
Lo
ally 
onformal K�ahler redu
tionRosa Gini�, Liviu Orneay, Maurizio Parton�;y6th August 2002Abstra
tWe de�ne redu
tion of lo
ally 
onformal K�ahler manifolds, 
onsidered as 
onformal Hermitian manifolds,and we show its equivalen
e with an unpublished 
onstru
tion given by Biquard and Gaudu
hon. We showthe 
ompatibility between this redu
tion and K�ahler redu
tion of the universal 
over. By a re
ent resultof Kamishima and the se
ond author, in the Vaisman 
ase (that is, when a metri
 in the 
onformal 
lasshas parallel Lee form) if the manifold is 
ompa
t its universal 
over 
omes equipped with the stru
tureof K�ahler 
one over a Sasaki 
ompa
t manifold. We show the 
ompatibility between our redu
tion andSasaki redu
tion, hen
e des
ribing a subgroup of automorphisms whose a
tion indu
e redu
tion to bear aVaisman stru
ture. Then we apply this theory to 
onstru
t a wide 
lass of Vaisman manifolds.Keywords: lo
ally 
onformal K�ahler manifold, Vaisman manifold, Sasaki manifold, Lee form, momentum map, Hamil-tonian a
tion, redu
tion, 
onformal geometry.AMS 2000 subje
t 
lassi�
ation: 53C55, 53D20, 53C25.1 Introdu
tionSin
e 1974 when the 
lassi
al redu
tion pro
edure of S. Lie was formulated in modern terms by J. Marsdenand A. Weinstein for symple
ti
 stru
tures, this te
hnique was extended to other various geometri
 stru
turesde�ned by a 
losed form. Extending the equivariant symple
ti
 redu
tion to K�ahler manifolds was mostnatural: one only showed the almost 
omplex stru
ture was also proje
table. Generalizations to hyperk�ahlerand quaternion K�ahler geometry followed. The extension to 
onta
t geometry is also natural and 
an beunderstood via the symple
tization of a 
onta
t manifold. In ea
h 
ase, the momentum map is produ
ed bya Lie group a
ting by spe
i�
 automorphisms of the stru
ture.A lo
ally 
onformal K�ahler manifold is a 
onformal Hermitian manifold (M; [g℄; J) su
h that for one (andhen
e for all) metri
 g in the 
onformal 
lass the 
orresponding K�ahler form 
 satis�es d
 = ! ^
, where !is a 
losed 1-form. This is equivalent to the existen
e of an atlas su
h that the restri
tion of g to any 
hartis 
onformal to a K�ahler metri
.�Partially supported by EURROMMAT.yMember of EDGE, Resear
h Training Network HRPN-CT-2000-00101, supported by the European Human Potential Pro-gramme. 1



The 1-form ! 2 
1(M) was introdu
ed by H.-C. Lee in [Lee43℄, and it is therefore 
alled the Lee form ofthe Hermitian stru
ture (g; J).It was not obvious how to produ
e a quotient 
onstru
tion in 
onformal geometry. The �rst publishedresult we are aware of belongs to S. Haller and T. Rybi
ki who proposed in [HR01℄ a redu
tion for lo
ally 
on-formal symple
ti
 stru
tures. Their te
hnique is essentially lo
al: they redu
e the lo
al symple
ti
 stru
tures,then glue the lo
al redu
ed stru
tures. But even earlier, sin
e 1998, an unpublished paper by O. Biquardand P. Gaudu
hon proposed a quotient 
onstru
tion for lo
ally 
onformal K�ahler manifolds [BG98℄. Their
onstru
tion relies heavily on the language and te
hniques of 
onformal geometry as developed, for example,in [CP99℄. The key point is the fa
t that a lo
ally 
onformal K�ahler stru
ture 
an be seen as a 
losed 2-formwith values in a ve
tor bundle (of densities).Our starting point was the paper [HR01℄. Following the lines of the K�ahler redu
tion, we veri�ed that the
omplex stru
ture of a lo
ally 
onformal K�ahler manifold 
an be proje
ted to the quotient. In se
tion 3 of thispaper we 
onstru
t the momentum map asso
iated to an a
tion by lo
ally 
onformal K�ahler automorphisms,lying on the notion of twisted Hamiltonian a
tion given by I. Vaisman in [Vai85℄. In se
tion 4 we extendHaller-Rybi
ki 
onstru
tion to the 
omplex setting. Then, in se
tion 5 we present, rather in detail, due toits very restri
ted previous 
ir
ulation, the Biquard-Gaudu
hon 
onstru
tion. The main result of this se
tionproves the equivalen
e between the Biquard-Gaudu
hon redu
tion and ours.The universal 
over of a lo
ally 
onformal K�ahler manifold has a natural (global) homotheti
 K�ahlerstru
ture. We exploit this fa
t in se
tion 6 in order to relate lo
ally 
onformal K�ahler redu
tion to the K�ahlerredu
tion of its universal 
over.The study of lo
ally 
onformal K�ahler manifolds started in the �eld of Hermitian manifolds. Most ofthe known examples of lo
ally 
onformal K�ahler metri
s are on 
ompa
t manifolds and enjoy the additionalproperty of having parallel Lee form with respe
t to the Levi-Civita 
onne
tion. Lo
ally 
onformal K�ahlermetri
s with parallel Lee form were �rst introdu
ed and studied by I. Vaisman in [Vai79, Vai82℄, so we 
allVaisman metri
 a lo
ally 
onformal K�ahler metri
 with this property. Manifolds bearing a Vaisman metri
show a ri
h geometry. Su
h are the Hopf surfa
es H�;� des
ribed in [GO98℄, all di�eomorphi
 with S1�S3 (seealso [Par99℄). More generally, I. Vaisman �rstly showed that on the produ
t S1 � S2n+1 given as a quotientof C n r 0 by the 
y
li
 in�nite group spanned by z 7! �z, where z 2 C n r 0 and j�j 6= 1, the proje
tion ofthe metri
 jzj�2P dzi 
 d�zi is lo
ally 
onformal K�ahler with parallel Lee form �jzj�2P(zid�zi + �zidzi). The
omplete list of 
ompa
t 
omplex lo
ally 
onformal K�ahler surfa
es admitting parallel Lee form was given byF. Belgun in [Bel00℄ where it is also proved the existen
e of some 
ompa
t 
omplex surfa
es whi
h do notadmit any lo
ally 
onformal K�ahler metri
.The de�nition of Vaisman metri
 is not invariant up to 
onformal 
hanges. A 
onformally equivalentnotion of Vaisman manifold is still missing, but a re
ent result by Kamishima and the se
ond author in[KO01℄ provides one in the 
ompa
t 
ase, generalizing the one �rst proposed by Belgun in [Bel00℄ in the 
aseof surfa
es. We develop this notion in se
tion 7 where we analyze redu
tion in this 
ase.Vaisman geometry is 
losely related with Sasaki geometry. In this 
ase the pi
ture turns out to be the2



following. The 
ategory of ordinary lo
ally 
onformal K�ahler manifolds 
an be seen as the image of the
ategory of pairs (K;�) of homotheti
 K�ahler manifolds with a subgroup � of homotheties a
ting freelyand properly dis
ontinuously, with morphisms given by homotheti
 K�ahler morphisms equivariant by thea
tions. What we prove in se
tion 6 is that under the fun
tor asso
iating to (K;�) the lo
ally 
onformalK�ahler manifoldK=� Hamiltonian a
tions go to twisted Hamiltonian a
tions, and vi
e versa, see theorem 6.5.So the images of subgroups produ
ing K�ahler redu
tion a
tually are subgroups produ
ing lo
ally 
onformalK�ahler redu
tion (up to topologi
al 
onditions), and vi
e versa. The same way the 
ategory of (
ompa
t)Vaisman manifolds 
an be seen as the image of the 
ategory of pairs (W;�), with W a Sasaki manifold and� a subgroup of (proper) homotheties of the K�ahler 
one W � R a
ting freely and properly dis
ontinuously,with morphisms given by Sasaki morphisms equivariant by the a
tions. The fun
tor asso
iating to (W;�) theVaisman manifold (W � R)=� is surje
tive on obje
ts but not on morphisms: we 
all Vaisman morphismsthe ones in the image. What we prove in se
tion 7 is that, up to topologi
al 
onditions, subgroups of Sasakiautomorphisms produ
ing Sasaki redu
tion go to subgroups produ
ing Vaisman redu
tion, and vi
e versa.This is parti
ularly remarkable sin
e, up to topologi
al 
onditions, Sasaki redu
tion applies to any subgroupof automorphisms, that is, the momentum map is always de�ned. So we obtain that redu
tion by Vaismanautomorphisms is always de�ned (up to topologi
al 
onditions) and produ
es Vaisman manifolds.This allows building a wide set of Vaisman manifolds, redu
ed by 
ir
le a
tions on Hopf manifolds, inse
tion 8.A
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ally 
onformal K�ahler manifoldsLet (M;J) be any almost-
omplex n-manifold, n � 4, let g be a Hermitian metri
 on (M;J). Let 
 be theK�ahler form de�ned by 
(X;Y ) def= g(JX; Y ). The map L : 
1(M)! 
3(M) given by the wedging with 
 isinje
tive, so that the g-orthogonal splitting 
3(M) = ImL� (ImL)0 indu
es a well-de�ned ! 2 
1(M) givenby the relation d
 = ! ^ 
 + (d
)0. The 1-form ! 2 
1(M) is 
alled the Lee form of the almost-Hermitianstru
ture (g; J). 3



A relevant notion in this setting is that of twisted di�erential. Given a p-form  its twisted di�erential isthe (p+ 1)-form d! def= d � ! ^  :Remark that d! Æ d! = 0 if and only if d! = 0.A Hermitian metri
 g on a 
omplex manifold (M;J) is said to be lo
ally 
onformal K�ahler if g is (lo
ally)
onformal to lo
al K�ahler metri
s. In this 
ase the lo
al forms d�U 
oming from the lo
al 
onformal fa
torse�U paste to a global form ! satisfying d
 = ! ^ 
. Vi
e versa this last equation together with d! = 0
hara
terizes the lo
ally 
onformal K�ahler metri
s. In other words a Hermitian metri
 is lo
ally 
onformalK�ahler if and only if d! Æ d! = 0 and d!
 = 0: (1)De�nition 2.1 A 
onformal Hermitian manifold (M; [g℄; J) of 
omplex dimension bigger than 1 is said to bea lo
ally 
onformal K�ahler manifold if one (and hen
e all of) the metri
s in [g℄ is lo
ally 
onformal K�ahler.Remark 2.2 If, in parti
ular, the Lee form of one (and hen
e all) of the metri
s in [g℄ is exa
t, thenthe manifold is said to be globally 
onformal K�ahler. This is in fa
t equivalent to requiring that in the
onformal 
lass there exists a K�ahler metri
, that is, any metri
 in [g℄ is globally 
onformal to a K�ahlermetri
. From [Vai80℄ it is known that for 
ompa
t manifolds possessing a K�ahler stru
ture forbids existen
eof lo
ally non-globally 
onformal K�ahler stru
tures, so the two worlds are generally 
onsidered as disjoint. Inthis paper, however, the two notions behave the same way, so we 
onsider the global 
ase as a sub
lass of thelo
al 
ase.From now on, let (M; [g℄; J) be a lo
ally 
onformal K�ahler manifold.Not unlike the K�ahler 
ase, lo
ally 
onformal K�ahler manifolds 
ome equipped with a notable subset ofX(M): given a smooth fun
tion f the asso
iated Hamiltonian ve
tor �eld is the 
-dual of df , and Hamiltonianve
tor �elds are ve
tor �elds that admit su
h a presentation. But the notion that works for redu
tion, asshown in [HR01℄, is the one given in [Vai85℄ obtained by twisting the 
lassi
al. Given f its asso
iated twistedHamiltonian ve
tor �eld is the 
-dual of d!f . The subset of X(M) of twisted Hamiltonian ve
tor �elds isthat of ve
tor �elds admitting su
h a presentation.Remark 2.3 If M is not globally 
onformal K�ahler the fun
tion asso
iating to f its twisted Hamiltonianve
tor �eld is inje
tive. Indeed d!f = 0 implies ! = d log jf j on f 6= 0, so either f � 0 or ! is exa
t.De�ne a twisted Poisson bra
ket on C1(M) byff1; f2g def= 
(℄d!f1; ℄d!f2) (2)The relation fff1; f2g; f3g+ fff2; f3g; f1g+ fff3; f1g; f2g = d!
(℄d!f1; ℄d!f2; ℄d!f3) = 0 (3)4



proves that this bra
ket turns C1(M) into a Lie algebra. Remark that the �rst equality in (3) holds generallyon any almost-Hermitian manifold (M; g; J) under the only assumption d! = 0.Remark 2.4 Remark that the notion of Hamiltonian ve
tor �eld is invariant up to 
onformal 
hange of themetri
, even though the fun
tion (possibly, the fun
tions) asso
iated to a Hamiltonian ve
tor �eld 
hangesby the 
onformal fa
tor. A straightforward 
omputation shows in fa
t that, if 
0 = e�
 and !0 = ! + d� isthe 
orresponding Lee form, the following relations holdd!f = e��d!0(e�f)℄
d!f = ℄
0d!0(e�f)fe�f1; e�f2g
0 = e�ff1; f2g
so that multipli
ation by e� yields an isomorphism between (C1(M); f ; g
) and (C1(M); f ; g
0) 
ommutingwith the 
orresponding maps ℄
d! and ℄
0d!0 in the spa
e of twisted Hamiltonian ve
tor �elds. In parti
ularifM is globally 
onformal K�ahler, then the twisted Hamiltonian ve
tor �elds ofM 
oin
ide with the ordinaryHamiltonian ve
tor �elds, sin
e the Lee form of a K�ahler metri
 is 0.De�nition 2.5 Given two lo
ally 
onformal K�ahler manifolds (M; [g℄; J) and (M 0; [g0℄; J) a smooth maph from M to M 0 is a lo
ally 
onformal K�ahler morphism if h�J 0 = J and [h�g0℄ = [g℄. We denote byAut(M; [g℄; J), or brie
y by Aut(M), the group of lo
ally 
onformal K�ahler automorphisms of (M; [g℄; J).The group Aut(M) is a Lie group, 
ontained as a subgroup in the 
omplex Lie group of biholomorphismsof (M;J). However, unlike the Riemannian 
ase, the Lie algebra of Aut(M) is not 
losed for the 
omplexstru
ture. This will be used in the sequel.3 The lo
ally 
onformal K�ahler momentum mapIn this paper we 
onsider (
onne
ted) Lie subgroups G of Aut(M).Remark 3.1 It follows from [MPPS97℄ that whenever a lo
ally 
onformal K�ahler manifold M is 
ompa
t,the group Aut(M) 
oin
ides with the isometries of the Gaudu
hon metri
 in the 
onformal 
lass, that is, theone whose Lee form is 
o
losed. Hen
e, in parti
ular, Aut(M) is 
ompa
t. More generally if a subgroup G ofAut(M) is 
ompa
t then by using the Haar integral one obtains a metri
 in the 
onformal 
lass su
h that Gis 
ontained in the group of its isometries. So the 
ase when G is not 
onstituted by isometries of a spe
i�
metri
 
an only happen if both M and G are non-
ompa
t.Throughout the paper we identify fundamental ve
tor �elds with elements X of the Lie algebra g of G,so that if x 2M then g(x) means Tx(Gx).Imitating the terminology established in [MS95℄, we 
all the a
tion of G weakly twisted Hamiltonian if theasso
iated in�nitesimal a
tion is of twisted Hamiltonian ve
tor �elds, that is, if there exists a (linear) map5



�� : g! C1(M) su
h that �X
 = d!�X for fundamental ve
tor �elds X 2 g, and twisted Hamiltonian if �
an be 
hosen to be a Lie algebra homomorphism with respe
t to the Poisson bra
ket (2). In this 
ase wesay that the Lie algebra homomorphism � is a momentum map for the a
tion of G, or, equivalently, with thesame name and symbol we refer to the indu
ed map � : M ! g� given by h�(x);Xi def= �X(x), for X 2 g and
arets denoting the evaluation.Remark 3.2 Note that the property of an a
tion of being twisted Hamiltonian is a property of the 
onformalstru
ture, even though the Poisson stru
ture on C1(M) is not 
onformally invariant, see remark 2.4. Ifg0 = e�g then �!0 = e��!. In parti
ular the preimage of 0 is well-de�ned.Remark 3.3 Remark that � is not equivariant for the standard 
oadjoint a
tion on g�. It is known from[HR01℄ that by modifying the 
oadjoint a
tion by means of the 
onformal fa
tors arising from h�g � g one
an for
e � to be equivariant.On ��1(0) the twisted di�erential of the asso
iated twisted Hamiltonian fun
tions �(g) 
oin
ides with theordinary di�erential, sin
e d!x�X = dx�X � �X(x)!x for X 2 g, x 2 ��1(0): Thus, if the a
tion is twistedHamiltonian, then the fun
tions in �(g) vanish on the whole orbit of x 2 ��1(0), sin
e for x 2 ��1(0) andY 2 g(x) dx�X(Y ) = d!x�X(Y ) = 
(℄d!�X ; ℄d!�Y )(x) = f�X ; �Y g(x) = �[X;Y ℄(x) = 0;that is to say, ��1(0) is 
losed for the a
tion of G.Moreover, if 0 is a regular value for �, then T (��1(0))?
 = g, sin
e for any x 2 ��1(0), X 2 g; V 2X(��1(0)) we have 
(X;V )(x) = d!x�X(V ) = dx�X(V ) = 0:Thus we say that ��1(0) is a 
oisotropi
 submanifold of M .In the next se
tion we show how to obtain a lo
ally 
onformal K�ahler stru
ture on ��1(0)=G under theadditional hypothesis of it being a manifold. But we remark here that, due to the missing equivarian
e of �,a non-zero redu
tion is not straightforward.Remark 3.4 We give a brief des
ription of the existen
e and uni
ity problem for momentum maps. Supposethe a
tion is weakly twisted Hamiltonian, and 
hoose a linear map �� : g! C1(M). Denote by N the kernelof d! : C1(M)! 
1(M). The obstru
tion for � to be a Lie algebra homomorphism is given by the map� : g� g! N sending (X;Y ) into f�X ; �Y g � �[X;Y ℄, whi
h 
an be shown to live in H2(g; N), and this
ohomology 
lass vanishes whenever the a
tion is twisted Hamiltonian. If this is the 
ase, then momentummaps are parameterized by H1(g; N). If (M; [g℄; J) is non-globally 
onformal K�ahler, then N = 0, seeremark 2.3. Then, in parti
ular, a weakly Hamiltonian a
tion on a 
ompa
t non-K�ahler lo
ally 
onformalK�ahler manifold always admits a unique momentum map.In the following we will often need a te
hni
al lemma we prove here on
e and for all.6



Lemma 3.5 Let M be a manifold, let fUigi2I be a lo
ally �nite open 
overing. Let f�ig be a partition ofunity relative to fUig. The following three fa
ts hold.i) Let g and g0 be two tensors globally de�ned on M and su
h that for any igjUi � g0jUi ;then g and g0 are globally 
onformal.ii) Let fgig be a 
olle
tion of lo
al tensors, where gi is de�ned on Ui, su
h that whenever Ui \ Uj 6= ;gijUi\Uj � gj jUi\Uj ;then the tensor g def= Pi �igi is globally de�ned on M and gjUi is lo
ally 
onformal to gi.iii) Let fgig and g be as in ii). If g0 is a global tensor su
h that g0jUi is lo
ally 
onformal to gi, then g andg0 are globally 
onformal.Proof: First prove i). Let e�i be the 
onformal fa
tor su
h thatgjUi = e�ig0jUi ;then re
alling that Pi �i = 1 one obtains g = (Xi �ie�i)g0:Now turn to ii). For any x 2 M let Ux be a neighborhood of x whi
h is 
ompletely 
ontained in anyUi that 
ontains x, let Uix be one of them and e�x;i be the 
onformal fa
tor between gix and gi, de�ned onUix \ Ui whi
h 
ontains Ux: then the following holdsgjUx = (Xi �ie�x;i)gix :Finally i) and ii) imply iii). �Remark 3.6 Using a more sophisti
ated argument it is proved in [HR01℄ that in 
ase ii) one obtains gjUi � gi.4 The redu
tion theoremTheorem 4.1 Let (M; [g℄; J) be a lo
ally 
onformal K�ahler manifold. Let G be a Lie subgroup of Aut(M)whose a
tion is twisted Hamiltonian and is free and proper on ��1(0), 0 being a regular value for the momen-tum map �. Then there exists a lo
ally 
onformal K�ahler stru
ture ([�g℄; �J) on ��1(0)=G, uniquely determinedby the 
ondition ���g � i�g, where i denotes the in
lusion of ��1(0) into M and � denotes the proje
tion of��1(0) onto its quotient. 7



Proof: Sin
e ��1(0) is 
oisotropi
, and its isotropi
 leaves are the orbits of G, the [g℄-orthogonal splittingTxM = Ex � g(x) � Jg(x) holds, where Ex is the [g℄-orthogonal 
omplement of g(x) in Tx(��1(0)). Thisshows that E is a 
omplex subbundle of TM and, sin
e J is 
onstant along g, it indu
es an almost 
omplexstru
ture �J on ��1(0)=G. This is proven to be integrable the same way as in the K�ahler 
ase, by 
omputingthe Nijenhuis tensor of �J and re
alling that ��[V;W ℄ = [��V; ��W ℄ for proje
table ve
tor �elds V;W .Take an open 
over U of ��1(0)=G that trivializes the G-prin
ipal bundle � : ��1(0)! ��1(0)=G and forea
h U 2 U 
hoose a lo
al se
tion sU of �.Fix an open set U . On its preimage we have two horizontal distributions: the (global) already de�neddistribution E, [g℄-horizontal, and the tangent distribution SU to sU (U), translated along the �bres by meansof the a
tion of G to give a distribution on the whole preimage of U . Remark that SU 
annot be 
hosen to
oin
ide with E in general, sin
e SU is obviously a (lo
al) foliation, whereas E is not integrable in general.Given a ve
tor �eld �V on U denote by V its [g℄-horizontal lifting. Then for any �V the ve
tor �elds Vand J(V ) are proje
table and �J( �V ) = ��J(V ). Moreover denote by V + �V the lifting of �V tangent to SU ,so that dsU ( �V ) = V + �V .(1) Remark that �V is a verti
al ve
tor �eld on ��1(U), and that 
learly V + �V isproje
table itself: more expli
itly, for a generi
 x 2 ��1(U),(V + �V )x = (h�1x )�d�(x)sU ( �V�(x))where by hx we denote the element of G that takes x in sU(�(x)).Now de�ne a lo
al 2-form �
U def= s�U i�
 on U . Sin
e verti
al ve
tor �elds are 
-orthogonal to any ve
tor�eld on ��1(U), this de�nition implies that for any pair ( �V ; �W ) of ve
tor �elds on U�
U ( �V ; �W ) = s�U i�
(�V ; �W )= i�
(V + �V ;W + �W )= i�
(V;W ):Sin
e i�
 is 
ompatible with J and positive, the lo
al form �
U easily turns out to be 
ompatible with �J ,sin
e �
U( �J( �V ); �J( �W )) = s�U i�
( �J( �V ); �J( �W ))= i�
(dsU (��J(V )); dsU (��J(W )))= i�
(J(V ) + �J(V ); J(W ) + �J(W ))= i�
(J(V ); J(W ))= i�
(V;W )= �
U ( �V ; �W )and the same way one shows that �
U is positive.Denote by �gU the 
orresponding lo
al Hermitian metri
, whi
h is then lo
ally 
onformal K�ahler.(1)To be pre
ise we should write this expression in the form dsU( �V ) = V Æ sU + �V Æ sU .8



We want now to show that �� �
U is 
onformally equivalent to i�
 on ��1(U).So 
onsider a pair of generi
 (that is, non ne
essarily proje
table) ve
tor �elds ( ~V ; ~W ) on ��1(U). Forany x 2 ��1(U) denote by V x the proje
table ve
tor �eld su
h that V xx 
oin
ide with ~Vx, that is V xy def=(h�1x;y)� ~Vh�1x sU (�(y)), where by hx;y we denote the element of G that takes y in h�1x sU(�(y)). Similarly de�neW x, and 
all ( �V x; �W x) the proje
ted ve
tor �elds on U . We then have�� �
U ( ~Vx; ~Wx) = �
U(�� ~V xx ; �� ~W xx )= �
U( �V x�(x); �W x�(x))= i�
(V xsU (�(x));W xsU (�(x))):By evaluating the proje
table ve
tor �eld V x in the point y = sU (�(x)) one obtains the following�� �
U ( ~Vx; ~Wx) = i�
((hx)� ~Vx; (hx)� ~Wx)= h�xi�
(~Vx; ~Wx):Now remark that hx is a 
onformal map, hen
e there exists a smooth fun
tion �x su
h that h�xi�
(~Vx; ~Wx) =�x(x)i�
(~Vx; ~Wx). But by 
onstru
tion the fun
tion x 7! �x(x) is smooth, so the two 2-forms are 
onformallyequivalent.Then, if U;U 0 2 U overlap, we obtain on their interse
tion that �
U is 
onformally equivalent to �
U 0 :�
U 0 = s�U 0i�
 � s�U 0�� �
U = �
U :We use a partition of unity f�Ug to glue all together these lo
al forms, obtaining a global 2-form�
 =XU2U �U �
Uon ��1(0)=G whi
h, by lemma 3.5, is lo
ally 
onformal to any �
U .This implies that �
 is still 
ompatible with �J and positive, and therefore indu
es a global Hermitian metri
�g on ��1(0)=G whi
h is lo
ally 
onformal K�ahler be
ause it is lo
ally 
onformal to the lo
ally 
onformal K�ahlermetri
s �gU on U . This ends the existen
e part.If g0 is any lo
ally 
onformal K�ahler metri
 on ��1(0)=G su
h that ��g0 � i�g, then for any x 2 ��1(0)=Gon Ux � U we obtain g0jUx = s�U��g0jUx � s�U i�gjUx = �gU jUx � �gjUx . So the globally de�ned metri
s g and g0,being lo
ally 
onformal, are in fa
t 
onformal, by lemma 3.5. The 
laim then follows. �Remark 4.2 If ��1(0)=G has real dimension two then redu
tion equips it with a 
omplex stru
ture and a
onformal family of K�ahler metri
s.Remark 4.3 Let us note by passing that the zero level set o�ers a natural example of CR-submanifold ofM (see [DO98℄). Indeed, the tangent spa
e in ea
h point splits as a dire
t orthogonal sum of a J -invariantand a J -anti-invariant distribution: Tx(��1(0)) = Ex� g(x). A result of D. Blair and B. Y. Chen states thatthe anti-invariant distribution of a CR-submanifold in a lo
ally 
onformal K�ahler manifold is integrable. Inour 
ase, this is trivially true be
ause the anti-invariant distribution is just a 
opy of the Lie algebra of G.9



5 Conformal setting and the Biquard-Gaudu
hon 
onstru
tionIn de�ning the redu
ed lo
ally 
onformal K�ahler stru
ture on ��1(0)=G we used a spe
i�
 metri
 in the
onformal 
lass [g℄, to obtain a 
onformal 
lass [�g℄. In this se
tion we present a more intrinsi
 
onstru
tionfor the lo
ally 
onformal K�ahler redu
tion, due to O. Biquard and P. Gaudu
hon, whi
h makes use of thelanguage of 
onformal geometry. To this aim we mainly �ll in details and reorganize material 
ontained in[CP99℄ and in the unpublished paper [BG98℄.Moreover we prove that the two 
onstru
tions are in fa
t the same, by showing in lemma 5.2 and its
onsequen
es the 
orresponden
e between representatives and intrinsi
 obje
ts.Let V be a real n-dimensional ve
tor spa
e, and t a real number. The 1-dimensional ve
tor spa
e LtVof densities of weight t on V is the ve
tor spa
e of maps l : (�nV )r 0! R satisfying l(�w) = j�j�t=nl(w) if� 2 R r 0 and w 2 (�nV ) r 0. We say that a density l is positive if it takes only positive real values. Forpositive integers t we have LtV = L1V 
� � �
L1V and for negative integers t we have LtV = (L1V )�
� � �
 (L1V )�.Thus, given an element l of L1V , we denote by lt the 
orresponding element of LtV under these 
anoni
alidenti�
ations, for any t integer.Remark that �n+d(V � Rd) ' �nV , and this gives a 
anoni
al isomorphism between LtV�Rd and LtV :l 2 LtV 7! sgn(l)l nn+d 2 LtV�Rd : (4)To any Eu
lidean metri
 g on the ve
tor spa
e V we asso
iate the positive element ltg of LtV whi
h sendsthe length-one element of (�nV )r0 to 1. Then under a homothety e�g of the metri
 we have lte�g = e�t�=2ltg,and the positive de�nite element g 
 l2g of S2V 
 L2V only depends on the homothety 
lass 
 of g.Conversely, given an element 
 of S2V 
L2V , we 
an asso
iate to any positive element l of L1V the element
 
 l�2 of S2V 
 L2V 
 L�2V = S2V , and if 
 is positive de�nite so is 
 
 l�2, whi
h therefore de�nes aEu
lidean metri
 on V . If, moreover, 
 satis�es the normalization 
ondition l2

l�2 = l2 for one (and hen
efor all) positive element l of L1V , then the 
orresponden
e between su
h 
's and the homothety 
lasses of g isbije
tive.For any ve
tor bundle E ! M , de�ne the asso
iated density line bundle LtE ! M as the bundle whose�ber over x 2M is the 1-dimensional ve
tor spa
e LtEx. If n is the rank of E, then LtE 
an be globally de�nedas the �bred produ
t P(E)�G LtRn , where P(E) denotes the prin
ipal bundle asso
iated to E with stru
turegroup G � GL(n), and an element A of G a
ts on LtRn by multipli
ation by jdetAjt=n. Remark that, inparti
ular, LtE has the same prin
ipal bundle as E, for any t 2 R.The above 
onstru
tion identi�es 
onformal 
lasses of metri
s on E with normalized positive de�nedse
tions of S2E 
L2E . In parti
ular, if E = TM , the 
onformal 
lass of a Riemannian metri
 
an be thoughtof as a normalized positive de�ned se
tion 
 of S2M 
 L2M , where we denote LtTM by LtM .A trivialization (usually positive) of L1M is 
alled a gauge or also a length s
ale.This way, on a 
onformal manifold (M; 
), we have a Riemannian metri
 whenever we �x a gauge. As aterminology, instead of saying \. . . take a gauge l, and let g def= 

 l�2. . . " we shall say \. . . let g be a metri
in the 
onformal 
lass 
. . . ". 10



Sin
e a 
onne
tion on M means a 
onne
tion on GL(M) and GL(M) is also the prin
ipal bundle of LtM ,a 
onne
tion on M indu
es a 
onne
tion on LtM , for any t 2 R. Vi
e versa, suppose a 
onne
tion r on L1Mis given. Then we 
an use a 
onformal version of the six-terms formula to de�ne a 
onne
tion on M , stilldenoted by r, whi
h is 
ompatible with 
:2
(rXY;Z) = rX
(Y;Z) +rY 
(X;Z) �rZ
(X;Y ) + 
([X;Y ℄; Z)� 
([X;Z℄; Y )� 
([Y;Z℄;X); (5)where both members are se
tions of L2M .This way one proves the fundamental theorem of 
onformal geometry:Theorem 5.1 (Weyl) Let (M; 
) be a 
onformal manifold. There is an aÆne bije
tion between 
onne
tionson L1M and torsion-free 
onne
tions on M preserving 
.Torsion-free 
ompatible 
onne
tions on a 
onformal manifold are 
alled Weyl 
onne
tions. In 
ontrastwith the Riemannian 
ase, the previous theorem says in parti
ular that on a 
onformal manifold there is nota uniquely de�ned torsion-free 
ompatible 
onne
tion.In this setting a 
onformal almost-Hermitian manifold is a 
onformal manifold (M; 
) together with analmost-
omplex stru
ture J on M 
ompatible with one (and hen
e with all) metri
 in the 
onformal 
lass.Let (M; 
; J) be a 
onformal almost-Hermitian manifold. We then have a non-degenerate fundamentalform 
 taking values in L2M , that is, 
(X;Y ) def= 
(JX; Y ) 2 �(L2M ), for X;Y 2 X(M). For any metri
 gde�ning 
, with 
orresponding fundamental form 
g, we have 
 = 
g 
 l2g . The notion of Lee form !g of thealmost-Hermitian metri
 g on (M;J) is 
learly dependent on the metri
, but a straightforward 
omputationshows that the 
onne
tion r on L1M given by rX lg def= (�1=2)!g(X)lg does not depend on the 
hoi
e of g inthe 
onformal 
lass 
.The fundamental theorem of 
onformal geometry gives then a torsion-free 
ompatible 
onne
tion on M ,whi
h is 
alled the 
anoni
al Weyl 
onne
tion of the 
onformal almost-Hermitian manifold (M; 
; J). Wedenote simply by r this 
onne
tion on M , and we use the same symbol for the indu
ed 
onne
tion on LtM ,for any t 2 R. In parti
ular, the 
onstant �1=2 in the de�nition of r was 
hosen in order that rl2g = �!g
l2g.Thus, given any LtM -valued tensor  on a 
onformal almost-Hermitian manifold, we 
an di�erentiate itwith respe
t to the 
anoni
al Weyl 
onne
tion, and any 
hoi
e of a metri
 g in the 
onformal 
lass 
 gives a
orresponding real valued tensor  g. The following lemma links this intrinsi
 point of view with the gauge-dependant setting of almost-Hermitian manifolds. We state it only for L2M -valued di�erential forms, be
ausethis is the only 
ase we need.Lemma 5.2 (Equivalen
e lemma) Let (M; 
; J) be a 
onformal almost-Hermitian manifold, with 
anon-i
al Weyl 
onne
tion r. Let  be a p-form taking values in L2M . Then for any metri
 g in the 
onformal
lass 
 we have dr = d!g g 
 l2g:11



Proof: dr = dr( g 
 l2g) = d g 
 l2g + (�1)j g j g ^rl2g= d g 
 l2g � (�1)j g j g ^ !g 
 l2g = d g 
 l2g � !g ^  g 
 l2g = d!g g 
 l2g : �Using the equivalen
e lemma we obtain in parti
ulardr
 = d!g
g 
 l2g: (6)Sin
e the Weyl 
onne
tion is 
ompatible with 
, we have also0 = r
 = r(g 
 l2g) = rg 
 l2g + g 
rl2g = rg 
 l2g � g 
 !g 
 l2g = (rg � !g 
 g)
 l2g : (7)Theorem 5.3 Let (M; 
; J) be a 
onformal almost-Hermitian manifold, and let r be the 
anoni
al Weyl
onne
tion. Let g be any metri
 in the 
onformal 
lass 
. Then:i) r preserves J if and only if J is integrable and (d
g)0 = 0;ii) the 
urvature Rr = r[X;Y ℄ � [rX ;rY ℄ of r is given by Rrl2g = d!g 
 l2g.Proof: For any 
omplex 
onne
tion r the following formula holds, linking the torsion T of r with the torsionN of J : T (JX; JY )� J(T (JX; Y ))� J(T (X;JY ))� T (X;Y ) = �N(X;Y ):Sin
e Weyl 
onne
tions are torsion free, if we �nd any 
omplex Weyl 
onne
tion then J is integrable. Wewant to show that, if the 
anoni
al Weyl 
onne
tion is 
omplex, then also (d
g)0 = 0. Denote by A thealternation operator and by C the 
ontra
tion su
h that 
g = C(J 
 g), thend
g = A(r
g) = A(rC(J 
 g)) = A(C(J 
rg)) = A(C(J 
 !g 
 g))= A(!g 
 C(J 
 g)) = A(!g 
 
g) = !g ^ 
g;where we have used formula (7) to obtain rg = !g 
 g.Suppose now that (d
g)0 = 0 and that J is integrable. Then using the 
onformal six-terms formula (5)we obtain the following 
onformal version of a 
lassi
al formula in Hermitian geometry (see [KN69, p. 148℄):4
((rXJ)Y;Z) = 6dr
(X;JY; JZ)� 6dr
(X;Y;Z);and this shows that 
((rXJ)Y;Z) = 0 if dr
 = 0. But this last 
ondition is equivalent, by formula (6), to(d
g)0 = 0, and the 
laim then follows from the non-degenera
y of 
. As for the 
urvature Rr of r, usingequivalen
e lemma we obtainRrl2g = �dr(rl2g) = �dr(�!g 
 l2g) = d!g!g 
 l2g = d!g 
 l2g: �Sin
e a lo
ally 
onformal K�ahler manifold is a 
onformal Hermitian manifold (M; 
; J) su
h that (d
g)0 =0 and d!g = 0, for one (and then for all) 
hoi
e of metri
 g in the 
onformal 
lass 
 (
ompare with formula(1)), we 
an give the following intrinsi
 
hara
terization of lo
ally 
onformal K�ahler manifolds:12



Corollary 5.4 Let (M; 
; J) be a 
onformal Hermitian manifold. Denote by 
 the L2M -valued fundamentalform, and let r be the 
anoni
al Weyl 
onne
tion. Then (M; 
; J) is lo
ally 
onformal K�ahler if and only ifr is 
at and 
 is dr-
losed.Moreover, theorem 5.3 gives also the followingCorollary 5.5 On a lo
ally 
onformal K�ahler manifold the 
anoni
al Weyl 
onne
tion preserves the 
omplexstru
ture.Unless otherwise stated, from now on we 
onsider lo
ally 
onformal K�ahler manifolds (M; 
; J).A lo
ally 
onformal K�ahler manifold (M; 
; J) 
omes then naturally equipped with a 
losed 2-form 
, theonly di�eren
e from the K�ahler 
ase being that 
 now takes values in L2M . We want go further with thisanalogy.De�ne the pairing ℄ : 
1(L2M )! X(M) by �℄�
 = �, and use it to de�ne a Poisson bra
ket on �(L2M ) byff1; f2g def= 
(℄rf1; ℄rf2). Using lemma 5.2 and formula (3), one shows the relationfff1; f2g; f3g+ fff2; f3g; f1g+ fff3; f1g; f2g = dr
(℄rf1; ℄rf2; ℄rf3) = 0; (8)proving that this bra
ket turns �(L2M ) into a Lie algebra. Remark that, as formula (3), the �rst equality in(8) holds generally on 
onformal almost-Hermitian manifolds su
h that the 
anoni
al Weyl 
onne
tion is 
at.We �nally des
ribe the intrinsi
 version of Aut(M). If l is a se
tion of LtM and h is a di�eomorphism ofM , then the se
tion h�l of LtM is given by (h�l)x def= lh(x) Æ (h�)x; (9)that is, if x 2 M and w 2 �n(TxM) r 0, we have (h�l)x(w) def= lh(x)((h�)xw). Re
all that for any xthe di�erential indu
es the map (h�)x : �n(TxM)! �n(Th(x)M) whi
h is in fa
t a linear map between 1-dimensional ve
tor spa
es. Whenever a metri
 g is �xed, a trivialization wg of �n(TM) asso
iating to x thelength-one element wgx is de�ned, hen
e one 
an asso
iate to any di�eomorphism h a never-vanishing smoothfun
tion dgh de�ned by h�wgx = dgh(x)wgh(x);so the following derivation rule holds for ltg:(h�ltg)x(wgx) = (ltg)h(x)(h�wgx)= (ltg)h(x)(dgh(x)wgh(x))= jdgh(x)j� tn (ltg)h(x)(wgh(x)) = jdgh(x)j� tn ;that is, in short, h�ltg = jdghj� tn ltg.For any di�eomorphism of M we then de�ne h�
 in the obvious way, that is, h�
 = h�g 
 h�l2g. Sin
edefgh = e(n=2)fÆhe(�n=2)fdgh;13



this de�nition does not depend on the 
hoi
e of the gauge g, and gives the intrinsi
 notion of Aut(M) asfollows.Proposition 5.6 A di�eomorphism h of a 
onformal manifold (M; 
) preserves 
 if and only if it is a
onformal transformation of one (and hen
e of all) metri
 g in the 
onformal 
lass 
.Proof: Indeed, h�g = e�g implies dgh = en�=2, so h�l2g = e��l2g, and then h�
 = h�(g 
 l2g) = h�g 
 h�l2g =g
 l2g = 
. Vi
e versa h�
 = 
 implies h�g
h�l2g = g
 l2g , hen
e (jdghj� 2nh�g)
 l2g = g
 l2g , that is h�g = jdghj 2n g.�Lemma 5.7 The Weyl 
onne
tion of a 
onformal almost-Hermitian manifold (M; 
; J) is invariant forAut(M), that is, h�rVW = rVW whenever h�V = V and h�W =W .Proof: This is be
ause Aut(M) preserves 
 and J , and r is de�ned just using these ingredients. Moreformally, we want to show that, if h 2 Aut(M) and V , W , Z are h-invariant ve
tor �elds, then 
(rVW;Z) =
(h�rVW;Z). But we have
(rVW;Z) = (h�
)(rVW;Z) = h�(
(h�rVW;h�Z)) = h�(
(h�rVW;Z));where we used the general property that if  is any tensor �eld of type (r; 0) and X1; : : : ;Xr are ve
tor�elds, then h�( (h�X1; : : : ; h�Xr)) = (h� )(X1; : : : ;Xr). We are therefore only left to show that 
(rVW;Z)is h-invariant for all h 2 Aut(M), that is, we are left to show that the se
ond side of the 
onformal six-termsformula (5) is h-invariant for all h 2 Aut(M). But it turns out that ea
h summand of (5) is h-invariant. Weshow this only on its �rst and fourth summand, the others being similar: the �rst summandh�rV 
(W;Z) = h�rV (g(W;Z)l2g)= h�(V g(W;Z)l2g) + h�(g(W;Z)rV l2g)= h�V g(W;Z)h�l2g � h�(g(W;Z))h�(!g(V ))h�l2g= V ((h�g)(W;Z))l2h�g � (h�g)(W;Z)!h�g(V )l2h�g= rV ((h�g)(W;Z)l2h�g) = rV 
(W;Z);where we have used that V and h 
ommute on C1(M), sin
e V is h-invariant, that h�l2g = l2h�g and thath�!g = !h�g. The fourth summand ish�(
([V;W ℄; Z)) = h�(g([V;W ℄; Z)l2g) = h�(g([V;W ℄; Z))h�l2g = (h�g)([V;W ℄; Z)l2h�g = 
([V;W ℄; Z);where we have used the already 
ited properties and that the Lie bra
ket of invariant ve
tor �elds is invariant.�Corollary 5.8 Let (M; 
; J) be a 
onformal almost-Hermitian manifold with Weyl 
onne
tion r, and letG � Aut(M). If V , W , Z are G-invariant ve
tor �elds on M , then 
(rVW;Z) is G-invariant.14



Let G be a Lie subgroup of Aut(M), as in se
tion 3. The momentum map 
an then be de�ned as ahomomorphism of Lie algebras �� : g! �(L2M ) su
h that �X
 = dr�X . We also denote by � the 
orrespondingelement of �(g� 
 L2M ) given by h�(x);Xi = �X(x), 
arets denoting the evaluation.Remark 5.9 In [BG98℄ the existen
e of su
h a homomorphism of Lie algebras is shown to imply the 
ondition�12!g(X) + 1n divgX = 0on any fundamental ve
tor �eld X. This is equivalent to the 
onditionLX
g � !g(X)
g = 0one �nds in [HR01℄, sin
e LX
g = ((2=n) divgX)
g.If we 
hoose a metri
 g in the 
onformal 
lass 
, then �X = �Xg l2g, where ��g : g! C1(M).Theorem 5.10 The map �� : g! �(L2M ) is a momentum map if and only if ��g : g! C1(M) is a momentummap as in se
tion 3.Proof: Use lemma 5.2 to 
ompute dr�X with respe
t to the �xed gauge:dr�X = d!g�Xg 
 l2g ;so that dr�X = �X(
g 
 l2g) = �X
g 
 l2g if and only if �X
g = d!g�Xg . We then have to 
he
k that � is a Liealgebra homomorphism if and only if �g is. But this is a dire
t 
onsequen
e of lemma 5.2, and of the fa
tthat ℄� = ℄g�g:ff1; f2g = 
(℄rf1; ℄rf2) = 
g(℄rf1; ℄rf2)
 l2g = 
g(℄gd!gf1;g; ℄gd!gf2;g)
 l2g = ff1;g; f2;ggg 
 l2g : �Remark 5.11 The previous theorem allows using all proofs of se
tion 3 as proofs in this 
onformal setting,just �xing a gauge. In parti
ular, the zero set ��1(0), where 0 denotes the zero se
tion of g� 
 L2M , is thezero set of any �g, and it is therefore 
losed with respe
t to the a
tion of G and 
oisotropi
 with respe
t to
. Moreover, the assumption of 0 being a regular value for �g translates into the assumption that the zerose
tion be transverse to �, and under this assumption the isotropi
 foliation is given exa
tly by fundamentalve
tor �elds g.Theorem 5.12 (Biquard & Gaudu
hon, [BG98℄) Let (M; 
; J) be a lo
ally 
onformal K�ahler manifold.Let G be a Lie subgroup of Aut(M) whose a
tion admits a momentum map � : g! �(L2M ). Suppose that Ga
ts freely and properly on ��1(0), 0 denoting the zero se
tion of g� 
 L2M , and suppose that � is transverseto this zero se
tion. Then there exists a lo
ally 
onformal K�ahler stru
ture (�
; �J) on ��1(0)=G.15



Proof: Due to lemma 5.2 and to theorem 5.10, this theorem 
an be viewed at as a translation of theorem 4.1in the 
onformal language. From this point of view, the theorem was already proved.We want here to give an intrinsi
 proof, using the 
hara
terization of lo
ally 
onformal K�ahler manifoldsgiven by 
orollary 5.4.Take the 
-orthogonal de
omposition TxM = Ex�g(x)�Jg(x), where Ex is the 
-orthogonal 
omplementof g(x) in Tx(��1(0)). We obtain a ve
tor bundle E ! ��1(0) of rank n� 2 dimG.First we need to relate Lt��1(0)=G with LtE. Remark that E=G! ��1(0)=G is isomorphi
 as a bundle to thetangent bundle of ��1(0)=G, by means of ��jE . On its side LtE=G is isomorphi
 to GL(E=G) �GL(n�2 dimG)LtRn�2 dimG , sin
e the a
tions of G and of GL(n � 2 dimG) on GL(E) 
ommute, that is, if g 2 G, 
 2GL(n � 2 dimG) and p 2 GL(E), then g�(p
) = (g�p)
. This means that Lt��1(0)=G is isomorphi
 to LtE=G,the isomorphism being expli
itly given by sending an element l of L2��1(0)=G;�x to [l Æ ��;x℄, where �(x) = �x,and the a
tion of G on LtE being given by (9).Now remark that the 
anoni
al splitting TM = E � g� Jg gives an isomorphism of L2M j��1(0) with L2E,by formula (4), and this isomorphism is G-equivariant.We therefore think of elements of L2��1(0)=G as equivalen
e 
lasses of elements of L2M j��1(0).During the proof of this theorem, we denote by �V ; �W; : : : ve
tor �elds on ��1(0)=G, and by V;W; : : :their lifts to E. Note that V;W; : : : are G-invariant ve
tor �elds.De�ne �
( �V ; �W ) to be the proje
tion to L2M j��1(0)=G of the se
tion 
(V;W ), that is(�
( �V ; �W ))�x def= [
(V;W )x℄ 2 (L2M j��1(0))x=G ' (L2��1(0)=G)�xwhere x is an element in ��1(�x). The 
hoi
e of x is irrelevant, sin
e h�(
(V;W )) = h�(
(h�V; h�W )) =(h�
)(V;W ) = 
(V;W ).We have thus de�ned an almost-Hermitian 
onformal manifold (��1(0)=G; �
; �J). In order to show that itis lo
ally 
onformal K�ahler we 
ompute its 
anoni
al Weyl 
onne
tion, and then use 
orollary 5.4.Let rE be the orthogonal proje
tion of r from T (��1(0)) to E. Sin
e by lemma 5.7 the Weyl 
onne
tionr is invariant for Aut(M), we have that rEVW is a proje
table ve
tor �eld. De�ne�r �V �W def= ��rEVW: (10)The torsion T �r�V ; �W of �r is just ��TrEV;W = 0. Moreover, �r is 
ompatible with �J :( �r �V �J) �W = �r �V ( �J �W )� �J �r �V �W= ��rEV (JW )� �J��rEVW= ��(rEV (JW )� JrEVW ) = ��(rV J)EW = 0:Eventually, theorem 5.3 proves that �J is integrable.Look at the Weyl 
onne
tion r on L2M as a map rV : �(L2M j��1(0))! �(L2M j��1(0)), and remark thatthe Aut(M)-invarian
e of V implies that rV is G-equivariant, thus de�nes a 
onne
tion on L2��1(0)=G. Wedenote it again by �r: �r �V [l℄ def= [rV l℄ 2 L2M j��1(0)=G:16



Using the 
onformal six-terms formula (5) and 
orollary 5.8, we see that the 
onne
tion �r on ��1(0)=Gde�ned by (10) is the asso
iated Weyl 
onne
tion, whi
h is therefore the 
anoni
al Weyl 
onne
tion of(��1(0)=G; �
; �J).The 
urvature R �r is given byR �r�V ; �W [l℄ = �d �r �r[l℄( �V ; �W ) = �[drrl(V;W )℄ = [RrV;W ℄ = 0:Finally, denoting by �
 the L2��1(0)=G-valued fundamental form of (��1(0)=G; �
; �J), we have ��(d �r �
) =dr
 = 0, thus d �r �
 = 0, and 
orollary 5.4 says that (��1(0)=G; �
; �J) is lo
ally 
onformal K�ahler. �6 Compatibility with K�ahler redu
tionIn this se
tion we analyze the relation between lo
ally 
onformal K�ahler redu
tion of a manifold and K�ahlerredu
tion of a 
overing. We refer to [Fut88℄ for the K�ahler redu
tion.As a �rst step we show that the two notions of redu
tion on globally 
onformal K�ahler manifolds are
ompatible.Proposition 6.1 Let (M; [g℄; J) be a globally 
onformal K�ahler manifold and denote by g a K�ahler metri
.Let G � Aut(M) a subgroup satisfying the hypothesis of the redu
tion theorem and whi
h moreover is 
omposedby isometries with respe
t to g. Denote by (��1(0)=G; [�g℄; �J) the redu
ed lo
ally 
onformal K�ahler manifold.Then the a
tion of G is Hamiltonian for g, the submanifold ��1(0) is the same as in the K�ahler redu
tionand the 
onformal 
lass of the redu
ed K�ahler metri
 is [�g℄. So, in parti
ular, the redu
ed manifold is globally
onformal K�ahler.Proof: As the a
tion of G is twisted Hamiltonian for [g℄ remarks 2.4 and 3.2 imply that it is Hamiltonianfor g. Moreover, the subspa
e ��1(0) is the same for both notions. The 
onstru
tion of the almost-
omplexstru
ture on the quotient is the same in the two 
ases, so �J is de�ned. Denote by ~
 the K�ahler form thatthe K�ahler redu
tion provides on ��1(0)=G. Then �� ~
 = i�
, so the 
laim follows by the uniqueness part ofthe redu
tion theorem. �Example 6.2 If (M; [g℄; J) is a globally 
onformal K�ahler manifold the redu
ed stru
ture is not ne
essarilyglobally 
onformal K�ahler. A
tually, any lo
ally 
onformal K�ahler manifold (M; [g℄; J) 
an be seen as aredu
tion of a globally 
onformal manifold. Indeed, 
onsider the universal 
overing ~M of M equipped withits pulled-ba
k lo
ally 
onformal K�ahler stru
ture, whi
h is globally 
onformal K�ahler sin
e ~M is simply
onne
ted. This 
overing manifold 
an be 
onsidered to be a
ted on by the dis
rete group of holomorphi

onformal maps G def= �1(M), whi
h, having trivial asso
iated in�nitesimal a
tion, is 
learly Hamiltonian,with trivial momentum map: hen
e ��1(0) = ~M and ��1(0)=G =M .We now 
on
entrate our attention to the stru
ture of the universal 
over ~M of a lo
ally 
onformal K�ahlermanifold (M; [g℄; J). 17



Remark 6.3 The pull-ba
k by the 
overing map p of any metri
 of [g℄ is globally 
onformal K�ahler sin
e ~Mis simply 
onne
ted. It is easy to show that on any 
omplex manifold Z su
h that dimC (Z) � 2 if two K�ahlermetri
s are 
onformal then their 
onformal fa
tor is 
onstant. In our 
ase remark that the pull-ba
k of anymetri
 in [g℄ is 
onformal to a K�ahler metri
 ~g by~g = e��p�gwhere � satis�es d� = !~g = p�!g and is then only de�ned up to adding a 
onstant. What is remarkable isthat the a
tion of �1(M) on ~M is by homotheties of the K�ahler metri
s (we �x points in M and in ~M inorder to have this a
tion well-de�ned). Moreover any element of Aut(M) lifts to a homothety of the K�ahlermetri
s of ~M , if dimC (M) � 2. This is in fa
t an equivalent de�nition of lo
ally 
onformal K�ahler manifolds(see [Vai82℄ and [DO98℄).We underline this set of fa
ts by saying that ~M 
arries a well-de�ned stru
ture of homotheti
 K�ahlermanifold.With this model in mind, given a homotheti
 K�ahler manifold (K; hgi; J) we de�ne H(K) to be the groupof biholomorphisms of K su
h that f�g = �g, � 2 R+ , and we 
all su
h a map a homothety of K of dilationfa
tor �. The dilation fa
tor does not depend on the 
hoi
e of g in hgi, so a homomorphism � is de�nedfrom H(K) to R+ asso
iating to any homothety its dilation fa
tor (see also [KO01℄). Note that ker � is thesubgroup of H(K) 
ontaining the maps that are isometries of one and then all of the metri
s in hgi. If K isgiven as a globally 
onformal K�ahler manifold (K; [g℄; J), then H(K) 
an be 
onsidered as the well-de�nedsubgroup of Aut(K) of homotheties with respe
t to the K�ahler metri
s in [g℄. We now give a 
ondition for alo
ally 
onformal K�ahler manifold 
overed by a globally 
onformal one to be globally 
onformal K�ahler.Proposition 6.4 Given a globally 
onformal K�ahler manifold ( ~M; [~g℄; J) and a subgroup � of Aut( ~M ) a
tingfreely and properly dis
ontinuously, the quotient M def= ~M=� (with its naturally indu
ed 
omplex stru
ture)
omes equipped with a lo
ally 
onformal K�ahler stru
ture [g℄ uniquely determined by the 
ondition [p�g℄ = [~g℄,where p denotes the 
overing map ~M !M .Assume now that � � H( ~M). Then the indu
ed stru
ture is globally 
onformal K�ahler if and only if�(�) = 1.Proof: The a
tion of � 
an be seen as satisfying the hypothesis of the redu
tion theorem, so the �rst 
laimfollows. However we give a straightforward 
onstru
tion.Let ~g be one of the K�ahler metri
s of the stru
ture of ~M . Given an atlas fUig for the 
overing map p,indu
e a lo
al K�ahler metri
 gi on any Ui by proje
ting ~g restri
ted to one of the 
onne
ted 
omponentsof p�1(Ui). Then gi and gj di�er by a 
onformal map on Ui \ Uj , hen
e by a partition of unity of fUigone 
an glue the set fgig to a global metri
 g whi
h is lo
ally 
onformal the gi's, see lemma 3.5, hen
e islo
ally 
onformal K�ahler. The 
onformal 
lass of g is uniquely de�ned by this 
onstru
tion. Moreover, p�gis 
onformal to ~g, as they are 
onformal on ea
h 
omponent of the 
overing fp�(Ui)g and again lemma 3.518



holds. If g0 is a Hermitian metri
 onM su
h that p�g0 is 
onformal to ~g, then on ea
h Ui the restri
ted metri
g0jUi is 
onformal to gi hen
e to gjUi , so g and g0 are 
onformal, again see lemma 3.5.Now assume that � � H(K), and that �(�) 6= 1. Then � is not 
ontained in the isometries of any K�ahlermetri
 of ~M . If in the 
lass of [g℄ there existed a K�ahler metri
 �g then its pull-ba
k p��g would belong toh~gi. But p��g being a pull-ba
k implies that � a
ts with isometries with respe
t to it, whi
h is absurd sin
e�(�) 6= 1. Conversely, if �(�) = 1 then p is a Riemannian 
overing spa
e and g itself is K�ahler. Hen
e theindu
ed lo
ally 
onformal K�ahler stru
ture is globally 
onformal K�ahler if and only if �(�) = 1. �This allows, under a natural 
ondition, to 
ompute lo
ally 
onformal K�ahler redu
tion as having a K�ahlerredu
tion as 
overing spa
e. First remark that any group G � Aut(M) lifts to subgroups ~G � H( ~M) allhaving the property that p Æ ~G = G.Theorem 6.5 Let (M; [g℄; J) be a lo
ally 
onformal K�ahler manifold, let G � Aut(M) be a subgroup satisfyingthe hypothesis of the redu
tion theorem, and admitting a lifting ~G su
h that �( ~G) = 1. Then the K�ahlerredu
tion is de�ned, with momentum map denoted by � ~M , ~G 
ommutes with the a
tion of �1(M), and thefollowing equality of lo
ally 
onformal K�ahler stru
tures holds:��1(0)=G ' (��1~M (0)= ~G)=�1(M): (11)Conversely, let ~G be a subgroup of isometries of a homotheti
 K�ahler manifold ( ~M; h~gi; J) of 
omplexdimension bigger than 1 satisfying the hypothesis of K�ahler redu
tion and 
ommuting with the a
tion of asubgroup � � H( ~M) a
ting freely and properly dis
ontinuously and su
h that �(�) 6= 1. Moreover, assumethat � a
ts freely and properly dis
ontinuously on ��1~M (0)=G. Then ~G indu
es a subgroup G of Aut(M), Mbeing the lo
ally 
onformal K�ahler manifold ~M=�, whi
h satis�es the hypothesis of the redu
tion theorem, andthe isomorphism (11) holds.Proof: To show that K�ahler redu
tion is de�ned, one has to show that the a
tion of ~G is Hamiltonian withrespe
t to the globally 
onformal K�ahler stru
ture of ~M . First remark that the Lie algebra of ~G 
oin
ideswith that of G, that we denote by g as usual, and that the fundamental ve
tor �eld asso
iated with X 2 gon ~M is p�X, where, as we 
laimed, we identify X with its asso
iated fundamental �eld on M . Fix a metri
g 2 [g℄ with Lee form ! and fundamental form 
 and let � be the momentum map for g. Then we 
laimthat ��~M : g �! C1( ~M)X 7�! p��Xis a momentum map for the a
tion of ~G on ~M with respe
t to the globally 
onformal K�ahler metri
 p�g.Indeed dp�!�X~M = dp�!(p��X)= p�d!�X= p��X
= �p�Xp�
:19



The same way one shows that � ~M is a homomorphism of Poisson algebras, sin
e su
h is �M . But now re
allthat from remark 3.2 the property of an a
tion to be twisted Hamiltonian is a 
onformal one, so the a
tionof G is also twisted Hamiltonian for the K�ahler metri
s 
onformal to p�g, and is then ordinarily Hamiltonianfor these K�ahler metri
s from proposition 6.1. This in turn implies, sin
e �(G) = 1, that K�ahler redu
tion isde�ned and ��1(0) is di�eomorphi
 to ��1~M (0)=�1(M).As the a
tion of ~G is indu
ed by p, it 
ommutes with the a
tion of �1(M), so the following diagram ofdi�erentiable manifolds 
ommutes:��1~M //p
��

��1~M (0)= ~G
����1(0) // (��1~M (0)= ~G)=�1(M) ' ��1(0)=G:Moreover the lo
ally 
onformal K�ahler stru
tures indu
ed on ��1(0)=G, as 
overed by the K�ahler redu
tion��1~M (0)=G and as lo
ally 
onformal K�ahler redu
tion, are easily seen to 
oin
ide, and this ends the �rst partof the proof.Conversely note that, as in remark 6.3, if � is su
h that p�! = d� , then e��p�g is K�ahler, hen
e 
onformalto ~g. So � a
ts as isometries of e� ~g. We 
laim that e�� ~M is �-invariant, where by � ~M we denote the K�ahlermomentum map. Postponing for the moment the proof, this de�nes the lo
ally 
onformal K�ahler momentummap as �X def= (e��X~M)=�, where we identify the Lee algebra of G with that of ~G. This indu
ed momentum mapis easily shown to be a homomorphism with respe
t to the Poisson stru
ture. Moreover ��1M (0) ' ��1~M (0)=�.Finally sin
e the a
tion of � on ��1~M (0)=G is free and properly dis
ontinuous, (��1~M (0)=G)=� is a manifold,and sin
e the diagram ��1~M (0) //p

��

��1~M (0)=G
����1M (0) // (��1~M (0)=G)=� = ��1M (0)=G
ommutes, the a
tion of G on ��1M (0) is proper and free, that is, G satis�es the hypothesis of the redu
tiontheorem. So the �rst part of the theorem implies the se
ond.We are left to prove the 
laim. For simpli
ity we write � instead of � ~M . First we show that for any 
 2 �and X 2 g we have 
��X = �(
)�X . Indeed, re
alling that 
�X = Xd
��X = 
�d�X= 
��X ~
= �X
� ~
= �(
)�X ~
= �(
)d�X ;hen
e 
��X��(
)�X is 
onstant onM , and is equal to 0 sin
e it is so on ��1(0). So 
�(e��X) = e
���(
)�X .20



But now re
all that, from one side, the formula 
�e� ~
 = e
���(
)~
 holds true, from the other that � a
ts asisometries of e� ~g, hen
e e
���(
) = 1, so the 
laim is true. �7 Redu
tion of 
ompa
t Vaisman manifolds7.1 A 
onformal de�nition of 
ompa
t Vaisman manifoldsThe original de�nition of Vaisman manifold is relative to a Riemannian manifold, be
ause it involves theparallelism of the Lee form asso
iated to a �xed metri
 in the 
onformal 
lass. As su
h, the de�nition is notinvariant up to 
onformal 
hanges of metri
, and there is not in the literature a 
riterion to de
ide whethera given lo
ally 
onformal K�ahler metri
 has a Vaisman metri
 in its 
onformal 
lass, that is, a metri
 g su
hthat rg!g = 0.Su
h a 
riterion was re
ently given in [KO01℄ for 
ompa
t lo
ally 
onformal K�ahler manifolds. Here weshall use it to derive a 
onformally invariant de�nition for 
ompa
t Vaisman manifolds.The 
onstru
tion stri
tly links Vaisman geometry with Sasaki geometry. We start with the followingde�nition-proposition, whi
h is equivalent to the standard one. On this subje
t see [Bla02, BG99℄.De�nition 7.1 Let (W; gW ; �) be a Riemannian manifold of odd dimension bigger than 1 with a 
onta
tform � su
h that on the distribution � = 0 the (1; 1)-tensor J that asso
iates to a ve
tor �eld V the ve
tor�eld ℄g�V d� satis�es J2 = �1. Call � the Reeb ve
tor �eld of �. De�ne on the 
one W � R the metri
g = etdt 
 dt + etgW and the 
omplex stru
ture that extends J asso
iating to dt the ve
tor �eld ���,� being the proje
tion of W � R to W . This is equivalent to assigning to W � R the same J and the
ompatible symple
ti
 form 
 def= d(et���). Then we say that (W; gW ; �) is a Sasaki manifold if its 
one(W � R; etdt
 dt+ et��gW ; J) is K�ahler.The standard example is that of the odd-dimensional sphere 
ontained in C n r 0, with n � 2. Theusual K�ahler metri
 P dzi 
 d�zi asso
iated to the 
omplex stru
ture of C n r 0 restri
ts to the sphere to aRiemannian metri
 and a CR-stru
ture, respe
tively, that give to S2n�1 the Sasaki stru
ture whose 
one isC n r 0 itself, via the identi�
ation (x; t) 7! et=2x.It is well-known that the 
onformal metri
 jzj�2P dzi
 d�zi has parallel Lee form. This property extendsto every K�ahler 
one, as is impli
it in [KO01℄.Lemma 7.2 The K�ahler 
one (W�R; g; J) of a Sasaki manifold admits the metri
 ~g = 2e�tg in its 
onformal
lass su
h that r~g!~g = 0. In parti
ular the Lee ve
tor �eld of ~g is �dt.Proof: Re
all that the fundamental form 
 of g is K�ahler, so the fundamental form ~
 = 2e�t
 of ~g is su
hthat d~
 = �2e�tdt ^ 
 = �dt ^
. So �dt is the Lee form of ~g. Remark that~g = 2dt
 dt+ 2gW21



This shows that �t is twi
e the metri
 dual of �dt. Re
all that for any 1-form � the following holds2~g(r~gX�℄; Z) = (L�℄~g)(X;Z) + d�(X;Z)where L denotes the Lie derivative. So, in our 
ase, sin
e dt is 
losed, we only have to show that �t is Killing.But this is true sin
e L�t~g = 2L�tdt
 dt, and L�tdt = d��tdt = 0. �The following also follows from 
omputations developed in [KO01℄.Proposition 7.3 Let (W; gW ; �) be a Sasaki manifold, let � be a subgroup of H(W � R) a
ting freely andproperly dis
ontinuously on W � R, in su
h a way that �(�) 6= 1 and for any 
 2 �
 Æ �t = �t Æ 
;that is, � 
ommutes with the real 
ow generated by �t.Then the indu
ed lo
ally 
onformal K�ahler stru
ture on M def= (W � R)=� is a Vaisman stru
ture, notglobally 
onformal K�ahler.Proof: Sin
e � � H(W �R) and �(�) 6= 1 the quotient has a lo
ally non globally 
onformal K�ahler stru
ture,re
all proposition 6.4.To show that the stru
ture is Vaisman we show that � a
ts by isometries of the metri
 ~g = 2e�tgW�R,where by gW�R we denote the 
one metri
 on W � R. This is equivalent to show that � a
ts by symple
to-morphisms of the 
onformal K�ahler form 2e�td(et���).We 
laim that for any 
 2 � the following properties hold:
���� = ���
�et = �(
)et:For this, �rst note that 
 
ommuting with the real natural 
ow implies 
��t = �t, it being holomorphi
 implies
�J�t = J�t and it being 
onformal implies 
�h�t; J�ti? = h�t; J�ti?. Now remark that for X 2 h�t; J�ti?��X 2 Null �, so 
����(X) = �(��
�X) = 0:Moreover 1 = �(�) = �(��(J�t)) = �(��(
�J�t) = 
����(J�t) and this implies the �rst 
laim. Now re
allthat ��� = e�t��t
, so 
�(et)�(
)��t
 = 
�(e�t��t
)= 
����= � � �= e�t��t
whi
h shows the se
ond 
laim. 22



Then it follows 
�(2e�td(et���)) = 2�(
)�1e�td
�(et���)= 2�(
)�1e�t�(
)d(et
����)= 2e�td(et���):So ~g fa
tors through the a
tion of �, hen
e indu
ing gM on M whi
h, by lemma 7.2, is Vaisman, andbelongs to the lo
ally 
onformal K�ahler stru
ture of M sin
e p�gM = ~g � gW�R. �The 
hara
terization given in [KO01℄ shows in fa
t that any 
ompa
t Vaisman manifold is produ
ed thisway. We brie
y re
all this 
onstru
tion, sin
e some details whi
h are less relevant in that work be
omene
essary in this one, so we need to express them expli
itly.Remark that a ve
tor �eld V generating a 1-parameter subgroup of Aut(M) does not imply that the 
owof JV is 
ontained in Aut(M). If this happens, the set of the 
ows of the subalgebra generated by V andJV is a Lie subgroup of Aut(M) of real dimension 2 that has a stru
ture of 
omplex Lie group of dimension1. This motivates the following de�nition:De�nition 7.4 ([KO01℄) A holomorphi
 
onformal 
ow on a lo
ally 
onformal K�ahler manifold (M; [g℄; J)is a 1-dimensional 
omplex Lie subgroup of the biholomorphisms of (M;J) whi
h is 
ontained in Aut(M).Remark 7.5 The �eld �t on a K�ahler 
one of a Sasaki manifold generates a holomorphi
 
onformal 
ow.Its 
ow �s(w; t) = (w; t+ s) is in fa
t 
ontained in H(W � R), and satis�es �(�s) = es, sin
e ��s = � and��s(d(et���)) = d(et+s��s���)= esd(et���):The 
ow of J�t, whi
h is a ve
tor �eld that restri
ts to the Reeb ve
tor �eld of W , whi
h is a Killing ve
tor�eld of W , generates isometries of W �R. We 
all the real 
ow generated by �t the natural real 
ow and theholomorphi
 
onformal 
ow generated by �t the natural holomorphi
 
ow of the K�ahler 
one.Finally remark that for a biholomorphism h of a Hermitian manifold to 
ommute with the 
ow of a ve
tor�eld V it is ne
essary and suÆ
ient that it 
ommutes with the whole holomorphi
 
ow, sin
e h�V = V isequivalent to h�JV = JV . So if a holomorphi
 
onformal 
ow C is de�ned on a lo
ally 
onformal K�ahlermanifold saying that it is preserved by an automorphism is h equivalent to saying that h preserves a realgenerator of C.Theorem 7.6 (Kamishima & Ornea, [KO01℄) Let (M; [g℄; J) be a 
ompa
t, 
onne
ted, non-K�ahler, lo-
ally 
onformal K�ahler manifold of 
omplex dimension n � 2. Then (M; [g℄; J) is Vaisman if and only ifAut(M) admits a holomorphi
 
onformal 
ow.Proof: For the te
hni
al lemmas we refer dire
tly to the 
ited paper.First, if M is a Vaisman manifold, then the dual ve
tor �eld ℄! of its Vaisman metri
 generates aholomorphi
 
onformal 
ow, that is, both the 
ow of !℄ and the 
ow of J!℄ belong to Aut(M), see [DO98℄.23



On the opposite dire
tion let C be the holomorphi
 
onformal 
ow on M . Fix a lift ~C of C to ~M . Oneproves (lemma 2.1) that �( ~C) = R+ . Choose a ve
tor �eld � on ~M su
h that the 
ow f tg of �J� is 
ontainedin ker �j ~C . Remark that the 
ow f�tg of � is also 
ontained in ~C, sin
e ~C is a holomorphi
 
onformal 
ow,and that t 7! �(�t)) is surje
tive. Choose ~
 in the homothety 
lass of K�ahler forms on ~M in su
h a way thatthis homomorphism is t 7! et, that is for any t��t ~
 = et ~
  �t ~
 = ~
:In parti
ular the subgroup f�tg of ~C is isomorphi
 to R.At this step the hypothesis of 
ompa
tness of M is 
ru
ial: using this fa
t one proves that the a
tion off�tg is free and proper (lemma 2.2). In parti
ular � is never vanishing.De�ne the smooth map s : ~M �! Rx 7�! ~
(J�x; �x)and remark that 1 is a regular value of s, that s�1(1) is non empty, hen
e is a regular submanifold of ~Mthat we denote by W (proposition 2.3). Note that W is the submanifolds of those points where � has unitarynorm. In parti
ular one proves that if x is in W then dxs(�x) = 1, so � is transversal to W .Denote by i the in
lusion ofW inM . It turns then out that (W; i��� ~
; i�g) is a 
onne
ted Sasaki manifold,and that H : W � R �! ~M(w; t) 7�! �t(w)is an isometry with respe
t to the K�ahler 
one stru
ture on W � R.One is left to show that �1(M) satis�es the 
onditions of proposition 7.3. Indeed �(�1(M)) 6= 1 sin
e Mis non K�ahler, and �1(M) 
ommutes with the real 
ow generated by �t sin
e this last fa
tors to M . �The proof of this theorem proves in parti
ular the following fa
t.Corollary 7.7 Any 
ompa
t Vaisman manifold (M; [g℄; J) 
an be presented as a pair (W;�) where W is a
ompa
t Sasakian manifold and � � H(W � R) su
h that M is isomorphi
 as a lo
ally 
onformal K�ahlermanifold to (W � R)=�. Moreover W 
an be 
hosen to be simply 
onne
ted, hen
e W � R is the universal
overing of M and � is isomorphi
 to �1(M).Remark 7.8 This 
an be reformulated in the following way. Consider the 
olle
tion of pairs (W;�) as inthe previous 
orollary. Given a Sasaki morphism one naturally indu
es a morphism on the K�ahler 
onesby 
omposing with identity on the fa
tor R. So de�ne the 
ategory S of pairs (W;�) by 
onsidering asmorphisms between (W;�) and (W 0;�0) those Sasaki morphisms (i.e. isometries preserving the 
onta
t form)whi
h indu
e between W � R and W 0 � R morphisms whi
h are equivariant with respe
t to the a
tions of� and �0. De�ne a fun
tor between this 
ategory and the 
ategory of Vaisman manifolds (with morphismsgiven by holomorphi
, 
onformal maps) by asso
iating to (W;�) the manifold (W �R)=� and to a morphism24



the indu
ed morphism between the quotients. This fun
tor is surje
tive on the obje
ts of the sub
ategory of
ompa
t Vaisman manifolds, but not on the morphisms.We say that (W;�) is a presentation ofM ifM is in the image of (W;�) by this fun
tor. Conversely givenM 
ompa
t Vaisman manifold the asso
iated Sasaki manifold is the one found in the proof of theorem 7.6 bymeans of the Vaisman holomorphi
 
ow of M , that is, the holomorphi
 
ow generated by the Lee �eld.Remark 7.9 This 
onstru
tion suggests that in Vaisman manifolds lo
ally 
onformal K�ahler morphismsthat 
ommute with the Vaisman real 
ow, that is, the real 
ow generated by the Lee �eld, be de�ned as theVaisman morphisms of the stru
ture, sin
e these are the morphisms in the image of the fun
tor. It mustbe noted that whenever (M; [g℄; J) is Vaisman and 
ompa
t the Gaudu
hon metri
 is the Vaisman metri
(well-de�ned up to homothety). This implies that Aut(M) 
oin
ides with the holomorphi
 isometries of theVaisman metri
 in this 
ase. So Vaisman automorphisms 
oin
ide with the isometries of the Vaisman metri
that 
ommute with the Vaisman real 
ow. Equivalently h 2 Aut(M) is a Vaisman automorphism if and onlyif it 
ommutes with the Vaisman real 
ow and admits a lifting ~h su
h that �(~h) = 1.7.2 Redu
tion for 
ompa
t Vaisman manifoldsWe prove that our redu
tion is 
ompatible with Sasaki redu
tion, see [GO01℄, and thus show that redu
tionby the a
tion of automorphisms of a 
ompa
t Vaisman manifold produ
e a Vaisman manifold.Remark 7.10 It is noted in [BG98℄ that G a
ting by isometries with respe
t to a Vaisman metri
 g does notimply that the redu
ed metri
 is Vaisman, sin
e !g being parallel with respe
t to the Levi-Civita 
onne
tionof g does not imply its restri
tion to ��1(0) being parallel.Theorem 7.11 Let ((W;�; J);�) be a pair in the 
ategory S and denote by M the asso
iated Vaismanmanifold. Let G � Isom(W ) be a subgroup satisfying the hypothesis of Sasaki redu
tion. Then G 
an be
onsidered as a subgroup H(W � R). Assume that the a
tion of G 
ommutes with that of �, and that � a
tsfreely and properly dis
ontinuously on the K�ahler 
one (��1W (0)=G) � R.Then G indu
es a subgroup of Aut(M) satisfying the hypothesis of the redu
tion theorem, and the redu
edmanifold is isomorphi
 with ((��1W (0)=G) � R)=�. In parti
ular the redu
ed manifold is Vaisman.Proof: We �rst prove that the indu
ed a
tion satis�es the hypothesis of the K�ahler redu
tion. The momentummap �W is �W : g �! C1(W )X 7�! �X�:
25



Remark that the fundamental �eld asso
iated to X 2 g on W � R is proje
table, so we 
an de�ne �XW�R def=et�����X�. To show that this is a momentum map for the a
tion of G on W � R we dire
tly 
omputed�XW�R = d(et�����X�)= d(et�X���)= d(�Xet���)= �Xd(et���)�LX(et���)= �X
where LX(et���) = 0 
omes from the properties of the a
tion. So the a
tion of G is weakly Hamiltonian.Moreover f�XW�R; �YW�Rg = 
(X;Y ))= d(et���)(X;Y )= Y (et���(X)) �X(et���(Y )) + �[X;Y ℄et���= 0 + 0 + et�����[X;Y ℄�= �[X;Y ℄W�Rwhere Y (et���(X)) = X(et���(Y )) = 0 is due to the properties of the a
tion. The a
tion of G is thenHamiltonian, and K�ahler redu
tion is de�ned.So ��1W�R(0) ' (��1W (0)�R), and the a
tion of G being proper and free on ��1W (0) implies it having the sameproperties on ��1W�R(0). Moreover the a
tion of � being free and properly dis
ontinuous on (��1W (0)=G) �R = ��1W�R(0)=G implies one 
an apply theorem 6.5, so the isomorphism is proven. Then by applyingproposition 7.3 one sees that the redu
ed manifold is Vaisman. The theorem then follows. �Remark 7.12 The previous theorem also applies to non-
ompa
t Vaisman manifolds of the form (W�R)=�.Theorem 7.13 Let (M; [g℄; J) be a 
ompa
t Vaisman manifold. Let G � Aut(M) be a subgroup of Vaismanautomorphisms. Denote by W the 
ompa
t Sasaki manifold asso
iated with M .Then G indu
es a subgroup ~G of isometries on W and the a
tion of G on M is twisted Hamiltonian. If Ga
ts freely and properly on ��1(0) then it satis�es the hypothesis of Sasaki redu
tion and the lo
ally 
onformalK�ahler redu
tion is isomorphi
 to ((��1W (0)= ~G)� R)=�1(M). In parti
ular the redu
ed manifold is Vaisman.Proof: The automorphisms ofM lift to a subgroup ~G ofH( ~M) of maps 
ommuting with its lifted 
ow and su
hthat �( ~G) = 1. By de�nition of Vaisman automorphisms ~G is 
ontained in Isom(W ). So the 
ompatibilitybetween Sasaki and K�ahler redu
tion of [GO01℄ applies, hen
e ��1~M (0)= ~G is isomorphi
 with the K�ahler 
one(��1W (0)= ~G)� R.Moreover �1(M) a
ts freely and properly dis
ontinuously on it, sin
e the quotient ��1M (0)=G is a manifold,and 
ommutes with its natural real 
ow. Then theorem 7.11 applies, and this proves the theorem. �26



Remark 7.14 We stress that we showed that the property, typi
al of Sasaki (in fa
t, of 
onta
t) geometry ofalways admitting a momentum map is 
onserved under the fun
tor between the 
ategory S and the 
ategoryof Vaisman manifolds.8 A 
lass of examples: weighted a
tions on Hopf manifoldsWe apply the theorem in last se
tion to the simple 
ase when � = Z is 
ontained as a dis
rete subgroup ofthe natural holomorphi
 
ow of W � R. In this 
ase the Vaisman manifold topologi
ally is simply W � S1.This nevertheless 
overs mu
h of the already known examples of Vaisman manifolds, as was shown in[KO01℄. First 
onsider S2n�1 equipped with the standard CR stru
ture J 
oming from C n . The a
tion onC n r 0 of the 
y
li
 group �� generated by z 7! �z (for any � 2 C su
h that j�j > 1) produ
es the so-
alled standard Hopf manifolds. For any f
1; : : : ; 
ng 2 (S1)n and any set A def= fa1; : : : ; ang of real numberssu
h that 0 < a1 � � � � � an the a
tion of the 
y
li
 group �f
1;:::;
ng;A � C generated by (z1 : : : zn) 7!(ea1
1z1; : : : ; ean
nzn) produ
es the 
omplex manifolds usually 
alled non-standard Hopf manifold.Let �0 be the Sasaki stru
ture 
oming from the standard form 
 = �iP dzi ^ d�zi of C n . The a
tion ofany �� is is by homotheties for the 
one stru
ture, hen
e produ
es Vaisman stru
tures ((S2n�1; �0; J);��)on standard Hopf manifolds. More generally, for any A def= fa1; : : : ; ang of real numbers su
h that 0 < a1 �� � � � an let �A be de�ned the following way: �A def= 1P aijzij2 �0:Fixed A one obtains that for any f
1; : : : ; 
ng 2 (S1)n the a
tion of �f
1;:::;
ng;A is by homotheties of the
orresponding 
one stru
ture on C n r 0, hen
e indu
ing Vaisman stru
tures((S2n�1; �A; J);�f
1;:::;
ng;A)on the non-standard Hopf manifolds (
f. [KO01℄).So if we a
t on (S2n�1; �A; J) by a 
ir
le of Sasaki isometries and n > 2 we generate a Vaisman redu
edmanifold of dimension 2n� 2 for every �f
1;:::;
ng;A.Remark that the 
onta
t stru
tures of the Sasaki manifolds (S2n�1; �A; J) all 
oin
ide. Denote byCont(S2n�1) the set of 
onta
t automorphisms of S2n�1, whi
h simply 
oin
ide with restri
tion of biholomor-phisms of C n .For any � = (�1; : : : ; �n) 2 Rn let G� � Cont(S2n�1) be the subgroup of those maps h�;t, t 2 R, su
hthat h�;t(z1; : : : ; zn) = (ei�1tz1; : : : ; ei�ntzn):Remark that any G� is 
omposed in fa
t by holomorphi
 isometries of the standard K�ahler stru
ture. More-over a dire
t 
omputation shows that its a
tion on S2n�1 is by isometries for any of the �A. We 
all thea
tion of G� weighted by the weights (�1; : : : ; �n). We restri
t to the �'s su
h that G� is isomorphi
 to S1:it is easy to see that this happens whenever the ratios between the weights are rational.27



The 
orresponding momentum map for the Sasaki manifold (S2n�1; �A; J) is de�ned by:�1�(z) = H�(z) def= 12(P aijzij2)(�1jz1j2 + � � � + �njznj2):So a Sasaki redu
tion is de�ned whenever the weights are su
h that ��1(0) is not empty and the a
tion on��1(0) is free and proper. The 
ondition that ��1(0) is not empty is equivalent to requiring that the signs ofthe �i are not all the same.Let k 2 f1; : : : ; n� 1g be the number of negative weights of �, and assume the negative weights are the�rst k. Then there is a di�eomorphism�� : S2k�1 � S2n�2k�1 �! ��1(0)((�1; : : : ; �k); (�1; : : : ; �n�k)) 7�! ( �1p��1 ; : : : ; �kp��k ; �1p�k+1 ; : : : ; �n�kp�n )equivariant with respe
t to the a
tionw�;t((�1; : : : ; �k); (�1; : : : ; �n�k)) = ((ei�1t�1; : : : ; ei�kt�k); (ei�k+1t�1; : : : ; ei�nt�n�k))from one side and the a
tion of G� on ��1(0) from the other: h�;t Æ �� = �� Æ w�;t.Call S(�) the quotient of this a
tion. This will generally be an orbifold. A suÆ
ient 
ondition for thea
tion of G� to be free, hen
e for S(�) to be a manifold, is that the �i's are relatively prime integers.Re
all that for any � su
h that S(�) is a manifold theorem 7.11 implies there exists a Vaisman stru
ture onS(�) � S1 for every (a1; : : : ; an) 2 Rn su
h that 0 < a1 � � � � � an and for every (
1; : : : ; 
n) 2 (S1)n, ea
hbeing the redu
tion of the Hopf manifold asso
iated to (a1; : : : ; an) and with Vaisman stru
ture asso
iatedto ((a1; : : : ; an); (
1; : : : ; 
n)).We analyze the topologi
al type of the redu
tions S(�) in some of these 
ases.Example 8.1 Assume that n � 2, k = 1, that is, �1 < 0, �i > 0; i = 2; : : : ; n. Then the spa
e ��1(0) isdi�eomorphi
 to S1 � S2n�3.One easily shows that S(�1; 1; : : : ; 1) is S2n�3. One 
an also show that the Sasaki stru
ture redu
edform the standard is again the standard one, so any standard Hopf manifold 
omes as a redu
tion of the
orresponding Hopf manifold of higher dimension. This is also shown in [BG98℄.In turn, as shown in [GO01℄, for any negative integer p, S(p; 1; : : : ; 1) is di�eomorphi
 to S2n�3=Zp, sowe obtain a family of Vaisman stru
tures on (S2n�3=Zp) � S1. In parti
ular for n = 3 we obtain Sasakistru
tures on lens spa
es of the form L(p; 1), hen
e Vaisman stru
tures on 
omplex surfa
es di�eomorphi
with L(p; 1) � S1.Example 8.2 Assume k = 2, n � 4. Then ��1(0) is di�eomorphi
 to S3 � S2n�5. If n = 4 this is S3 � S3.In parti
ular S(�1;�1; 1; 1) is known to be S2�S3, see [GO01℄. So we obtain a family of Vaisman stru
tureson S1 � S2 � S3. It is interesting to note that redu
ing from the standard stru
ture one obtains a manifoldthat also bears a semi-K�ahler stru
ture, when seen as twistor spa
e of the standard Hopf surfa
e.28



Example 8.3 Similarly, for n = 8, S(�1;�1;�1;�1; 1; 1; 1; 1) is di�eomorphi
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