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We showthat the contactreductioncan be specializedo Sasakiarmanifolds.We
provethat the Sasakiarreductionis compatiblewith the Kahler reductionboth in
the cone constructionand in the Boothby-Wang fibration. In particular applying
Futaki's results,we obtaina sufficientconditionfor the reducedspaceof a regular
SasakiarEinstein manifold to be SasakiarEinstein. We presentexamplesof
SasakiarEinstein manifolds obtained by S' reduction of standard Sasakian
spheres. © 2001 American Ingtitute of Physics. [DOI: 10.1063/1.1386636

I. INTRODUCTION

The reductiontechniquewas naturally extendedfrom symplecticto contactstructuresby
Geigesin Ref. 1 andAlbert in Ref. 2. On the otherhand,Boyer, Galicki andB. Mann definedin
Ref. 3 amomentmapfor 3-Sasakianmanifolds,thusextendingthe reductionprocedurdor nested
metric contactstructures Quite surprisingly a reductionschemefor Sasakiammanifolds (contact
manifoldsendowedwith a compatibleRiemannianmetric satisfyinga curvaturecondition, was
still missing.

In this note, basedon the preprint? we fill the gapby defininga Sasakiarmomentmap and
constructinghe associatededucedspace(comparewith Ref. 5; herewe focuson the Riemannian
aspects We then relate Sasakianreductionto Kahler reductionvia the Kahler cone over a
Sasakiammanifold andvia the Boothby-Wangfibration. Further we derivea condition,similar to
Futaki's, for the reducedmanifold of a regular SasakiarEinstein manifold to be Sasakiar
Einstein.We endthis paperwith somecompletelyworked examplesof the S'-reductionof stan-
dard SasakiarspheresMost of the reducedSasakiarstructureghatwe obtainare Einstein.Some
of themareamongthe examplesonsideredn Ref. 6, howeverour methodsallow a muchsimpler
checkof the Einsteincondition.

Sasakianmanifolds seemto be more and more importantin superconformafield theories,
being connectedwith the Maldacenaconjecture.One of our examples,a St bundle over S?
X §?, alreadyappearedn Ref. 7, wherethe Kahler reductionof the coneovera Sasakianmanifold
is implicitly used.

II. SASAKIAN MANIFOLDS

In this sectionwe briefly recall the notion of a Sasakiarmanifold. The definition we give is
not the standardone, but is suitedfor our purpose For more details,we referto Refs.8 and9.

Definition 2.1: A Sasakian manifold is a (2n+ 1)-dimensionalRiemannianmanifold (N, g)
endowedwith a unitary Killing vector field ¢ suchthat the curvaturetensorof g satisfiesthe
equation

R(X,8)Y=n(Y)X—-9g(X,Y)§, 2.1
where 7 is the metric dual 1-form of & n(X)=g(&,X).

3Electronicmail: geogran@math.uconn.edu
bElectronicmail: lornea@imaro

0022-2488/2001/42(8)/3809/8/$18.00 3809 © 2001 American Institute of Physics

Downloaded 03 Aug 2001 to 137.99.17.114. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3810 J. Math. Phys., Vol. 42, No. 8, August 2001 G. Grantcharov and L. Ornea

Let ¢=V¢, whereV is the Levi-Civita connectionof g. The following formulasare then
easilydeduced:

=0, g(eY,eZ2)=g(Y,Z)—n(Y)n(Z), dn(X,Y)=g(sX.)Y). (2.2

It can be seenthat # is a contactform on N, whose Reebfield is ¢ (it is also called the
characteristiovector field). Moreover the restrictionof ¢ to the contactdistribution =0 is an
almost complex structure satisfying the “integrability” condition (called normality) [¢,¢]

+2d7p®¢=0.
The simplestexampleis the standardsphereS?"* 1 C"*2, with the metricinducedby theflat
oneof C""1, The characteristiKilling vectorfield is §p=—I 5 i beingtheimaginaryunit; this is

the standardSasakiarstructureof the odd sphere Other Sasakiarstructureson the spherecanbe
obtainedby D-homothetictransformationgcf. Ref. 10). Also, the unit spherebundleof any real
spaceform is Sasakian.

More generally the quantizationbundle of a compactKahler manifold naturally carriesa
Sasakiarstructure.The converseconstruction possiblewhenthe characteristidield is regular is
known as the Boothby-Wang fibration. Precisely the following result (the metric partis dueto
Morimoto and Hatakeyampis available(cf. Refs.11 or 9).

Theorem 2.1: Let (P,h) be aHodgemanifold. Thereexistsa principal circle bundle 7r:N
— P anda connectionform 7 in it, with curvaturefrom the pull-back of the Kahler form of P,
which is a contactform on S Let £ be the vectorfield dual to # with respectto the metric g
=xm*h+ n® 5. Then(N,qg,£) is Sasakian.

The following equivalentdefinition puts Sasakiargeometryinto the frameworkof holonomy
groups.Let C(N)=NXR, be the cone over (N,g). Endow it with the warped-producicone
metricC(g) =r?g+dr2. Let Ry=r dr anddefineon C(N) the complexstructureJ actinglike this
(with obviousidentifications: JY=¢Y— (Y)Ry, JRy=£&. We havethe following.

Theorem 2.2 Ref. 9: (N,qg,£) is Sasakianf andonly if the coneoverN (C(N),C(g),J) is
Kahlerian.

lll. MAIN RESULTS

A. Direct construction

In this sectionwe showthatthe contactmapdefinedin Ref. 1 is compatiblewith the Sasakian
metric andthe contactreducedspaceis indeedSasakian.

Theorem 3.1: Let (N,qg,£) be acompact2n+ 1-dimensionalSasakianmanifold and G a
compactd-dimensionalLie groupactingon N by contactisometries.Suppose) € g* is a regular
value of the associatedmomentmap . Then the reducedspaceM =N//G:=u~%(0)/G is a
Sasakiarmanifold of dimension2(n—d)+ 1.

Proof: By Ref. 1, the contactmomentmap u:N— g* is definedby

< (%), X>=7(X),

for any X e g and X the correspondindield on N. We know that the reducedspaceis a contact
manifold, loc. cit. Hencewe only needto checkthat (1) the Riemanniarmetricis projectedon M
and (2) the field ¢ projectsto a unitary Killing field on M suchthat the curvaturetensorof the
projectedmetric satisfiesformula (2.1).

To this end, we first describethe metric geometryof the Riemanniarsubmanifoldx ~1(0).

Let{Xy, ... X4} beabasisof g andlet{X,, ... Xy} bethecorrespondingectorfieldson N.
Since0 is aregularvalueof u, {X,} is alinearly independensystemin eachT,x~1(0). From
the very definition of the momentmapwe have 5,(X;) = n(p) (X;) =0, henceX; L £. As G actsby
contactisometrieswe have

[,Xig=0, Exi"/]:O |:1, PR ,d. (31)
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Note that thesealsoimply [ X;,&]= Ly £=0.

We observethat = 1(0) is an isometrically immersedsubmanifoldof N (we denotethe
inducedmetric alsowith g) whosetangentspacein eachpoint is describedby Y e T, 1(0) if
andonly if du,(Y)=0.Hence by the definition of the momentmap,the vectorfields £ andX; are
tangentto x~1(0). Moreover for any Y tangentto x~1(0), ore has g(¢X;,Y)=d»(Y,X;)
=du(Y)=0; hencethevectorfields{X;} producea local basis(not necessarilyorthogonal of the
normalbundleof = 1(0). The shapeoperatorsA; =Agx, of this submanifoldin N are computed

asfollows [we let V, VN be the Levi Civita covariantderivativesof u~1(0), resp.N]:
9(AY,Z2)==g(VY(IXil " *eXi), 2)= = g(Y(IXill ) eX; . 2) = g(IXi]| ~*V¥(¢X),2)
==X g(Vi(eX).2) ==X * (V¥ (@) Xi+ ¢ ViX;,2)
==X g(n(X)Y = g(X;, V) é+ ¢ VIX;,2)
=[x~ g%, V) 7(2) — g(¢ VIX; , Z}. (32
In particular for the correspondingjuadraticsecondfundamentaforms we get
hi(Y,&)=IIXilI"*g(Xi,Y), hi(&€)=0. 3.3

Consequentlyone easily obtainsthe following: the restriction of the vector field £ is Killing on
w~%(0) too.
Using the Gaussequationof a submanifold,

RV(X,Y,Z,W) =R O(X,Y,Z,W)+g(h(X,Z),h(Y,W))— g(h(X,W),h(Y,Z2)),

and the formula (3.2) we now computethe neededpart of the curvaturetensorof = 1(0) at a
fixed point pe u~%(0). We take X,Y,Z orthogonalto ¢, andobtain

d
g(R* O(X,£)Y,2)—g(RN(X,£)Y,Z)=— i; IXill~2{hi(X,Y)hi(€,2) = hi(X,Z)hi(€,Y)}

d
= —;1 1% ~2{9(X;,2)g(V¥X; ,@Y)

—g(Xi,)9(VEX;,02)} (3.4)

(notethat »; =|X;|| ~*¢X;, arechoserto be orthonormain p; this is alwayspossiblepointwiseby
an appropriatechoiceof the initial X;).

Now let 7: .~ 1(0)—M and endowM with the projectiong™ of the metric g suchthat 7
becomesa RiemanniarsubmersionThis is possiblebecausés actsby isometriesin this setting,
the vector fields X; spanthe vertical distribution of the submersionwhile & is horizontal and
projectable(becausesxig =0). Denotewith ¢ its projectionon M. ¢ is obviouslyunitary To prove
that ¢ is Killing on M, we just observethat £,9(Y,Z)=L,9(Y",Z"), where Y" denotesthe
horizontallift of Y. Finally, to computethe valuesRM(X,¢)Y of the curvaturetensorof gM, we
usethe O'Neill formula[cf. Ref. 12 Eq. (9.280]:

gMRM(X,0)Y,2)=g(ReO(X", £) YN, Z"+g(AX",£), AY",ZM) — g(A(£,Y"), AX",Z")
+9(AX",Z"),A(£,2"),

whereX,Y,Z are unitary, normalto ¢ and the O'Neill (1,2) tensorA is definedas: A(Z",X")
=vertical part of V,nX". Usingthe Gaussformula and (3.3), we obtain
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9(Vzn€, X)) =9(¢Z" X)) =—9(Z", ¢X;) =0;
henceV ,né hasno vertical partand A(Z",£)=0. Thus

RM(X,0)Y=R# O(XN £)Yh=RN(X" £)Yh
becausef (3.4) andthe fact that X",Y" are normalto all X; . Hence

RM(X,0)Y=g(&YNX"—g(X",yM&=g"(£,Y)X—g"(X,Y)¢,

which provesthat (M,g",¢) is a Sasakiarmanifold. O

B. Compatibility with the cone construction

In the following we relateSasakiarreductionto Kahler reductionby usingthe coneconstruc-
tion. Roughly speakingwe prove that reductionandtaking the coneare commutingoperations.

Let w=dr/A\n+r2dy be the Kahler form of the cone C(N) over a Sasakianmanifold
(N,qg,&). If p; arethe translationsacting on C(N) by (x,r)—(x,tr), then the vector field R,
=r Jr is the onegeneratedy {p;}. Moreover the following two relationsare useful:

£R0w=w, pf w=tw. (3.5

Supposeahat a compactLie group G actson C(N) by holomorphicisometries,commutingwith
p¢. This ensuresa correspondingctionof G on N. In fact, we canconsiderG=G X {ld} acting
as(g,(x,r))x(gx,r).

Supposehata momentmap ®:C(N)— g exists.

As abovelet {X;, ... X4} beabasisof g andlet{X,, ... X4} bethecorrespondingector
fieldson C(N). We seethat X; areindependenbn r, hencecanbe consideredasvectorfields on
N. Furthermorethe commutationof G with p, implies

D (p(p))=tP(p). (3.6

Now we imbed N in the coneasNx {1} andlet ,u:=<I>|NX{1}. This is the momentmap of the
action of G on N. To see this, recall the definition of the symplectic moment map ®
=(Dy,...,Dy): d;isgivenup to constanty dd;(Y) = w(X;,Y). Herewe uniquely determine
®; by imposingthe condition 7(X;) = @[y, . Thisimmediatelyimpliesthatthe Reebfield of N
is orthogonalto the vectorfields X; sinceg(¢,X;)= n(X;)=0. As G actsby isometrieson C(N),
we may project the cone metric to a metric on N//GXR, which we denoteby g,. Then
90(Y,Z2)=C(g)(Y",Z"), whereY", Z" arethe uniquevectorfields on ® ~(0) orthogonalto all
of X; which projectonY, Z (we call themhorizonta).

Let P=® ~1(0)/G bethe reducedkahler manifold. The key remarkis thatbecausef (3.6),
®~1(0) istheconeN’ xR, overN’={xe N;(x,1)e ® 1(0)}. Moreover sincethe actionsof G
and p, commute,one hasan inducedactionof G on N’. Then

& Y0)/G=(N"XR,;)/IG=N'/GXR,.

The manifold N'//GX R, is Kahler, as the reductionof a Kahler manifold, but we still haveto
checkthatthis Kahler structureis a coneone.Forthe moregeneral symplecticcase this wasdone
in Ref.13. Let gy bethereducedKahler metricandg’ bethe SasakiameducedmetriconN’//G.
It is easily seenthat the lift of g, to ® 1(0) coincideswith the lift of the cone metric r2g’
+dr? on horizontalfields. This implies that the conemetric coincideswith g,.

Summingup we haveprovedthe following.

Theorem 3.2: Let (N,qg,£) be aSasakiarmanifold and let (C(N), C(g),J) be the Kahler
coneoverit. Let acompactlLie groupG actby holomorphicisometrieson C(N) andcommuting
with the actionof the 1-parametegroupgeneratedby thefield Ry. If a momentmapwith regular
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valueO existsfor this action,thena momentmapwith regularvalueO existsalsofor the induced
action of G on N. Moreover the reducedspaceC(N)//G is the Kahler cone over the reduced
Sasakiarmanifold N//G.

The advantagef definingthe Sasakiamreductionvia Kahler reduction,asdonein Ref. 3 for
3-Sasakiammanifolds,is the avoiding of curvaturecomputationsHowever as we shall see,the
direct constructionis easily applicable.

C. Compatibility with the Boothby—Wang fibration and obtaining Sasakian—Einstein
spaces by reduction

Let (N,g, &) be acompactSasakiarmanifold with a regularcharacteristiovectorfield andlet
7:N— P be the correspondingBoothby-Wang fibration over the Hodge baseP. Let G be a
compactLie groupactingon N by SasakiariransformationsBy (3.1), it preserveshefibersof ;
henceit inducesan actionby Kahler transformationson P. If we denotewith Ny, P the corre-
spondingmoment maps, using the relation (cf. Theorem2.1) g(X,¢Y)=7* w(X,Y) and the
definitions of the respectivemomentmaps, it is easyto seethat we have anS! subbundle
Nu~1(0)—Pu~1(0) andan S! bundleN//G— P//G. Finally one cancheckthat0 is a regular
value for aninducedmomentmap on the baseusingthe relation

dVu(X)=dy(X, ) =7*w(X,-)=7*dPu

The detailsbeing easily settled,we can statethe following.

Proposition 3.1: Let G bea compact_ie groupactingby Sasakiariransformation®n thetotal
spaceof a Boothby-Wangfibration 7: N— P. Thenthereexistsa Boothby-Wangfibration of the
reducedspacedN//G—P//G.

On the otherhand,if the Hodgebaseof a Boothby-Wangfibration is Kahler-Einstein,then
the total spaceis SasakiarEinstein, as provedin Ref. 9. According to Futaki (cf. Ref. 14,
Corollary 7.3.9, if onereducesa Kahler-Einsteinmanifold, the reducedspaceis still Einsteinif
andonly if the lengthof the multivector X;/\--- /A X, is constanton the level setof the moment
map.Hence,oneway to obtain SasakiarEinsteinmetricsvia reductionis to startwith a regular
SasakiarEinstein manifold and with a Sasakianaction inducing on the Hodge basea Kahler
actionof Futaki's type. The preciseresultis the following.

Theorem 3.3: Let G be a compactLie group acting by Sasakiantransformationson the
regularSasakiarEinsteinmanifold N having 0 as a regularvalue of the correspondingnoment
map w. If the length of the multivector X;/\---/\X4 is constanton x~%(0) then the reduced
spaceis SasakiarEinstein.

Proof: First observethat the Boothby-Wangfibration 7:N— P has a Kahler—Einsteinbase,
with positiveRicci curvature accordingto Ref. 9, Theorem2.5(iv). Now, from the equationg3.1)
we seethat the St actionon x~1(0) commuteswith the G-action. In particularthe multivector
X1/\--- A\ X4 is projectableto p~1(0)/S! for the projection: u~1(0)— .~ 1(0)/St. In view of
the precedingsection,this is a restrictionof the Boothby-Wang fibration to the corresponding
zero-setof the momentmapson N and P, respectivelySinceit is a Riemanniarsubmersiorand
X; areorthogonalto ¢, thelengthsof the projectedvectorsare preservedaswell asthe lengthof
the projectedmultivector Now we canapply Futaki’s result(Ref. 14, Corollary 7.3.4) in orderto
concludethatthe basefor the reducedBoothby-WangfibrationN//G— P//G is Kahler-Einstein.
Then, againaccordingto Ref. 9, Theorem2.5(iv), the reducedSasakiarmanifold is Sasakiar
Einstein. O

We apply this resultin the examplesof the last section.

In the samespirit, combiningRef. 9, Theorem2.5iii ) (statingthat the baseof the Boothby-
Wangfibrationis Fanoif andonly if the Ricci curvatureof the total spaceis > —2) andRef. 14,
Corollary 7.3.3(assertinghatthe reducedspaceof a Fanomanifoldis againFang, we obtainthe
following.
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Proposition 3.2: Let G be a compactLie group acting by Sasakiartransformationon the
regularSasakiarEinsteinmanifold N having 0 as a regularvalue of the correspondingnoment
map w. Then N hasRicci curvatureRic>—2 if and only if N//G hasRicci curvatureRic>
—2.

IV. EXAMPLES: S! ACTIONS ON SASAKIAN SPHERES

Example 4.1: Let us startwith S’CC* with its standardSasakiarstructure.Let the complex
coordinateof C* be (zg, . . . ,z3), with z;=x;+1y;. The contactform on S’ canthenbe written
as

3
n=2 (xj dyj—y; dx;),

i=0

andits Reebfield is

3
gzjzo (Xj &yl—yj (9X])

Let St acton S by e~ (e 'zy,e 7'z, ,€''2,,€''z;). Theassociatedield of this actionis (in real
coordinates

Xo=—(Xg dYo— Yo IXo) = (X1 dY1— Y1 9X1) + (X2 dY2— Y2 IX3) + (X3 dY3— Y3 IX3).
The momentmap u:S’— R readsas
w(2) = n(Xo) = —|2o|*— 21|+ |25+ 25|,

with zerolevel set

{zeS'; |zo|?+]24|2=12,)|%+ 252} =S®

1
—) x S8

V2

2
)
Clearly u is nondegeneraten u~1(0).

The reducedspacecanbe identifiedwith S*x S%/St which, by Ref. 6, is diffeomorphicwith
S?x S3. [In this case,one can also avoid the topological agumentsin Ref. 6 and identify the
reduced space by observing that the following diffeomorphism of S®xS3:
(20,21+22,23)—> (2023 + 7125, 202, — 7123, 22, Z3) IS equivariantwith respecto the previousS! ac-
tion which, restrictedto the secondfactor of the product,is the usualactioninducing the Hopf
fibration; mille grazie to RosaGini and Maurizio Partonfor letting us know it (Ref. 15).]

The reducedSasakianstructureobtainedin this way on S?x S? is directly checkedto be
Einsteinand to project on the Kahler Einsteinmetric of CP1x CP! making the fiber map be a
RiemanniansubmersionAs by Ref. 6 suchan Einsteinmetric is unique,our reducedSasakian
structurecoincideswith the Sasakianstructurefound in Ref. 16 viewing S?x S® as a minimal
submanifoldof S’, the total spaceof the pull-back over CP*x CP! of the Hopf bundle S’
—CP3. The sameEinstein-Sasakiarmetric on S>x S® alsoappearsn Ref. 10, constructedby a
differentapproachln Example4.3 we will generalizethis structureby making useof Theorem
3.2.

Example 4.2: Consideragain S’ as the starting Sasakianmanifold, but let S' act by
el (e Mz, €'z, €2, ,e'25), ke Z, . Now u 1(0)=S'(Vk/k+1)x S°({J1/k+1). In orderto
identify the reducedspacewe regardthe k:1 mapping,

SlXSSB (20121122123)’9((20)7k121122123)e Slxss'
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It inducesa k:1 map from M=S!'xS°/S!, where S acts diagonally to the reducedspace
1~ 1(0)/St with the actiongiven above.As in Ref. 15, the map

(2o, -+ - Z3)>(20,2021,2025,ZpZ3)

is an equivariantdiffeomorphismof S' X S°, equivariantwith respecto the diagonalactionof St
andthe actionof S! on thefirst factor HenceM is diffeomorphicto S° andthe reducedSasakian
spaceis S°/7, . Again, we shall seebelow that the metricis actually SasakiarEinsteinandit is
the sameasthat found in Ref. 6.

Example 4.3: In general considerthe weightedactionof St on S~ C" by

€(zg, ... Zn 1)) (eMlzy ... eMilz, ),
where(\g, ... \y_1) € Z". The associatednomentmap,
M(Z):)\o|zo|2+ T +)\n|zn71|2-

is regularon .~ 1(0) for any (Ag, ... Ap_1) suchthathg--A,_1#0, (g, ... Ap_1)=1 andat
leasttwo \'s havedifferentsigns(comparewith the 3-Sasakiarcasewherethe weightsobeyto
morerestrictions;cf. Ref. 3).

Now take Ag=:--=N¢=a and Ny, 1=---=\,_1=—b, a,beZ, relatively prime. Then
w~1(0)=S**"1({ala+b)x SP~K~1(/b/a+b). Moreover the length of the induced vector
field X, on u ™1 is easilycalculatedto be (a+ b?)/2. Now we canapply Theorem3.2 to deduce
that the reducedmetric is SasakiarEinstein.Note that the inducedmetric on x~*(0) coincides
with the product metric of the standardmetrics of the two factors. Moreover we seethat the
reducedspaceis diffeomorphicwith an S* factor of the aboveproductof spheresgiven by the
following action:

(eit,(xyy))ﬁ(eiatx'efibty)'

Onecannow adaptthe agumentsof Ref. 6, Corollary 2.2 and prove that the reducedspacesare
S! bundlesover CP*x CP" k=1 and,for 1<k, 4<n, theyarenothomeomorphic¢o eachotherin
general Thesearethe examplesconsideredn Ref. 6. However for k=1, n=2, thereducedspace
is alvzvay;diffeomorphicwith S?x S3. Hence oneobtainsaninfinite family of Sasakiarstructures
on S°XS°.

ACKNOWLEDGMENTS

Someof the resultsin this article were communicatecat the 2nd Meeting on Quaternionic
Structuresn MathematicandPhysics Rome1999.This researctwasinitiated duringthe authors
visit at the Abdus Salam International Center for Theoretical Physics, Trieste,in summer1999.
The authorsthank the Institute for supportand excellentenvironment.The secondauthoralso
acknowledgedinancial and technicalsupportfrom the Erwin Schrodinger Institute, Vienna,in
Septemberl999, during the “*Special holonomies’ semesterBoth authorsare grateful to Kris
Galicki and Henrik Pederserfor many illuminating conversationon Sasakiangeometryand
relatedthemes Both authorsare EDGE members partially supportedoy the EuropeanContract
““Human PotentialProgrammeResearchraining Network” HPRN-CF2000-00101.

IH. Geiges," Constructionsof contactmanifolds,” Math. Proc. CambridgePhilos. Soc. 121, 455-564 (1997).

2C. Albert, “ Le theoremede reductionde Marsder-Weinsteinen geometriecosymplectiquest de contact,” J. Geom.
Phys.6, 627-649 (1989.

3Ch. P. Boyer, K. Galicki, andB. Mann, “ The geometryandtopologyof 3-Sasakiammanifolds,” J. ReineAngew Math.
455, 183-220(1994.

4G. Grantcharovand L. Ornea,“ Reductionof Sasakiarmanifolds,” preprintESI 756, 1999.

SF. Loose,“ A remarkon the reductionof Cauchy-Riemannmanifolds,” Math. Nachr 214, 39—51 (2000.

6M. Y. Wang andW. Ziller, “Einstein metricson principal torusbundles,” J. Diff. Geom.31, 215-248(1990).

Downloaded 03 Aug 2001 to 137.99.17.114. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3816 J. Math. Phys., Vol. 42, No. 8, August 2001 G. Grantcharov and L. Ornea

’I. R. KlebanovandE. Witten, * Superconformalield theoryon threebranest a Calabi-Yau singularity” Nucl. Phys.B
536, 199-218(1999.

8D. E. Blair, Contact Manifolds in Riemannian Geometry, LNM 509 (SpringerVerlag, Berlin, 1971).

9Ch. P. Boyer and K. Galicki, “ On SasakiarEinstein geometry’ preprint, availablein http://xxx.lanl.gov/,math.DG
9811098.

105, Tanno, “ Geodesidlows on C, -manifoldsand Einsteinmetricson S3x S?,” in Minimal Submanifolds and Geodesics
(Kaigai, Tokyo, 1978, pp. 283-292.

K. Yano andM. Kon, Sructures on Manifolds (World Scientific, Singapore 1984).

27, Besse Einstein Manifolds (SpringerVerlag, Berlin, 1987).

13Ch. P BoyerandK. Galicki, “ A note on toric contactgeometry’ J. Geom. Phys. 35, 288-298 (2000.

1A, Futaki, Kahler—Einstein Metrics and Integral Invariants, LNM 1314 (SpringesVerlag, Berlin, 1988.

15R. Gini and M. Parton (private communication;1999.

61, OrneaandP Piccinni,“InducedHopf bundlesandEinsteinmetrics,” in New Developments in Differential Geometry,
Budapest,1996 (Kluwer, Dordrecht,1998, pp. 295-306.

Downloaded 03 Aug 2001 to 137.99.17.114. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



