M and G are non-ompat.Throughout the paper we identify fundamental vetor �elds with elements X of the Lie algebra g of G,so that if x 2M then g(x) means Tx(Gx).Imitating the terminology established in [MS95℄, we all the ation of G weakly twisted Hamiltonian if theassoiated in�nitesimal ation is of twisted Hamiltonian vetor �elds, that is, if there exists a (linear) map5



�� : g! C1(M) suh that �X
 = d!�X for fundamental vetor �elds X 2 g, and twisted Hamiltonian if �an be hosen to be a Lie algebra homomorphism with respet to the Poisson braket (2). In this ase wesay that the Lie algebra homomorphism � is a momentum map for the ation of G, or, equivalently, with thesame name and symbol we refer to the indued map � : M ! g� given by h�(x);Xi def= �X(x), for X 2 g andarets denoting the evaluation.Remark 3.2 Note that the property of an ation of being twisted Hamiltonian is a property of the onformalstruture, even though the Poisson struture on C1(M) is not onformally invariant, see remark 2.4. Ifg0 = e�g then �!0 = e��!. In partiular the preimage of 0 is well-de�ned.Remark 3.3 Remark that � is not equivariant for the standard oadjoint ation on g�. It is known from[HR01℄ that by modifying the oadjoint ation by means of the onformal fators arising from h�g � g onean fore � to be equivariant.On ��1(0) the twisted di�erential of the assoiated twisted Hamiltonian funtions �(g) oinides with theordinary di�erential, sine d!x�X = dx�X � �X(x)!x for X 2 g, x 2 ��1(0): Thus, if the ation is twistedHamiltonian, then the funtions in �(g) vanish on the whole orbit of x 2 ��1(0), sine for x 2 ��1(0) andY 2 g(x) dx�X(Y ) = d!x�X(Y ) = 
(℄d!�X ; ℄d!�Y )(x) = f�X ; �Y g(x) = �[X;Y ℄(x) = 0;that is to say, ��1(0) is losed for the ation of G.Moreover, if 0 is a regular value for �, then T (��1(0))?
 = g, sine for any x 2 ��1(0), X 2 g; V 2X(��1(0)) we have 
(X;V )(x) = d!x�X(V ) = dx�X(V ) = 0:Thus we say that ��1(0) is a oisotropi submanifold of M .In the next setion we show how to obtain a loally onformal K�ahler struture on ��1(0)=G under theadditional hypothesis of it being a manifold. But we remark here that, due to the missing equivariane of �,a non-zero redution is not straightforward.Remark 3.4 We give a brief desription of the existene and uniity problem for momentum maps. Supposethe ation is weakly twisted Hamiltonian, and hoose a linear map �� : g! C1(M). Denote by N the kernelof d! : C1(M)! 
1(M). The obstrution for � to be a Lie algebra homomorphism is given by the map� : g� g! N sending (X;Y ) into f�X ; �Y g � �[X;Y ℄, whih an be shown to live in H2(g; N), and thisohomology lass vanishes whenever the ation is twisted Hamiltonian. If this is the ase, then momentummaps are parameterized by H1(g; N). If (M; [g℄; J) is non-globally onformal K�ahler, then N = 0, seeremark 2.3. Then, in partiular, a weakly Hamiltonian ation on a ompat non-K�ahler loally onformalK�ahler manifold always admits a unique momentum map.In the following we will often need a tehnial lemma we prove here one and for all.6



Lemma 3.5 Let M be a manifold, let fUigi2I be a loally �nite open overing. Let f�ig be a partition ofunity relative to fUig. The following three fats hold.i) Let g and g0 be two tensors globally de�ned on M and suh that for any igjUi � g0jUi ;then g and g0 are globally onformal.ii) Let fgig be a olletion of loal tensors, where gi is de�ned on Ui, suh that whenever Ui \ Uj 6= ;gijUi\Uj � gj jUi\Uj ;then the tensor g def= Pi �igi is globally de�ned on M and gjUi is loally onformal to gi.iii) Let fgig and g be as in ii). If g0 is a global tensor suh that g0jUi is loally onformal to gi, then g andg0 are globally onformal.Proof: First prove i). Let e�i be the onformal fator suh thatgjUi = e�ig0jUi ;then realling that Pi �i = 1 one obtains g = (Xi �ie�i)g0:Now turn to ii). For any x 2 M let Ux be a neighborhood of x whih is ompletely ontained in anyUi that ontains x, let Uix be one of them and e�x;i be the onformal fator between gix and gi, de�ned onUix \ Ui whih ontains Ux: then the following holdsgjUx = (Xi �ie�x;i)gix :Finally i) and ii) imply iii). �Remark 3.6 Using a more sophistiated argument it is proved in [HR01℄ that in ase ii) one obtains gjUi � gi.4 The redution theoremTheorem 4.1 Let (M; [g℄; J) be a loally onformal K�ahler manifold. Let G be a Lie subgroup of Aut(M)whose ation is twisted Hamiltonian and is free and proper on ��1(0), 0 being a regular value for the momen-tum map �. Then there exists a loally onformal K�ahler struture ([�g℄; �J) on ��1(0)=G, uniquely determinedby the ondition ���g � i�g, where i denotes the inlusion of ��1(0) into M and � denotes the projetion of��1(0) onto its quotient. 7



Proof: Sine ��1(0) is oisotropi, and its isotropi leaves are the orbits of G, the [g℄-orthogonal splittingTxM = Ex � g(x) � Jg(x) holds, where Ex is the [g℄-orthogonal omplement of g(x) in Tx(��1(0)). Thisshows that E is a omplex subbundle of TM and, sine J is onstant along g, it indues an almost omplexstruture �J on ��1(0)=G. This is proven to be integrable the same way as in the K�ahler ase, by omputingthe Nijenhuis tensor of �J and realling that ��[V;W ℄ = [��V; ��W ℄ for projetable vetor �elds V;W .Take an open over U of ��1(0)=G that trivializes the G-prinipal bundle � : ��1(0)! ��1(0)=G and foreah U 2 U hoose a loal setion sU of �.Fix an open set U . On its preimage we have two horizontal distributions: the (global) already de�neddistribution E, [g℄-horizontal, and the tangent distribution SU to sU (U), translated along the �bres by meansof the ation of G to give a distribution on the whole preimage of U . Remark that SU annot be hosen tooinide with E in general, sine SU is obviously a (loal) foliation, whereas E is not integrable in general.Given a vetor �eld �V on U denote by V its [g℄-horizontal lifting. Then for any �V the vetor �elds Vand J(V ) are projetable and �J( �V ) = ��J(V ). Moreover denote by V + �V the lifting of �V tangent to SU ,so that dsU ( �V ) = V + �V .(1) Remark that �V is a vertial vetor �eld on ��1(U), and that learly V + �V isprojetable itself: more expliitly, for a generi x 2 ��1(U),(V + �V )x = (h�1x )�d�(x)sU ( �V�(x))where by hx we denote the element of G that takes x in sU(�(x)).Now de�ne a loal 2-form �
U def= s�U i�
 on U . Sine vertial vetor �elds are 
-orthogonal to any vetor�eld on ��1(U), this de�nition implies that for any pair ( �V ; �W ) of vetor �elds on U�
U ( �V ; �W ) = s�U i�
(�V ; �W )= i�
(V + �V ;W + �W )= i�
(V;W ):Sine i�
 is ompatible with J and positive, the loal form �
U easily turns out to be ompatible with �J ,sine �
U( �J( �V ); �J( �W )) = s�U i�
( �J( �V ); �J( �W ))= i�
(dsU (��J(V )); dsU (��J(W )))= i�
(J(V ) + �J(V ); J(W ) + �J(W ))= i�
(J(V ); J(W ))= i�
(V;W )= �
U ( �V ; �W )and the same way one shows that �
U is positive.Denote by �gU the orresponding loal Hermitian metri, whih is then loally onformal K�ahler.(1)To be preise we should write this expression in the form dsU( �V ) = V Æ sU + �V Æ sU .8



We want now to show that �� �
U is onformally equivalent to i�
 on ��1(U).So onsider a pair of generi (that is, non neessarily projetable) vetor �elds ( ~V ; ~W ) on ��1(U). Forany x 2 ��1(U) denote by V x the projetable vetor �eld suh that V xx oinide with ~Vx, that is V xy def=(h�1x;y)� ~Vh�1x sU (�(y)), where by hx;y we denote the element of G that takes y in h�1x sU(�(y)). Similarly de�neW x, and all ( �V x; �W x) the projeted vetor �elds on U . We then have�� �
U ( ~Vx; ~Wx) = �
U(�� ~V xx ; �� ~W xx )= �
U( �V x�(x); �W x�(x))= i�
(V xsU (�(x));W xsU (�(x))):By evaluating the projetable vetor �eld V x in the point y = sU (�(x)) one obtains the following�� �
U ( ~Vx; ~Wx) = i�
((hx)� ~Vx; (hx)� ~Wx)= h�xi�
(~Vx; ~Wx):Now remark that hx is a onformal map, hene there exists a smooth funtion �x suh that h�xi�
(~Vx; ~Wx) =�x(x)i�
(~Vx; ~Wx). But by onstrution the funtion x 7! �x(x) is smooth, so the two 2-forms are onformallyequivalent.Then, if U;U 0 2 U overlap, we obtain on their intersetion that �
U is onformally equivalent to �
U 0 :�
U 0 = s�U 0i�
 � s�U 0�� �
U = �
U :We use a partition of unity f�Ug to glue all together these loal forms, obtaining a global 2-form�
 =XU2U �U �
Uon ��1(0)=G whih, by lemma 3.5, is loally onformal to any �
U .This implies that �
 is still ompatible with �J and positive, and therefore indues a global Hermitian metri�g on ��1(0)=G whih is loally onformal K�ahler beause it is loally onformal to the loally onformal K�ahlermetris �gU on U . This ends the existene part.If g0 is any loally onformal K�ahler metri on ��1(0)=G suh that ��g0 � i�g, then for any x 2 ��1(0)=Gon Ux � U we obtain g0jUx = s�U��g0jUx � s�U i�gjUx = �gU jUx � �gjUx . So the globally de�ned metris g and g0,being loally onformal, are in fat onformal, by lemma 3.5. The laim then follows. �Remark 4.2 If ��1(0)=G has real dimension two then redution equips it with a omplex struture and aonformal family of K�ahler metris.Remark 4.3 Let us note by passing that the zero level set o�ers a natural example of CR-submanifold ofM (see [DO98℄). Indeed, the tangent spae in eah point splits as a diret orthogonal sum of a J -invariantand a J -anti-invariant distribution: Tx(��1(0)) = Ex� g(x). A result of D. Blair and B. Y. Chen states thatthe anti-invariant distribution of a CR-submanifold in a loally onformal K�ahler manifold is integrable. Inour ase, this is trivially true beause the anti-invariant distribution is just a opy of the Lie algebra of G.9



5 Conformal setting and the Biquard-Gauduhon onstrutionIn de�ning the redued loally onformal K�ahler struture on ��1(0)=G we used a spei� metri in theonformal lass [g℄, to obtain a onformal lass [�g℄. In this setion we present a more intrinsi onstrutionfor the loally onformal K�ahler redution, due to O. Biquard and P. Gauduhon, whih makes use of thelanguage of onformal geometry. To this aim we mainly �ll in details and reorganize material ontained in[CP99℄ and in the unpublished paper [BG98℄.Moreover we prove that the two onstrutions are in fat the same, by showing in lemma 5.2 and itsonsequenes the orrespondene between representatives and intrinsi objets.Let V be a real n-dimensional vetor spae, and t a real number. The 1-dimensional vetor spae LtVof densities of weight t on V is the vetor spae of maps l : (�nV )r 0! R satisfying l(�w) = j�j�t=nl(w) if� 2 R r 0 and w 2 (�nV ) r 0. We say that a density l is positive if it takes only positive real values. Forpositive integers t we have LtV = L1V 
� � �
L1V and for negative integers t we have LtV = (L1V )�
� � �
 (L1V )�.Thus, given an element l of L1V , we denote by lt the orresponding element of LtV under these anonialidenti�ations, for any t integer.Remark that �n+d(V � Rd) ' �nV , and this gives a anonial isomorphism between LtV�Rd and LtV :l 2 LtV 7! sgn(l)l nn+d 2 LtV�Rd : (4)To any Eulidean metri g on the vetor spae V we assoiate the positive element ltg of LtV whih sendsthe length-one element of (�nV )r0 to 1. Then under a homothety e�g of the metri we have lte�g = e�t�=2ltg,and the positive de�nite element g 
 l2g of S2V 
 L2V only depends on the homothety lass  of g.Conversely, given an element  of S2V 
L2V , we an assoiate to any positive element l of L1V the element 
 l�2 of S2V 
 L2V 
 L�2V = S2V , and if  is positive de�nite so is  
 l�2, whih therefore de�nes aEulidean metri on V . If, moreover,  satis�es the normalization ondition l2
l�2 = l2 for one (and henefor all) positive element l of L1V , then the orrespondene between suh 's and the homothety lasses of g isbijetive.For any vetor bundle E ! M , de�ne the assoiated density line bundle LtE ! M as the bundle whose�ber over x 2M is the 1-dimensional vetor spae LtEx. If n is the rank of E, then LtE an be globally de�nedas the �bred produt P(E)�G LtRn , where P(E) denotes the prinipal bundle assoiated to E with struturegroup G � GL(n), and an element A of G ats on LtRn by multipliation by jdetAjt=n. Remark that, inpartiular, LtE has the same prinipal bundle as E, for any t 2 R.The above onstrution identi�es onformal lasses of metris on E with normalized positive de�nedsetions of S2E 
L2E . In partiular, if E = TM , the onformal lass of a Riemannian metri an be thoughtof as a normalized positive de�ned setion  of S2M 
 L2M , where we denote LtTM by LtM .A trivialization (usually positive) of L1M is alled a gauge or also a length sale.This way, on a onformal manifold (M; ), we have a Riemannian metri whenever we �x a gauge. As aterminology, instead of saying \. . . take a gauge l, and let g def= 
 l�2. . . " we shall say \. . . let g be a metriin the onformal lass . . . ". 10



Sine a onnetion on M means a onnetion on GL(M) and GL(M) is also the prinipal bundle of LtM ,a onnetion on M indues a onnetion on LtM , for any t 2 R. Vie versa, suppose a onnetion r on L1Mis given. Then we an use a onformal version of the six-terms formula to de�ne a onnetion on M , stilldenoted by r, whih is ompatible with :2(rXY;Z) = rX(Y;Z) +rY (X;Z) �rZ(X;Y ) + ([X;Y ℄; Z)� ([X;Z℄; Y )� ([Y;Z℄;X); (5)where both members are setions of L2M .This way one proves the fundamental theorem of onformal geometry:Theorem 5.1 (Weyl) Let (M; ) be a onformal manifold. There is an aÆne bijetion between onnetionson L1M and torsion-free onnetions on M preserving .Torsion-free ompatible onnetions on a onformal manifold are alled Weyl onnetions. In ontrastwith the Riemannian ase, the previous theorem says in partiular that on a onformal manifold there is nota uniquely de�ned torsion-free ompatible onnetion.In this setting a onformal almost-Hermitian manifold is a onformal manifold (M; ) together with analmost-omplex struture J on M ompatible with one (and hene with all) metri in the onformal lass.Let (M; ; J) be a onformal almost-Hermitian manifold. We then have a non-degenerate fundamentalform 
 taking values in L2M , that is, 
(X;Y ) def= (JX; Y ) 2 �(L2M ), for X;Y 2 X(M). For any metri gde�ning , with orresponding fundamental form 
g, we have 
 = 
g 
 l2g . The notion of Lee form !g of thealmost-Hermitian metri g on (M;J) is learly dependent on the metri, but a straightforward omputationshows that the onnetion r on L1M given by rX lg def= (�1=2)!g(X)lg does not depend on the hoie of g inthe onformal lass .The fundamental theorem of onformal geometry gives then a torsion-free ompatible onnetion on M ,whih is alled the anonial Weyl onnetion of the onformal almost-Hermitian manifold (M; ; J). Wedenote simply by r this onnetion on M , and we use the same symbol for the indued onnetion on LtM ,for any t 2 R. In partiular, the onstant �1=2 in the de�nition of r was hosen in order that rl2g = �!g
l2g.Thus, given any LtM -valued tensor  on a onformal almost-Hermitian manifold, we an di�erentiate itwith respet to the anonial Weyl onnetion, and any hoie of a metri g in the onformal lass  gives aorresponding real valued tensor  g. The following lemma links this intrinsi point of view with the gauge-dependant setting of almost-Hermitian manifolds. We state it only for L2M -valued di�erential forms, beausethis is the only ase we need.Lemma 5.2 (Equivalene lemma) Let (M; ; J) be a onformal almost-Hermitian manifold, with anon-ial Weyl onnetion r. Let  be a p-form taking values in L2M . Then for any metri g in the onformallass  we have dr = d!g g 
 l2g:11



Proof: dr = dr( g 
 l2g) = d g 
 l2g + (�1)j g j g ^rl2g= d g 
 l2g � (�1)j g j g ^ !g 
 l2g = d g 
 l2g � !g ^  g 
 l2g = d!g g 
 l2g : �Using the equivalene lemma we obtain in partiulardr
 = d!g
g 
 l2g: (6)Sine the Weyl onnetion is ompatible with , we have also0 = r = r(g 
 l2g) = rg 
 l2g + g 
rl2g = rg 
 l2g � g 
 !g 
 l2g = (rg � !g 
 g)
 l2g : (7)Theorem 5.3 Let (M; ; J) be a onformal almost-Hermitian manifold, and let r be the anonial Weylonnetion. Let g be any metri in the onformal lass . Then:i) r preserves J if and only if J is integrable and (d
g)0 = 0;ii) the urvature Rr = r[X;Y ℄ � [rX ;rY ℄ of r is given by Rrl2g = d!g 
 l2g.Proof: For any omplex onnetion r the following formula holds, linking the torsion T of r with the torsionN of J : T (JX; JY )� J(T (JX; Y ))� J(T (X;JY ))� T (X;Y ) = �N(X;Y ):Sine Weyl onnetions are torsion free, if we �nd any omplex Weyl onnetion then J is integrable. Wewant to show that, if the anonial Weyl onnetion is omplex, then also (d
g)0 = 0. Denote by A thealternation operator and by C the ontration suh that 
g = C(J 
 g), thend
g = A(r
g) = A(rC(J 
 g)) = A(C(J 
rg)) = A(C(J 
 !g 
 g))= A(!g 
 C(J 
 g)) = A(!g 
 
g) = !g ^ 
g;where we have used formula (7) to obtain rg = !g 
 g.Suppose now that (d
g)0 = 0 and that J is integrable. Then using the onformal six-terms formula (5)we obtain the following onformal version of a lassial formula in Hermitian geometry (see [KN69, p. 148℄):4((rXJ)Y;Z) = 6dr
(X;JY; JZ)� 6dr
(X;Y;Z);and this shows that ((rXJ)Y;Z) = 0 if dr
 = 0. But this last ondition is equivalent, by formula (6), to(d
g)0 = 0, and the laim then follows from the non-degeneray of . As for the urvature Rr of r, usingequivalene lemma we obtainRrl2g = �dr(rl2g) = �dr(�!g 
 l2g) = d!g!g 
 l2g = d!g 
 l2g: �Sine a loally onformal K�ahler manifold is a onformal Hermitian manifold (M; ; J) suh that (d
g)0 =0 and d!g = 0, for one (and then for all) hoie of metri g in the onformal lass  (ompare with formula(1)), we an give the following intrinsi haraterization of loally onformal K�ahler manifolds:12



Corollary 5.4 Let (M; ; J) be a onformal Hermitian manifold. Denote by 
 the L2M -valued fundamentalform, and let r be the anonial Weyl onnetion. Then (M; ; J) is loally onformal K�ahler if and only ifr is at and 
 is dr-losed.Moreover, theorem 5.3 gives also the followingCorollary 5.5 On a loally onformal K�ahler manifold the anonial Weyl onnetion preserves the omplexstruture.Unless otherwise stated, from now on we onsider loally onformal K�ahler manifolds (M; ; J).A loally onformal K�ahler manifold (M; ; J) omes then naturally equipped with a losed 2-form 
, theonly di�erene from the K�ahler ase being that 
 now takes values in L2M . We want go further with thisanalogy.De�ne the pairing ℄ : 
1(L2M )! X(M) by �℄�
 = �, and use it to de�ne a Poisson braket on �(L2M ) byff1; f2g def= 
(℄rf1; ℄rf2). Using lemma 5.2 and formula (3), one shows the relationfff1; f2g; f3g+ fff2; f3g; f1g+ fff3; f1g; f2g = dr
(℄rf1; ℄rf2; ℄rf3) = 0; (8)proving that this braket turns �(L2M ) into a Lie algebra. Remark that, as formula (3), the �rst equality in(8) holds generally on onformal almost-Hermitian manifolds suh that the anonial Weyl onnetion is at.We �nally desribe the intrinsi version of Aut(M). If l is a setion of LtM and h is a di�eomorphism ofM , then the setion h�l of LtM is given by (h�l)x def= lh(x) Æ (h�)x; (9)that is, if x 2 M and w 2 �n(TxM) r 0, we have (h�l)x(w) def= lh(x)((h�)xw). Reall that for any xthe di�erential indues the map (h�)x : �n(TxM)! �n(Th(x)M) whih is in fat a linear map between 1-dimensional vetor spaes. Whenever a metri g is �xed, a trivialization wg of �n(TM) assoiating to x thelength-one element wgx is de�ned, hene one an assoiate to any di�eomorphism h a never-vanishing smoothfuntion dgh de�ned by h�wgx = dgh(x)wgh(x);so the following derivation rule holds for ltg:(h�ltg)x(wgx) = (ltg)h(x)(h�wgx)= (ltg)h(x)(dgh(x)wgh(x))= jdgh(x)j� tn (ltg)h(x)(wgh(x)) = jdgh(x)j� tn ;that is, in short, h�ltg = jdghj� tn ltg.For any di�eomorphism of M we then de�ne h� in the obvious way, that is, h� = h�g 
 h�l2g. Sinedefgh = e(n=2)fÆhe(�n=2)fdgh;13



this de�nition does not depend on the hoie of the gauge g, and gives the intrinsi notion of Aut(M) asfollows.Proposition 5.6 A di�eomorphism h of a onformal manifold (M; ) preserves  if and only if it is aonformal transformation of one (and hene of all) metri g in the onformal lass .Proof: Indeed, h�g = e�g implies dgh = en�=2, so h�l2g = e��l2g, and then h� = h�(g 
 l2g) = h�g 
 h�l2g =g
 l2g = . Vie versa h� =  implies h�g
h�l2g = g
 l2g , hene (jdghj� 2nh�g)
 l2g = g
 l2g , that is h�g = jdghj 2n g.�Lemma 5.7 The Weyl onnetion of a onformal almost-Hermitian manifold (M; ; J) is invariant forAut(M), that is, h�rVW = rVW whenever h�V = V and h�W =W .Proof: This is beause Aut(M) preserves  and J , and r is de�ned just using these ingredients. Moreformally, we want to show that, if h 2 Aut(M) and V , W , Z are h-invariant vetor �elds, then (rVW;Z) =(h�rVW;Z). But we have(rVW;Z) = (h�)(rVW;Z) = h�((h�rVW;h�Z)) = h�((h�rVW;Z));where we used the general property that if  is any tensor �eld of type (r; 0) and X1; : : : ;Xr are vetor�elds, then h�( (h�X1; : : : ; h�Xr)) = (h� )(X1; : : : ;Xr). We are therefore only left to show that (rVW;Z)is h-invariant for all h 2 Aut(M), that is, we are left to show that the seond side of the onformal six-termsformula (5) is h-invariant for all h 2 Aut(M). But it turns out that eah summand of (5) is h-invariant. Weshow this only on its �rst and fourth summand, the others being similar: the �rst summandh�rV (W;Z) = h�rV (g(W;Z)l2g)= h�(V g(W;Z)l2g) + h�(g(W;Z)rV l2g)= h�V g(W;Z)h�l2g � h�(g(W;Z))h�(!g(V ))h�l2g= V ((h�g)(W;Z))l2h�g � (h�g)(W;Z)!h�g(V )l2h�g= rV ((h�g)(W;Z)l2h�g) = rV (W;Z);where we have used that V and h ommute on C1(M), sine V is h-invariant, that h�l2g = l2h�g and thath�!g = !h�g. The fourth summand ish�(([V;W ℄; Z)) = h�(g([V;W ℄; Z)l2g) = h�(g([V;W ℄; Z))h�l2g = (h�g)([V;W ℄; Z)l2h�g = ([V;W ℄; Z);where we have used the already ited properties and that the Lie braket of invariant vetor �elds is invariant.�Corollary 5.8 Let (M; ; J) be a onformal almost-Hermitian manifold with Weyl onnetion r, and letG � Aut(M). If V , W , Z are G-invariant vetor �elds on M , then (rVW;Z) is G-invariant.14



Let G be a Lie subgroup of Aut(M), as in setion 3. The momentum map an then be de�ned as ahomomorphism of Lie algebras �� : g! �(L2M ) suh that �X
 = dr�X . We also denote by � the orrespondingelement of �(g� 
 L2M ) given by h�(x);Xi = �X(x), arets denoting the evaluation.Remark 5.9 In [BG98℄ the existene of suh a homomorphism of Lie algebras is shown to imply the ondition�12!g(X) + 1n divgX = 0on any fundamental vetor �eld X. This is equivalent to the onditionLX
g � !g(X)
g = 0one �nds in [HR01℄, sine LX
g = ((2=n) divgX)
g.If we hoose a metri g in the onformal lass , then �X = �Xg l2g, where ��g : g! C1(M).Theorem 5.10 The map �� : g! �(L2M ) is a momentum map if and only if ��g : g! C1(M) is a momentummap as in setion 3.Proof: Use lemma 5.2 to ompute dr�X with respet to the �xed gauge:dr�X = d!g�Xg 
 l2g ;so that dr�X = �X(
g 
 l2g) = �X
g 
 l2g if and only if �X
g = d!g�Xg . We then have to hek that � is a Liealgebra homomorphism if and only if �g is. But this is a diret onsequene of lemma 5.2, and of the fatthat ℄� = ℄g�g:ff1; f2g = 
(℄rf1; ℄rf2) = 
g(℄rf1; ℄rf2)
 l2g = 
g(℄gd!gf1;g; ℄gd!gf2;g)
 l2g = ff1;g; f2;ggg 
 l2g : �Remark 5.11 The previous theorem allows using all proofs of setion 3 as proofs in this onformal setting,just �xing a gauge. In partiular, the zero set ��1(0), where 0 denotes the zero setion of g� 
 L2M , is thezero set of any �g, and it is therefore losed with respet to the ation of G and oisotropi with respet to
. Moreover, the assumption of 0 being a regular value for �g translates into the assumption that the zerosetion be transverse to �, and under this assumption the isotropi foliation is given exatly by fundamentalvetor �elds g.Theorem 5.12 (Biquard & Gauduhon, [BG98℄) Let (M; ; J) be a loally onformal K�ahler manifold.Let G be a Lie subgroup of Aut(M) whose ation admits a momentum map � : g! �(L2M ). Suppose that Gats freely and properly on ��1(0), 0 denoting the zero setion of g� 
 L2M , and suppose that � is transverseto this zero setion. Then there exists a loally onformal K�ahler struture (�; �J) on ��1(0)=G.15



Proof: Due to lemma 5.2 and to theorem 5.10, this theorem an be viewed at as a translation of theorem 4.1in the onformal language. From this point of view, the theorem was already proved.We want here to give an intrinsi proof, using the haraterization of loally onformal K�ahler manifoldsgiven by orollary 5.4.Take the -orthogonal deomposition TxM = Ex�g(x)�Jg(x), where Ex is the -orthogonal omplementof g(x) in Tx(��1(0)). We obtain a vetor bundle E ! ��1(0) of rank n� 2 dimG.First we need to relate Lt��1(0)=G with LtE. Remark that E=G! ��1(0)=G is isomorphi as a bundle to thetangent bundle of ��1(0)=G, by means of ��jE . On its side LtE=G is isomorphi to GL(E=G) �GL(n�2 dimG)LtRn�2 dimG , sine the ations of G and of GL(n � 2 dimG) on GL(E) ommute, that is, if g 2 G,  2GL(n � 2 dimG) and p 2 GL(E), then g�(p) = (g�p). This means that Lt��1(0)=G is isomorphi to LtE=G,the isomorphism being expliitly given by sending an element l of L2��1(0)=G;�x to [l Æ ��;x℄, where �(x) = �x,and the ation of G on LtE being given by (9).Now remark that the anonial splitting TM = E � g� Jg gives an isomorphism of L2M j��1(0) with L2E,by formula (4), and this isomorphism is G-equivariant.We therefore think of elements of L2��1(0)=G as equivalene lasses of elements of L2M j��1(0).During the proof of this theorem, we denote by �V ; �W; : : : vetor �elds on ��1(0)=G, and by V;W; : : :their lifts to E. Note that V;W; : : : are G-invariant vetor �elds.De�ne �( �V ; �W ) to be the projetion to L2M j��1(0)=G of the setion (V;W ), that is(�( �V ; �W ))�x def= [(V;W )x℄ 2 (L2M j��1(0))x=G ' (L2��1(0)=G)�xwhere x is an element in ��1(�x). The hoie of x is irrelevant, sine h�((V;W )) = h�((h�V; h�W )) =(h�)(V;W ) = (V;W ).We have thus de�ned an almost-Hermitian onformal manifold (��1(0)=G; �; �J). In order to show that itis loally onformal K�ahler we ompute its anonial Weyl onnetion, and then use orollary 5.4.Let rE be the orthogonal projetion of r from T (��1(0)) to E. Sine by lemma 5.7 the Weyl onnetionr is invariant for Aut(M), we have that rEVW is a projetable vetor �eld. De�ne�r �V �W def= ��rEVW: (10)The torsion T �r�V ; �W of �r is just ��TrEV;W = 0. Moreover, �r is ompatible with �J :( �r �V �J) �W = �r �V ( �J �W )� �J �r �V �W= ��rEV (JW )� �J��rEVW= ��(rEV (JW )� JrEVW ) = ��(rV J)EW = 0:Eventually, theorem 5.3 proves that �J is integrable.Look at the Weyl onnetion r on L2M as a map rV : �(L2M j��1(0))! �(L2M j��1(0)), and remark thatthe Aut(M)-invariane of V implies that rV is G-equivariant, thus de�nes a onnetion on L2��1(0)=G. Wedenote it again by �r: �r �V [l℄ def= [rV l℄ 2 L2M j��1(0)=G:16



Using the onformal six-terms formula (5) and orollary 5.8, we see that the onnetion �r on ��1(0)=Gde�ned by (10) is the assoiated Weyl onnetion, whih is therefore the anonial Weyl onnetion of(��1(0)=G; �; �J).The urvature R �r is given byR �r�V ; �W [l℄ = �d �r �r[l℄( �V ; �W ) = �[drrl(V;W )℄ = [RrV;W ℄ = 0:Finally, denoting by �
 the L2��1(0)=G-valued fundamental form of (��1(0)=G; �; �J), we have ��(d �r �
) =dr
 = 0, thus d �r �
 = 0, and orollary 5.4 says that (��1(0)=G; �; �J) is loally onformal K�ahler. �6 Compatibility with K�ahler redutionIn this setion we analyze the relation between loally onformal K�ahler redution of a manifold and K�ahlerredution of a overing. We refer to [Fut88℄ for the K�ahler redution.As a �rst step we show that the two notions of redution on globally onformal K�ahler manifolds areompatible.Proposition 6.1 Let (M; [g℄; J) be a globally onformal K�ahler manifold and denote by g a K�ahler metri.Let G � Aut(M) a subgroup satisfying the hypothesis of the redution theorem and whih moreover is omposedby isometries with respet to g. Denote by (��1(0)=G; [�g℄; �J) the redued loally onformal K�ahler manifold.Then the ation of G is Hamiltonian for g, the submanifold ��1(0) is the same as in the K�ahler redutionand the onformal lass of the redued K�ahler metri is [�g℄. So, in partiular, the redued manifold is globallyonformal K�ahler.Proof: As the ation of G is twisted Hamiltonian for [g℄ remarks 2.4 and 3.2 imply that it is Hamiltonianfor g. Moreover, the subspae ��1(0) is the same for both notions. The onstrution of the almost-omplexstruture on the quotient is the same in the two ases, so �J is de�ned. Denote by ~
 the K�ahler form thatthe K�ahler redution provides on ��1(0)=G. Then �� ~
 = i�
, so the laim follows by the uniqueness part ofthe redution theorem. �Example 6.2 If (M; [g℄; J) is a globally onformal K�ahler manifold the redued struture is not neessarilyglobally onformal K�ahler. Atually, any loally onformal K�ahler manifold (M; [g℄; J) an be seen as aredution of a globally onformal manifold. Indeed, onsider the universal overing ~M of M equipped withits pulled-bak loally onformal K�ahler struture, whih is globally onformal K�ahler sine ~M is simplyonneted. This overing manifold an be onsidered to be ated on by the disrete group of holomorphionformal maps G def= �1(M), whih, having trivial assoiated in�nitesimal ation, is learly Hamiltonian,with trivial momentum map: hene ��1(0) = ~M and ��1(0)=G =M .We now onentrate our attention to the struture of the universal over ~M of a loally onformal K�ahlermanifold (M; [g℄; J). 17



Remark 6.3 The pull-bak by the overing map p of any metri of [g℄ is globally onformal K�ahler sine ~Mis simply onneted. It is easy to show that on any omplex manifold Z suh that dimC (Z) � 2 if two K�ahlermetris are onformal then their onformal fator is onstant. In our ase remark that the pull-bak of anymetri in [g℄ is onformal to a K�ahler metri ~g by~g = e��p�gwhere � satis�es d� = !~g = p�!g and is then only de�ned up to adding a onstant. What is remarkable isthat the ation of �1(M) on ~M is by homotheties of the K�ahler metris (we �x points in M and in ~M inorder to have this ation well-de�ned). Moreover any element of Aut(M) lifts to a homothety of the K�ahlermetris of ~M , if dimC (M) � 2. This is in fat an equivalent de�nition of loally onformal K�ahler manifolds(see [Vai82℄ and [DO98℄).We underline this set of fats by saying that ~M arries a well-de�ned struture of homotheti K�ahlermanifold.With this model in mind, given a homotheti K�ahler manifold (K; hgi; J) we de�ne H(K) to be the groupof biholomorphisms of K suh that f�g = �g, � 2 R+ , and we all suh a map a homothety of K of dilationfator �. The dilation fator does not depend on the hoie of g in hgi, so a homomorphism � is de�nedfrom H(K) to R+ assoiating to any homothety its dilation fator (see also [KO01℄). Note that ker � is thesubgroup of H(K) ontaining the maps that are isometries of one and then all of the metris in hgi. If K isgiven as a globally onformal K�ahler manifold (K; [g℄; J), then H(K) an be onsidered as the well-de�nedsubgroup of Aut(K) of homotheties with respet to the K�ahler metris in [g℄. We now give a ondition for aloally onformal K�ahler manifold overed by a globally onformal one to be globally onformal K�ahler.Proposition 6.4 Given a globally onformal K�ahler manifold ( ~M; [~g℄; J) and a subgroup � of Aut( ~M ) atingfreely and properly disontinuously, the quotient M def= ~M=� (with its naturally indued omplex struture)omes equipped with a loally onformal K�ahler struture [g℄ uniquely determined by the ondition [p�g℄ = [~g℄,where p denotes the overing map ~M !M .Assume now that � � H( ~M). Then the indued struture is globally onformal K�ahler if and only if�(�) = 1.Proof: The ation of � an be seen as satisfying the hypothesis of the redution theorem, so the �rst laimfollows. However we give a straightforward onstrution.Let ~g be one of the K�ahler metris of the struture of ~M . Given an atlas fUig for the overing map p,indue a loal K�ahler metri gi on any Ui by projeting ~g restrited to one of the onneted omponentsof p�1(Ui). Then gi and gj di�er by a onformal map on Ui \ Uj , hene by a partition of unity of fUigone an glue the set fgig to a global metri g whih is loally onformal the gi's, see lemma 3.5, hene isloally onformal K�ahler. The onformal lass of g is uniquely de�ned by this onstrution. Moreover, p�gis onformal to ~g, as they are onformal on eah omponent of the overing fp�(Ui)g and again lemma 3.518



holds. If g0 is a Hermitian metri onM suh that p�g0 is onformal to ~g, then on eah Ui the restrited metrig0jUi is onformal to gi hene to gjUi , so g and g0 are onformal, again see lemma 3.5.Now assume that � � H(K), and that �(�) 6= 1. Then � is not ontained in the isometries of any K�ahlermetri of ~M . If in the lass of [g℄ there existed a K�ahler metri �g then its pull-bak p��g would belong toh~gi. But p��g being a pull-bak implies that � ats with isometries with respet to it, whih is absurd sine�(�) 6= 1. Conversely, if �(�) = 1 then p is a Riemannian overing spae and g itself is K�ahler. Hene theindued loally onformal K�ahler struture is globally onformal K�ahler if and only if �(�) = 1. �This allows, under a natural ondition, to ompute loally onformal K�ahler redution as having a K�ahlerredution as overing spae. First remark that any group G � Aut(M) lifts to subgroups ~G � H( ~M) allhaving the property that p Æ ~G = G.Theorem 6.5 Let (M; [g℄; J) be a loally onformal K�ahler manifold, let G � Aut(M) be a subgroup satisfyingthe hypothesis of the redution theorem, and admitting a lifting ~G suh that �( ~G) = 1. Then the K�ahlerredution is de�ned, with momentum map denoted by � ~M , ~G ommutes with the ation of �1(M), and thefollowing equality of loally onformal K�ahler strutures holds:��1(0)=G ' (��1~M (0)= ~G)=�1(M): (11)Conversely, let ~G be a subgroup of isometries of a homotheti K�ahler manifold ( ~M; h~gi; J) of omplexdimension bigger than 1 satisfying the hypothesis of K�ahler redution and ommuting with the ation of asubgroup � � H( ~M) ating freely and properly disontinuously and suh that �(�) 6= 1. Moreover, assumethat � ats freely and properly disontinuously on ��1~M (0)=G. Then ~G indues a subgroup G of Aut(M), Mbeing the loally onformal K�ahler manifold ~M=�, whih satis�es the hypothesis of the redution theorem, andthe isomorphism (11) holds.Proof: To show that K�ahler redution is de�ned, one has to show that the ation of ~G is Hamiltonian withrespet to the globally onformal K�ahler struture of ~M . First remark that the Lie algebra of ~G oinideswith that of G, that we denote by g as usual, and that the fundamental vetor �eld assoiated with X 2 gon ~M is p�X, where, as we laimed, we identify X with its assoiated fundamental �eld on M . Fix a metrig 2 [g℄ with Lee form ! and fundamental form 
 and let � be the momentum map for g. Then we laimthat ��~M : g �! C1( ~M)X 7�! p��Xis a momentum map for the ation of ~G on ~M with respet to the globally onformal K�ahler metri p�g.Indeed dp�!�X~M = dp�!(p��X)= p�d!�X= p��X
= �p�Xp�
:19



The same way one shows that � ~M is a homomorphism of Poisson algebras, sine suh is �M . But now reallthat from remark 3.2 the property of an ation to be twisted Hamiltonian is a onformal one, so the ationof G is also twisted Hamiltonian for the K�ahler metris onformal to p�g, and is then ordinarily Hamiltonianfor these K�ahler metris from proposition 6.1. This in turn implies, sine �(G) = 1, that K�ahler redution isde�ned and ��1(0) is di�eomorphi to ��1~M (0)=�1(M).As the ation of ~G is indued by p, it ommutes with the ation of �1(M), so the following diagram ofdi�erentiable manifolds ommutes:��1~M //p
��

��1~M (0)= ~G
����1(0) // (��1~M (0)= ~G)=�1(M) ' ��1(0)=G:Moreover the loally onformal K�ahler strutures indued on ��1(0)=G, as overed by the K�ahler redution��1~M (0)=G and as loally onformal K�ahler redution, are easily seen to oinide, and this ends the �rst partof the proof.Conversely note that, as in remark 6.3, if � is suh that p�! = d� , then e��p�g is K�ahler, hene onformalto ~g. So � ats as isometries of e� ~g. We laim that e�� ~M is �-invariant, where by � ~M we denote the K�ahlermomentum map. Postponing for the moment the proof, this de�nes the loally onformal K�ahler momentummap as �X def= (e��X~M)=�, where we identify the Lee algebra of G with that of ~G. This indued momentum mapis easily shown to be a homomorphism with respet to the Poisson struture. Moreover ��1M (0) ' ��1~M (0)=�.Finally sine the ation of � on ��1~M (0)=G is free and properly disontinuous, (��1~M (0)=G)=� is a manifold,and sine the diagram ��1~M (0) //p

��

��1~M (0)=G
����1M (0) // (��1~M (0)=G)=� = ��1M (0)=Gommutes, the ation of G on ��1M (0) is proper and free, that is, G satis�es the hypothesis of the redutiontheorem. So the �rst part of the theorem implies the seond.We are left to prove the laim. For simpliity we write � instead of � ~M . First we show that for any  2 �and X 2 g we have ��X = �()�X . Indeed, realling that �X = Xd��X = �d�X= ��X ~
= �X� ~
= �()�X ~
= �()d�X ;hene ��X��()�X is onstant onM , and is equal to 0 sine it is so on ��1(0). So �(e��X) = e���()�X .20



But now reall that, from one side, the formula �e� ~
 = e���()~
 holds true, from the other that � ats asisometries of e� ~g, hene e���() = 1, so the laim is true. �7 Redution of ompat Vaisman manifolds7.1 A onformal de�nition of ompat Vaisman manifoldsThe original de�nition of Vaisman manifold is relative to a Riemannian manifold, beause it involves theparallelism of the Lee form assoiated to a �xed metri in the onformal lass. As suh, the de�nition is notinvariant up to onformal hanges of metri, and there is not in the literature a riterion to deide whethera given loally onformal K�ahler metri has a Vaisman metri in its onformal lass, that is, a metri g suhthat rg!g = 0.Suh a riterion was reently given in [KO01℄ for ompat loally onformal K�ahler manifolds. Here weshall use it to derive a onformally invariant de�nition for ompat Vaisman manifolds.The onstrution stritly links Vaisman geometry with Sasaki geometry. We start with the followingde�nition-proposition, whih is equivalent to the standard one. On this subjet see [Bla02, BG99℄.De�nition 7.1 Let (W; gW ; �) be a Riemannian manifold of odd dimension bigger than 1 with a ontatform � suh that on the distribution � = 0 the (1; 1)-tensor J that assoiates to a vetor �eld V the vetor�eld ℄g�V d� satis�es J2 = �1. Call � the Reeb vetor �eld of �. De�ne on the one W � R the metrig = etdt 
 dt + etgW and the omplex struture that extends J assoiating to dt the vetor �eld ���,� being the projetion of W � R to W . This is equivalent to assigning to W � R the same J and theompatible sympleti form 
 def= d(et���). Then we say that (W; gW ; �) is a Sasaki manifold if its one(W � R; etdt
 dt+ et��gW ; J) is K�ahler.The standard example is that of the odd-dimensional sphere ontained in C n r 0, with n � 2. Theusual K�ahler metri P dzi 
 d�zi assoiated to the omplex struture of C n r 0 restrits to the sphere to aRiemannian metri and a CR-struture, respetively, that give to S2n�1 the Sasaki struture whose one isC n r 0 itself, via the identi�ation (x; t) 7! et=2x.It is well-known that the onformal metri jzj�2P dzi
 d�zi has parallel Lee form. This property extendsto every K�ahler one, as is impliit in [KO01℄.Lemma 7.2 The K�ahler one (W�R; g; J) of a Sasaki manifold admits the metri ~g = 2e�tg in its onformallass suh that r~g!~g = 0. In partiular the Lee vetor �eld of ~g is �dt.Proof: Reall that the fundamental form 
 of g is K�ahler, so the fundamental form ~
 = 2e�t
 of ~g is suhthat d~
 = �2e�tdt ^ 
 = �dt ^
. So �dt is the Lee form of ~g. Remark that~g = 2dt
 dt+ 2gW21



This shows that �t is twie the metri dual of �dt. Reall that for any 1-form � the following holds2~g(r~gX�℄; Z) = (L�℄~g)(X;Z) + d�(X;Z)where L denotes the Lie derivative. So, in our ase, sine dt is losed, we only have to show that �t is Killing.But this is true sine L�t~g = 2L�tdt
 dt, and L�tdt = d��tdt = 0. �The following also follows from omputations developed in [KO01℄.Proposition 7.3 Let (W; gW ; �) be a Sasaki manifold, let � be a subgroup of H(W � R) ating freely andproperly disontinuously on W � R, in suh a way that �(�) 6= 1 and for any  2 � Æ �t = �t Æ ;that is, � ommutes with the real ow generated by �t.Then the indued loally onformal K�ahler struture on M def= (W � R)=� is a Vaisman struture, notglobally onformal K�ahler.Proof: Sine � � H(W �R) and �(�) 6= 1 the quotient has a loally non globally onformal K�ahler struture,reall proposition 6.4.To show that the struture is Vaisman we show that � ats by isometries of the metri ~g = 2e�tgW�R,where by gW�R we denote the one metri on W � R. This is equivalent to show that � ats by sympleto-morphisms of the onformal K�ahler form 2e�td(et���).We laim that for any  2 � the following properties hold:���� = ����et = �()et:For this, �rst note that  ommuting with the real natural ow implies ��t = �t, it being holomorphi implies�J�t = J�t and it being onformal implies �h�t; J�ti? = h�t; J�ti?. Now remark that for X 2 h�t; J�ti?��X 2 Null �, so ����(X) = �(���X) = 0:Moreover 1 = �(�) = �(��(J�t)) = �(��(�J�t) = ����(J�t) and this implies the �rst laim. Now reallthat ��� = e�t��t
, so �(et)�()��t
 = �(e�t��t
)= ����= � � �= e�t��t
whih shows the seond laim. 22



Then it follows �(2e�td(et���)) = 2�()�1e�td�(et���)= 2�()�1e�t�()d(et����)= 2e�td(et���):So ~g fators through the ation of �, hene induing gM on M whih, by lemma 7.2, is Vaisman, andbelongs to the loally onformal K�ahler struture of M sine p�gM = ~g � gW�R. �The haraterization given in [KO01℄ shows in fat that any ompat Vaisman manifold is produed thisway. We briey reall this onstrution, sine some details whih are less relevant in that work beomeneessary in this one, so we need to express them expliitly.Remark that a vetor �eld V generating a 1-parameter subgroup of Aut(M) does not imply that the owof JV is ontained in Aut(M). If this happens, the set of the ows of the subalgebra generated by V andJV is a Lie subgroup of Aut(M) of real dimension 2 that has a struture of omplex Lie group of dimension1. This motivates the following de�nition:De�nition 7.4 ([KO01℄) A holomorphi onformal ow on a loally onformal K�ahler manifold (M; [g℄; J)is a 1-dimensional omplex Lie subgroup of the biholomorphisms of (M;J) whih is ontained in Aut(M).Remark 7.5 The �eld �t on a K�ahler one of a Sasaki manifold generates a holomorphi onformal ow.Its ow �s(w; t) = (w; t+ s) is in fat ontained in H(W � R), and satis�es �(�s) = es, sine ��s = � and��s(d(et���)) = d(et+s��s���)= esd(et���):The ow of J�t, whih is a vetor �eld that restrits to the Reeb vetor �eld of W , whih is a Killing vetor�eld of W , generates isometries of W �R. We all the real ow generated by �t the natural real ow and theholomorphi onformal ow generated by �t the natural holomorphi ow of the K�ahler one.Finally remark that for a biholomorphism h of a Hermitian manifold to ommute with the ow of a vetor�eld V it is neessary and suÆient that it ommutes with the whole holomorphi ow, sine h�V = V isequivalent to h�JV = JV . So if a holomorphi onformal ow C is de�ned on a loally onformal K�ahlermanifold saying that it is preserved by an automorphism is h equivalent to saying that h preserves a realgenerator of C.Theorem 7.6 (Kamishima & Ornea, [KO01℄) Let (M; [g℄; J) be a ompat, onneted, non-K�ahler, lo-ally onformal K�ahler manifold of omplex dimension n � 2. Then (M; [g℄; J) is Vaisman if and only ifAut(M) admits a holomorphi onformal ow.Proof: For the tehnial lemmas we refer diretly to the ited paper.First, if M is a Vaisman manifold, then the dual vetor �eld ℄! of its Vaisman metri generates aholomorphi onformal ow, that is, both the ow of !℄ and the ow of J!℄ belong to Aut(M), see [DO98℄.23



On the opposite diretion let C be the holomorphi onformal ow on M . Fix a lift ~C of C to ~M . Oneproves (lemma 2.1) that �( ~C) = R+ . Choose a vetor �eld � on ~M suh that the ow f tg of �J� is ontainedin ker �j ~C . Remark that the ow f�tg of � is also ontained in ~C, sine ~C is a holomorphi onformal ow,and that t 7! �(�t)) is surjetive. Choose ~
 in the homothety lass of K�ahler forms on ~M in suh a way thatthis homomorphism is t 7! et, that is for any t��t ~
 = et ~
  �t ~
 = ~
:In partiular the subgroup f�tg of ~C is isomorphi to R.At this step the hypothesis of ompatness of M is ruial: using this fat one proves that the ation off�tg is free and proper (lemma 2.2). In partiular � is never vanishing.De�ne the smooth map s : ~M �! Rx 7�! ~
(J�x; �x)and remark that 1 is a regular value of s, that s�1(1) is non empty, hene is a regular submanifold of ~Mthat we denote by W (proposition 2.3). Note that W is the submanifolds of those points where � has unitarynorm. In partiular one proves that if x is in W then dxs(�x) = 1, so � is transversal to W .Denote by i the inlusion ofW inM . It turns then out that (W; i��� ~
; i�g) is a onneted Sasaki manifold,and that H : W � R �! ~M(w; t) 7�! �t(w)is an isometry with respet to the K�ahler one struture on W � R.One is left to show that �1(M) satis�es the onditions of proposition 7.3. Indeed �(�1(M)) 6= 1 sine Mis non K�ahler, and �1(M) ommutes with the real ow generated by �t sine this last fators to M . �The proof of this theorem proves in partiular the following fat.Corollary 7.7 Any ompat Vaisman manifold (M; [g℄; J) an be presented as a pair (W;�) where W is aompat Sasakian manifold and � � H(W � R) suh that M is isomorphi as a loally onformal K�ahlermanifold to (W � R)=�. Moreover W an be hosen to be simply onneted, hene W � R is the universalovering of M and � is isomorphi to �1(M).Remark 7.8 This an be reformulated in the following way. Consider the olletion of pairs (W;�) as inthe previous orollary. Given a Sasaki morphism one naturally indues a morphism on the K�ahler onesby omposing with identity on the fator R. So de�ne the ategory S of pairs (W;�) by onsidering asmorphisms between (W;�) and (W 0;�0) those Sasaki morphisms (i.e. isometries preserving the ontat form)whih indue between W � R and W 0 � R morphisms whih are equivariant with respet to the ations of� and �0. De�ne a funtor between this ategory and the ategory of Vaisman manifolds (with morphismsgiven by holomorphi, onformal maps) by assoiating to (W;�) the manifold (W �R)=� and to a morphism24



the indued morphism between the quotients. This funtor is surjetive on the objets of the subategory ofompat Vaisman manifolds, but not on the morphisms.We say that (W;�) is a presentation ofM ifM is in the image of (W;�) by this funtor. Conversely givenM ompat Vaisman manifold the assoiated Sasaki manifold is the one found in the proof of theorem 7.6 bymeans of the Vaisman holomorphi ow of M , that is, the holomorphi ow generated by the Lee �eld.Remark 7.9 This onstrution suggests that in Vaisman manifolds loally onformal K�ahler morphismsthat ommute with the Vaisman real ow, that is, the real ow generated by the Lee �eld, be de�ned as theVaisman morphisms of the struture, sine these are the morphisms in the image of the funtor. It mustbe noted that whenever (M; [g℄; J) is Vaisman and ompat the Gauduhon metri is the Vaisman metri(well-de�ned up to homothety). This implies that Aut(M) oinides with the holomorphi isometries of theVaisman metri in this ase. So Vaisman automorphisms oinide with the isometries of the Vaisman metrithat ommute with the Vaisman real ow. Equivalently h 2 Aut(M) is a Vaisman automorphism if and onlyif it ommutes with the Vaisman real ow and admits a lifting ~h suh that �(~h) = 1.7.2 Redution for ompat Vaisman manifoldsWe prove that our redution is ompatible with Sasaki redution, see [GO01℄, and thus show that redutionby the ation of automorphisms of a ompat Vaisman manifold produe a Vaisman manifold.Remark 7.10 It is noted in [BG98℄ that G ating by isometries with respet to a Vaisman metri g does notimply that the redued metri is Vaisman, sine !g being parallel with respet to the Levi-Civita onnetionof g does not imply its restrition to ��1(0) being parallel.Theorem 7.11 Let ((W;�; J);�) be a pair in the ategory S and denote by M the assoiated Vaismanmanifold. Let G � Isom(W ) be a subgroup satisfying the hypothesis of Sasaki redution. Then G an beonsidered as a subgroup H(W � R). Assume that the ation of G ommutes with that of �, and that � atsfreely and properly disontinuously on the K�ahler one (��1W (0)=G) � R.Then G indues a subgroup of Aut(M) satisfying the hypothesis of the redution theorem, and the reduedmanifold is isomorphi with ((��1W (0)=G) � R)=�. In partiular the redued manifold is Vaisman.Proof: We �rst prove that the indued ation satis�es the hypothesis of the K�ahler redution. The momentummap �W is �W : g �! C1(W )X 7�! �X�:
25



Remark that the fundamental �eld assoiated to X 2 g on W � R is projetable, so we an de�ne �XW�R def=et�����X�. To show that this is a momentum map for the ation of G on W � R we diretly omputed�XW�R = d(et�����X�)= d(et�X���)= d(�Xet���)= �Xd(et���)�LX(et���)= �X
where LX(et���) = 0 omes from the properties of the ation. So the ation of G is weakly Hamiltonian.Moreover f�XW�R; �YW�Rg = 
(X;Y ))= d(et���)(X;Y )= Y (et���(X)) �X(et���(Y )) + �[X;Y ℄et���= 0 + 0 + et�����[X;Y ℄�= �[X;Y ℄W�Rwhere Y (et���(X)) = X(et���(Y )) = 0 is due to the properties of the ation. The ation of G is thenHamiltonian, and K�ahler redution is de�ned.So ��1W�R(0) ' (��1W (0)�R), and the ation of G being proper and free on ��1W (0) implies it having the sameproperties on ��1W�R(0). Moreover the ation of � being free and properly disontinuous on (��1W (0)=G) �R = ��1W�R(0)=G implies one an apply theorem 6.5, so the isomorphism is proven. Then by applyingproposition 7.3 one sees that the redued manifold is Vaisman. The theorem then follows. �Remark 7.12 The previous theorem also applies to non-ompat Vaisman manifolds of the form (W�R)=�.Theorem 7.13 Let (M; [g℄; J) be a ompat Vaisman manifold. Let G � Aut(M) be a subgroup of Vaismanautomorphisms. Denote by W the ompat Sasaki manifold assoiated with M .Then G indues a subgroup ~G of isometries on W and the ation of G on M is twisted Hamiltonian. If Gats freely and properly on ��1(0) then it satis�es the hypothesis of Sasaki redution and the loally onformalK�ahler redution is isomorphi to ((��1W (0)= ~G)� R)=�1(M). In partiular the redued manifold is Vaisman.Proof: The automorphisms ofM lift to a subgroup ~G ofH( ~M) of maps ommuting with its lifted ow and suhthat �( ~G) = 1. By de�nition of Vaisman automorphisms ~G is ontained in Isom(W ). So the ompatibilitybetween Sasaki and K�ahler redution of [GO01℄ applies, hene ��1~M (0)= ~G is isomorphi with the K�ahler one(��1W (0)= ~G)� R.Moreover �1(M) ats freely and properly disontinuously on it, sine the quotient ��1M (0)=G is a manifold,and ommutes with its natural real ow. Then theorem 7.11 applies, and this proves the theorem. �26



Remark 7.14 We stress that we showed that the property, typial of Sasaki (in fat, of ontat) geometry ofalways admitting a momentum map is onserved under the funtor between the ategory S and the ategoryof Vaisman manifolds.8 A lass of examples: weighted ations on Hopf manifoldsWe apply the theorem in last setion to the simple ase when � = Z is ontained as a disrete subgroup ofthe natural holomorphi ow of W � R. In this ase the Vaisman manifold topologially is simply W � S1.This nevertheless overs muh of the already known examples of Vaisman manifolds, as was shown in[KO01℄. First onsider S2n�1 equipped with the standard CR struture J oming from C n . The ation onC n r 0 of the yli group �� generated by z 7! �z (for any � 2 C suh that j�j > 1) produes the so-alled standard Hopf manifolds. For any f1; : : : ; ng 2 (S1)n and any set A def= fa1; : : : ; ang of real numberssuh that 0 < a1 � � � � � an the ation of the yli group �f1;:::;ng;A � C generated by (z1 : : : zn) 7!(ea11z1; : : : ; eannzn) produes the omplex manifolds usually alled non-standard Hopf manifold.Let �0 be the Sasaki struture oming from the standard form 
 = �iP dzi ^ d�zi of C n . The ation ofany �� is is by homotheties for the one struture, hene produes Vaisman strutures ((S2n�1; �0; J);��)on standard Hopf manifolds. More generally, for any A def= fa1; : : : ; ang of real numbers suh that 0 < a1 �� � � � an let �A be de�ned the following way: �A def= 1P aijzij2 �0:Fixed A one obtains that for any f1; : : : ; ng 2 (S1)n the ation of �f1;:::;ng;A is by homotheties of theorresponding one struture on C n r 0, hene induing Vaisman strutures((S2n�1; �A; J);�f1;:::;ng;A)on the non-standard Hopf manifolds (f. [KO01℄).So if we at on (S2n�1; �A; J) by a irle of Sasaki isometries and n > 2 we generate a Vaisman reduedmanifold of dimension 2n� 2 for every �f1;:::;ng;A.Remark that the ontat strutures of the Sasaki manifolds (S2n�1; �A; J) all oinide. Denote byCont(S2n�1) the set of ontat automorphisms of S2n�1, whih simply oinide with restrition of biholomor-phisms of C n .For any � = (�1; : : : ; �n) 2 Rn let G� � Cont(S2n�1) be the subgroup of those maps h�;t, t 2 R, suhthat h�;t(z1; : : : ; zn) = (ei�1tz1; : : : ; ei�ntzn):Remark that any G� is omposed in fat by holomorphi isometries of the standard K�ahler struture. More-over a diret omputation shows that its ation on S2n�1 is by isometries for any of the �A. We all theation of G� weighted by the weights (�1; : : : ; �n). We restrit to the �'s suh that G� is isomorphi to S1:it is easy to see that this happens whenever the ratios between the weights are rational.27



The orresponding momentum map for the Sasaki manifold (S2n�1; �A; J) is de�ned by:�1�(z) = H�(z) def= 12(P aijzij2)(�1jz1j2 + � � � + �njznj2):So a Sasaki redution is de�ned whenever the weights are suh that ��1(0) is not empty and the ation on��1(0) is free and proper. The ondition that ��1(0) is not empty is equivalent to requiring that the signs ofthe �i are not all the same.Let k 2 f1; : : : ; n� 1g be the number of negative weights of �, and assume the negative weights are the�rst k. Then there is a di�eomorphism�� : S2k�1 � S2n�2k�1 �! ��1(0)((�1; : : : ; �k); (�1; : : : ; �n�k)) 7�! ( �1p��1 ; : : : ; �kp��k ; �1p�k+1 ; : : : ; �n�kp�n )equivariant with respet to the ationw�;t((�1; : : : ; �k); (�1; : : : ; �n�k)) = ((ei�1t�1; : : : ; ei�kt�k); (ei�k+1t�1; : : : ; ei�nt�n�k))from one side and the ation of G� on ��1(0) from the other: h�;t Æ �� = �� Æ w�;t.Call S(�) the quotient of this ation. This will generally be an orbifold. A suÆient ondition for theation of G� to be free, hene for S(�) to be a manifold, is that the �i's are relatively prime integers.Reall that for any � suh that S(�) is a manifold theorem 7.11 implies there exists a Vaisman struture onS(�) � S1 for every (a1; : : : ; an) 2 Rn suh that 0 < a1 � � � � � an and for every (1; : : : ; n) 2 (S1)n, eahbeing the redution of the Hopf manifold assoiated to (a1; : : : ; an) and with Vaisman struture assoiatedto ((a1; : : : ; an); (1; : : : ; n)).We analyze the topologial type of the redutions S(�) in some of these ases.Example 8.1 Assume that n � 2, k = 1, that is, �1 < 0, �i > 0; i = 2; : : : ; n. Then the spae ��1(0) isdi�eomorphi to S1 � S2n�3.One easily shows that S(�1; 1; : : : ; 1) is S2n�3. One an also show that the Sasaki struture reduedform the standard is again the standard one, so any standard Hopf manifold omes as a redution of theorresponding Hopf manifold of higher dimension. This is also shown in [BG98℄.In turn, as shown in [GO01℄, for any negative integer p, S(p; 1; : : : ; 1) is di�eomorphi to S2n�3=Zp, sowe obtain a family of Vaisman strutures on (S2n�3=Zp) � S1. In partiular for n = 3 we obtain Sasakistrutures on lens spaes of the form L(p; 1), hene Vaisman strutures on omplex surfaes di�eomorphiwith L(p; 1) � S1.Example 8.2 Assume k = 2, n � 4. Then ��1(0) is di�eomorphi to S3 � S2n�5. If n = 4 this is S3 � S3.In partiular S(�1;�1; 1; 1) is known to be S2�S3, see [GO01℄. So we obtain a family of Vaisman strutureson S1 � S2 � S3. It is interesting to note that reduing from the standard struture one obtains a manifoldthat also bears a semi-K�ahler struture, when seen as twistor spae of the standard Hopf surfae.28
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