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We showthat the contactreductioncanbe specializedto Sasakianmanifolds.We
provethat the Sasakianreductionis compatiblewith the Kähler reductionboth in
the coneconstructionand in the Boothby–Wang fibration. In particular, applying
Futaki’s results,we obtaina sufficientconditionfor the reducedspaceof a regular
Sasakian–Einstein manifold to be Sasakian–Einstein. We presentexamplesof
Sasakian–Einstein manifolds obtained by S1 reduction of standard Sasakian
spheres. © 2001 American Institute of Physics. @DOI: 10.1063/1.1386636#

I. INTRODUCTION

The reduction techniquewas naturally extendedfrom symplectic to contactstructuresby
Geigesin Ref. 1 andAlbert in Ref. 2. On the otherhand,Boyer, Galicki andB. Mann definedin
Ref.3 a momentmapfor 3-Sasakianmanifolds,thusextendingthereductionprocedurefor nested
metric contactstructures.Quite surprisingly, a reductionschemefor Sasakianmanifolds~contact
manifoldsendowedwith a compatibleRiemannianmetric satisfyinga curvaturecondition!, was
still missing.

In this note,basedon the preprint,4 we fill the gapby defininga Sasakianmomentmapand
constructingtheassociatedreducedspace~comparewith Ref.5; herewe focuson theRiemannian
aspects!. We then relate Sasakianreduction to Kähler reduction via the Kähler cone over a
Sasakianmanifoldandvia theBoothby–Wangfibration.Further, we derivea condition,similar to
Futaki’s, for the reducedmanifold of a regular Sasakian–Einstein manifold to be Sasakian–
Einstein.We endthis paperwith somecompletelyworkedexamplesof the S1-reductionof stan-
dardSasakianspheres.Most of the reducedSasakianstructuresthatwe obtainareEinstein.Some
of themareamongtheexamplesconsideredin Ref.6, howeverour methodsallow a muchsimpler
checkof the Einsteincondition.

Sasakianmanifoldsseemto be more and more important in superconformalfield theories,
being connectedwith the Maldacenaconjecture.One of our examples,a S1 bundle over S2

3S2, alreadyappearedin Ref.7, wheretheKähler reductionof theconeovera Sasakianmanifold
is implicitly used.

II. SASAKIAN MANIFOLDS

In this sectionwe briefly recall the notion of a Sasakianmanifold.The definition we give is
not the standardone,but is suitedfor our purpose.For moredetails,we refer to Refs.8 and9.

Definition 2.1: A Sasakian manifold is a (2n11)-dimensionalRiemannianmanifold (N,g)
endowedwith a unitary Killing vector field j such that the curvaturetensorof g satisfiesthe
equation

R~X,j !Y5h~Y !X2g~X,Y !j, ~2.1!

whereh is the metric dual 1-form of j: h(X)5g(j,X).
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Let w5¹j, where¹ is the Levi-Civita connectionof g. The following formulasare then
easilydeduced:

wj50, g~wY ,wZ !5g~Y ,Z !2h~Y !h~Z !, dh~X,Y !5g~fX,Y !. ~2.2!

It can be seenthat h is a contact form on N, whose Reeb field is j ~it is also called the
characteristicvector field!. Moreover, the restrictionof w to the contactdistribution h50 is an
almost complex structure satisfying the ‘‘integrability’’ condition ~called normality! @w,w#

12 dh ^ j50.
Thesimplestexampleis thestandardsphereS2n11

,C
n11, with themetric inducedby theflat

oneof Cn11. ThecharacteristicKilling vectorfield is jp52ipW , i beingthe imaginaryunit; this is
the standardSasakianstructureof the odd sphere.OtherSasakianstructureson the spherecanbe
obtainedby D-homothetictransformations~cf. Ref. 10!. Also, the unit spherebundleof any real
spaceform is Sasakian.

More generally, the quantizationbundle of a compactKähler manifold naturally carriesa
Sasakianstructure.The converseconstruction,possiblewhenthe characteristicfield is regular, is
known as the Boothby–Wangfibration. Precisely, the following result ~the metric part is due to
Morimoto andHatakeyama! is available~cf. Refs.11 or 9!.

Theorem 2.1: Let (P,h) be a Hodgemanifold. Thereexistsa principal circle bundlep:N
→P anda connectionform h in it, with curvaturefrom the pull-backof the Kähler form of P,
which is a contactform on S. Let j be the vector field dual to h with respectto the metric g
5p* h1h ^ h. Then(N,g,j) is Sasakian.

The following equivalentdefinition putsSasakiangeometryinto the frameworkof holonomy
groups.Let C(N)5N3R1 be the cone over (N,g). Endow it with the warped-productcone
metricC(g)5r2g1dr2. Let R05r ]r anddefineon C(N) thecomplexstructureJ actinglike this
~with obviousidentifications!: JY5wY 2h(Y )R0 , JR05j. We havethe following.

Theorem 2.2 Ref. 9: (N,g,j) is Sasakianif andonly if the coneover N „C(N),C(g),J… is
Kählerian.

III. MAIN RESULTS

A. Direct construction

In this sectionwe showthat thecontactmapdefinedin Ref.1 is compatiblewith theSasakian
metric andthe contactreducedspaceis indeedSasakian.

Theorem 3.1: Let (N,g,j) be a compact2n11-dimensionalSasakianmanifold and G a
compactd-dimensionalLie groupactingon N by contactisometries.Suppose0Pg* is a regular
value of the associatedmomentmap m. Then the reducedspaceM5N//Gªm21(0)/G is a
Sasakianmanifold of dimension2(n2d)11.

Proof: By Ref. 1, the contactmomentmapm:N→g* is definedby

,m~x !,X.5h~X !,

for any XPg and X the correspondingfield on N. We know that the reducedspaceis a contact
manifold, loc. cit. Hencewe only needto checkthat ~1! theRiemannianmetric is projectedon M
and ~2! the field j projectsto a unitary Killing field on M suchthat the curvaturetensorof the
projectedmetric satisfiesformula ~2.1!.

To this end,we first describethe metric geometryof the Riemanniansubmanifoldm21(0).
Let $X1 , . . . ,Xd% bea basisof g andlet $X1 , . . . ,Xd% bethecorrespondingvectorfieldson N.

Since0 is a regularvalueof m, $X ix% is a linearly independentsystemin eachTxm
21(0). From

thevery definitionof themomentmapwe havehp(X i)5m(p)(X i)50, henceX i'j. As G actsby
contactisometries,we have

LX i
g50, LX i

h50 i51, . . . ,d. ~3.1!
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Note that thesealso imply @X i ,j#5LX i
j50.

We observethat m21(0) is an isometrically immersedsubmanifoldof N ~we denotethe
inducedmetric alsowith g) whosetangentspacein eachpoint is describedby YPTxm

21(0) if
andonly if dmx(Y )50. Hence,by thedefinitionof themomentmap,thevectorfieldsj andX i are
tangentto m21(0). Moreover, for any Y tangentto m21(0), one has g(wX i ,Y )5dh(Y ,X i)
5dm(Y )50; hencethevectorfields$X i% producea local basis~not necessarilyorthogonal! of the
normalbundleof m21(0). The shapeoperatorsA iªAwX i

of this submanifoldin N arecomputed
asfollows @we let ¹, ¹N be the Levi Civita covariantderivativesof m21(0), resp.N]:

g~A iY ,Z !52g~¹Y
N„iX ii

21wX i!,Z…52g~Y ~ iX ii
21!wX i ,Z !2g~ iX ii

21¹Y
N~wX i!,Z !

52iX ii
21g~¹Y

N~wX i!,Z !52iX ii
21g~¹Y

N~w !X i1w¹Y
NX i ,Z !

52iX ii
21g„h~X i!Y2g~X i ,Y !j1w ¹Y

NX i ,Z…

5iX ii
21$g~X i ,Y !h~Z !2g~w ¹Y

NX i ,Z%. ~3.2!

In particular, for the correspondingquadraticsecondfundamentalforms we get

h i~Y ,j !5iX ii
21g~X i ,Y !, h i~j,j !50. ~3.3!

Consequently, oneeasilyobtainsthe following: the restriction of the vector field j is Killing on
m21(0) too.

Using the Gaussequationof a submanifold,

RN~X,Y ,Z,W !5Rm21(0)~X,Y ,Z,W !1g„h~X,Z !,h~Y ,W !…2g„h~X,W !,h~Y ,Z !…,

and the formula ~3.2! we now computethe neededpart of the curvaturetensorof m21(0) at a
fixed point pPm21(0). We takeX,Y ,Z orthogonalto jp andobtain

g~Rm21(0)~X,j !Y ,Z !2g~RN~X,j !Y ,Z !52(
i51

d

iX ii
22$h i~X,Y !h i~j,Z !2h i~X,Z !h i~j,Y !%

52(
i51

d

iX ii
22$g~X i ,Z !g~¹X

NX i ,wY !

2g~X i ,Y !g~¹X
NX i ,wZ !% ~3.4!

~notethatn i5iX ii
21wX ip arechosento beorthonormalin p; this is alwayspossiblepointwiseby

an appropriatechoiceof the initial X i).
Now let p:m21(0)→M and endowM with the projectiongM of the metric g suchthat p

becomesa Riemanniansubmersion.This is possiblebecauseG actsby isometries.In this setting,
the vector fields X i spanthe vertical distribution of the submersion,while j is horizontal and
projectable~becauseLX i

j50). Denotewith z its projectionon M. z is obviouslyunitary. To prove
that z is Killing on M, we just observethat Lzg(Y ,Z)5Ljg(Y h,Zh), where Y h denotesthe
horizontallift of Y. Finally, to computethe valuesRM(X,z)Y of the curvaturetensorof gM, we
usethe O’Neill formula @cf. Ref. 12 Eq. ~9.28f!#:

gM„RM~X,z !Y ,Z…5g„Rm21(0)~Xh,j !Y h,Zh…1g„A~Xh,j !,A~Y h,Zh!…2g„A~j,Y h!,A~Xh,Zh!…

1g„A~Xh,Zh!,A~j,Zh!…,

whereX,Y ,Z are unitary, normal to z and the O’Neill (1,2) tensorA is definedas: A(Zh,Xh)
5vertical part of ¹ZhXh. Using the Gaussformula and ~3.3!, we obtain
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g~¹Zhj,X i!5g~wZh,X i!52g~Zh,wX i!50;

hence¹Zhj hasno vertical part andA(Zh,j)50. Thus

RM~X,z !Y 5Rm21(0)~Xh,j !Y h
5RN~Xh,j !Y h

becauseof ~3.4! andthe fact that Xh,Y h arenormal to all X i . Hence

RM~X,z !Y5g~j,Y h!Xh
2g~Xh,yh!j5gM~z,Y !X2gM~X,Y !z,

which provesthat (M ,gM,z) is a Sasakianmanifold. h

B. Compatibility with the cone construction

In thefollowing we relateSasakianreductionto Kähler reductionby usingtheconeconstruc-
tion. Roughlyspeaking,we provethat reductionandtaking the conearecommutingoperations.

Let v5dr`h1r2 dh be the Kähler form of the cone C(N) over a Sasakianmanifold
(N,g,j). If r t are the translationsacting on C(N) by (x,r)°(x,tr), then the vector field R0

5r ]r is the onegeneratedby $r t%. Moreover, the following two relationsareuseful:

LR0
v5v, r t* v5tv. ~3.5!

Supposethat a compactLie groupG actson C(N) by holomorphicisometries,commutingwith
r t . This ensuresa correspondingactionof G on N. In fact, we canconsiderG>G3$Id% acting
as „g,(x,r)…3(gx,r).

Supposethat a momentmapF:C(N)→g exists.
As above,let $X1 , . . . ,Xd% be a basisof g andlet $X1 , . . . ,Xd% be the correspondingvector

fields on C(N). We seethat X i areindependenton r, hencecanbe consideredasvectorfields on
N. Furthermore,the commutationof G with r t implies

F„r t~p !…5tF~p !. ~3.6!

Now we imbed N in the coneas N3$1% and let mªFuN3$1% . This is the momentmap of the
action of G on N. To see this, recall the definition of the symplectic moment map F
5(F1 , . . . ,Fd): F i is given up to constantby dF i(Y )5v(X i ,Y ). Herewe uniquelydetermine
F i by imposingtheconditionh(X i)5FuN3$1% . This immediatelyimpliesthat theReebfield of N
is orthogonalto the vectorfields X i sinceg(j,X i)5h(X i)50. As G actsby isometrieson C(N),
we may project the cone metric to a metric on N//G3R1 which we denoteby g0 . Then
g0(Y ,Z)5C(g)(Y h,Zh), whereY h, Zh arethe uniquevectorfields on F21(0) orthogonalto all
of X i which projecton Y, Z ~we call themhorizontal!.

Let P5F21(0)/G be the reducedKähler manifold.The key remarkis that becauseof ~3.6!,
F21(0) is theconeN83R1 overN85$xPN;(x,1)PF21(0)%. Moreover, sincetheactionsof G
andr t commute,onehasan inducedactionof G on N8. Then

F21~0!/G>~N83R1!/G>N8/G3R1.

The manifold N8//G3R1 is Kähler, as the reductionof a Kähler manifold, but we still haveto
checkthatthis Kähler structureis a coneone.For themoregeneral,symplecticcase,this wasdone
in Ref. 13. Let g0 bethereducedKähler metricandg8 betheSasakianreducedmetricon N8//G.
It is easily seenthat the lift of g0 to F21(0) coincideswith the lift of the cone metric r2g8

1dr2 on horizontalfields.This implies that the conemetric coincideswith g0 .
Summingup we haveprovedthe following.
Theorem 3.2: Let (N,g,j) be a Sasakianmanifold and let „C(N), C(g),J… be the Kähler

coneover it. Let a compactLie groupG actby holomorphicisometrieson C(N) andcommuting
with the actionof the1-parametergroupgeneratedby thefield R0 . If a momentmapwith regular
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value0 existsfor this action,thena momentmapwith regularvalue0 existsalsofor the induced
action of G on N. Moreover, the reducedspaceC(N)//G is the Kähler coneover the reduced
Sasakianmanifold N//G.

The advantageof definingthe Sasakianreductionvia Kähler reduction,asdonein Ref. 3 for
3-Sasakianmanifolds,is the avoiding of curvaturecomputations.However, as we shall see,the
direct constructionis easilyapplicable.

C. Compatibility with the Boothby–Wang fibration and obtaining Sasakian–Einstein
spaces by reduction

Let (N,g, j) be acompactSasakianmanifoldwith a regularcharacteristicvectorfield andlet
p:N→P be the correspondingBoothby–Wang fibration over the Hodge baseP. Let G be a
compactLie groupactingon N by Sasakiantransformations.By ~3.1!, it preservesthefibersof p;
henceit inducesan actionby Kähler transformationson P. If we denotewith Nm, Pm the corre-
spondingmoment maps,using the relation ~cf. Theorem2.1! g(X,wY )5p* v(X,Y ) and the
definitions of the respectivemoment maps, it is easy to see that we have anS1 subbundle
Nm21(0)→Pm21(0) and an S1 bundleN//G→P//G. Finally one can checkthat 0 is a regular
valuefor an inducedmomentmapon the baseusingthe relation

d Nm~X !5dh~X,• !5p* v~X,• !5p* d Pm

The detailsbeingeasilysettled,we canstatethe following.
Proposition 3.1: Let G bea compactLie groupactingby Sasakiantransformationson thetotal

spaceof a Boothby–Wangfibrationp:N→P. Thenthereexistsa Boothby–Wangfibrationof the
reducedspacesN//G→P//G.

On the otherhand,if the Hodgebaseof a Boothby–Wangfibration is Kähler–Einstein,then
the total spaceis Sasakian–Einstein, as proved in Ref. 9. According to Futaki ~cf. Ref. 14,
Corollary 7.3.4!, if onereducesa Kähler–Einsteinmanifold, the reducedspaceis still Einsteinif
andonly if the lengthof the multivectorX1`•••`Xd is constanton the level setof the moment
map.Hence,oneway to obtainSasakian–Einsteinmetricsvia reductionis to startwith a regular
Sasakian–Einstein manifold and with a Sasakianaction inducing on the Hodge basea Kähler
actionof Futaki’s type.The preciseresult is the following.

Theorem 3.3: Let G be a compactLie group acting by Sasakiantransformationson the
regularSasakian–Einsteinmanifold N having0 as a regularvalueof the correspondingmoment
map m. If the length of the multivector X1`•••`Xd is constanton m21(0) then the reduced
spaceis Sasakian–Einstein.

Proof: First observethat the Boothby–Wangfibration p:N→P has a Kähler–Einsteinbase,
with positiveRicci curvature,accordingto Ref.9, Theorem2.5~iv!. Now, from theequations~3.1!
we seethat the S1 actionon m21(0) commuteswith the G-action. In particularthe multivector
X1`•••`Xd is projectableto m21(0)/S1 for the projectionp:m21(0)→m21(0)/S1. In view of
the precedingsection,this is a restrictionof the Boothby–Wang fibration to the corresponding
zero-setsof themomentmapson N andP, respectively. Sinceit is a Riemanniansubmersionand
X i areorthogonalto j, the lengthsof theprojectedvectorsarepreserved,aswell asthe lengthof
theprojectedmultivector. Now we canapplyFutaki’s result~Ref. 14, Corollary7.3.4! in orderto
concludethat thebasefor thereducedBoothby–WangfibrationN//G→P//G is Kähler–Einstein.
Then,againaccordingto Ref. 9, Theorem2.5~iv!, the reducedSasakianmanifold is Sasakian–
Einstein. h

We apply this result in the examplesof the last section.
In the samespirit, combiningRef. 9, Theorem2.5~iii ! ~statingthat the baseof the Boothby–

Wangfibration is Fanoif andonly if theRicci curvatureof the total spaceis .22) andRef. 14,
Corollary7.3.3~assertingthat thereducedspaceof a Fanomanifold is againFano!, we obtainthe
following.
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Proposition 3.2: Let G be a compactLie group acting by Sasakiantransformationson the
regularSasakian–Einsteinmanifold N having0 as a regularvalueof the correspondingmoment
map m. Then N has Ricci curvatureRic.22 if and only if N//G has Ricci curvatureRic.

22.

IV. EXAMPLES: S1 ACTIONS ON SASAKIAN SPHERES

Example 4.1: Let us startwith S7
,C

4 with its standardSasakianstructure.Let the complex
coordinatesof C4 be (z0 , . . . ,z3), with z j5x j1iy j . The contactform on S7 canthenbe written
as

h5(
j50

3

~x j dy j2y j dx j!,

andits Reebfield is

j5(
j50

3

~x j ]y j2y j ]x j!.

Let S1 acton S7 by e it
°(e2itz0 ,e2itz1 ,e itz2 ,e itz3). Theassociatedfield of this actionis ~in real

coordinates!

X052~x0 ]y02y0 ]x0!2~x1 ]y12y1 ]x1!1~x2 ]y22y2 ]x2!1~x3 ]y32y3 ]x3!.

The momentmapm:S7
→R readsas

m~z !5hz~X0!52uz0u22uz1u2
1uz2u2

1uz3u2,

with zero level set

$zPS7; uz0u21uz1u25uz2u21uz3u2%5S3S 1

A2
D 3S3S 1

A2
D .

Clearly m is nondegenerateon m21(0).
The reducedspacecanbe identifiedwith S3

3S3/S1 which, by Ref. 6, is diffeomorphicwith
S2

3S3. @In this case,one can also avoid the topologicalargumentsin Ref. 6 and identify the
reduced space by observing that the following diffeomorphism of S3

3S3:
(z0 ,z1 ,z2 ,z3)°(z0z31z1z2,z0z22z1z3,z2 ,z3) is equivariantwith respectto the previousS1 ac-
tion which, restrictedto the secondfactor of the product,is the usualaction inducing the Hopf
fibration; mille grazie to RosaGini andMaurizio Partonfor letting us know it ~Ref. 15!.#

The reducedSasakianstructureobtainedin this way on S2
3S3 is directly checkedto be

Einsteinand to project on the Kähler Einsteinmetric of CP1
3CP1 making the fiber map be a

Riemanniansubmersion.As by Ref. 6 suchan Einsteinmetric is unique,our reducedSasakian
structurecoincideswith the Sasakianstructurefound in Ref. 16 viewing S2

3S3 as a minimal
submanifoldof S7, the total spaceof the pull-back over CP1

3CP1 of the Hopf bundle S7

→CP3. The sameEinstein–Sasakianmetric on S2
3S3 alsoappearsin Ref. 10, constructedby a

differentapproach.In Example4.3 we will generalizethis structureby making useof Theorem
3.2.

Example 4.2: Consider again S7 as the starting Sasakianmanifold, but let S1 act by
e it

°(e2kitz0 ,e itz1 ,e itz2 ,e itz3), kPZ1 . Now m21(0)>S1(Ak/k11)3S5(A1/k11). In orderto
identify the reducedspace,we regardthe k:1 mapping,

S1
3S5

{~z0 ,z1 ,z2 ,z3!°„~z0!2k,z1 ,z2 ,z3…PS1
3S5.
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It inducesa k:1 map from M5S1
3S5/S1, where S1 acts diagonally, to the reducedspace

m21(0)/S1 with the actiongiven above.As in Ref. 15, the map

~z0 , . . . ,z3!°~z0 ,z0z1 ,z0z2 ,z0z3!

is anequivariantdiffeomorphismof S1
3S5, equivariantwith respectto thediagonalactionof S1

andthe actionof S1 on thefirst factor. HenceM is diffeomorphicto S5 andthe reducedSasakian
spaceis S5/Zk . Again, we shall seebelow that the metric is actuallySasakian–Einsteinandit is
the sameasthat found in Ref. 6.

Example 4.3: In general,considerthe weightedactionof S1 on S2n21
,C

n by

„e it,~z0 , . . . ,zn21!…°~el0itz0 , . . . ,elnitzn21!,

where(l0 , . . . ,ln21)PZ
n. The associatedmomentmap,

m~z !5l0uz0u21•••1lnuzn21u2,

is regularon m21(0) for any (l0 , . . . ,ln21) suchthatl0•••ln21Þ0, (l0 , . . . ,ln21)51 andat
leasttwo l ’s havedifferentsigns~comparewith the 3-Sasakiancasewherethe weightsobeyto
morerestrictions;cf. Ref. 3!.

Now take l05•••5lk5a and lk115•••5ln2152b, a,bPZ1 relatively prime. Then
m21(0)>S2k11(Aa/a1b)3S2(n2k)21(Ab/a1b). Moreover the length of the induced vector
field X0 on m21 is easilycalculatedto be (a2

1b2)/2. Now we canapplyTheorem3.2 to deduce
that the reducedmetric is Sasakian–Einstein.Note that the inducedmetric on m21(0) coincides
with the product metric of the standardmetrics of the two factors.Moreover we seethat the
reducedspaceis diffeomorphicwith an S1 factor of the aboveproductof spheresgiven by the
following action:

„e it,~x,y !…°~e iatx,e2ibty !.

Onecannow adaptthe argumentsof Ref. 6, Corollary 2.2 andprovethat the reducedspacesare
S1 bundlesoverCPk

3CPn2k21 and,for 1<k, 4,n, theyarenot homeomorphicto eachotherin
general.Thesearetheexamplesconsideredin Ref. 6. However, for k51, n52, thereducedspace
is alwaysdiffeomorphicwith S2

3S3. Hence,oneobtainsaninfinite family of Sasakianstructures
on S2

3S3.
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