
COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDSLIVIU ORNEA AND PAOLO PICCINNIDedi
ated to the memory of Prof. Gheorghe Vr�an
eanuAbstra
t. We give some appli
ations of a 
onstru
tion, appeared in [14℄, ofan integrable 
omplex stru
ture on the total spa
e of an indu
ed Hopf S3-bundle over a Sasakian manifold. We show how this 
onstru
tion allows toobtain an un
ountable family of inequivalent 
omplex stru
tures on the Stiefelmanifolds V2(Cn+1 ) and eV4(Rn+1), as well as on some spe
ial Stiefel manifoldsrelated to the groups G2 and Spin(7). In the 
ase of V2(Cn+1 ), these 
omplexstru
tures are not 
ompatible with its standard hyper
omplex stru
ture.1. Introdu
tionThe Stiefel manifolds Vk(C n+1 ) of orthonormal k-frames in C n+1 and eV2h(Rn+1 )of oriented orthonormal real 2h-frames in Rn+1 appear in the 
lassi
al work ofH.-C. Wang [18℄ as examples of 
ompa
t manifolds that admit an in�nite familyof inequivalent homogeneous 
omplex stru
tures, des
ribed by a real parameter.The 
lass of homogeneous manifolds with this property, all non-k�ahlerian, in
ludesalso 
ompa
t simple Lie groups, studied in this respe
t almost simultaneously byH. Samelson [17℄. More re
ently, both Wang's and Samelson's work inspired re-markable 
onstru
tions of both homogeneous and inhomogeneous hyper
omplexstru
tures on some 
lasses of manifolds that in
lude V2(C n+1 ): [10℄, [7℄.The aim of this note is to present a simple 
onstru
tion of an in�nite family ofhomogeneous 
omplex stru
tures - this time des
ribed by a 
omplex parameter - onV2(C n+1 ), eV4(Rn+1 ), G2 and Spin(7)=Sp(1), the latter two manifolds being spe
ialStiefel with respe
t to the geometry of the Cayley numbers. This 
onstru
tion wassuggested by our work on the geometry of the zero level set of some moment mapsde�ned on the quaternioni
 proje
tive spa
e [14℄, where some diagrams involvethese Stiefel manifolds and a de�nition on them of a 
omplex stru
ture in theCalabi-E
kmann spirit is quite natural.The 
onstru
tion of a 
omplex stru
ture on the total spa
e of an indu
ed HopfS1-bundle over a Sasakian manifold is 
lassi
al. Lo
ally, one makes the produ
tbetween the Sasakian stru
ture of the base manifold and the standard one of the
ir
le. By a similar te
hnique, one 
an produ
e a hyper
omplex stru
ture on thetotal spa
e of a framed S1-bundle over a 3-Sasakian manifold, and this is the wayto obtain the un
ountably many hyper
omplex stru
tures on V2(C n+1 ) [7℄.In Proposition 2.1 below we 
arry on a similar 
onstru
tion, but using one of theSasakian stru
tures in the the standard 3-Sasakian stru
ture of the unit sphere S3that is the �ber of an indu
ed Hopf bundle over a Sasakian manifold.1991 Mathemati
s Subje
t Classi�
ation. 53C15, 53C25, 53C55.Key words and phrases. Quaternion K�ahler manifold, Sasakian stru
ture, 
omplex stru
ture,Riemannian submersion, moment map, indu
ed Hopf bundle.1



2 LIVIU ORNEA AND PAOLO PICCINNIThis 
onstru
tion 
an be applied to some Sasakian manifolds that turn out tobe the zero level sets of some moment maps de�ned on the quaternioni
 proje
tivespa
e. Again, the Sasakian stru
tures are here indu
ed by that of a sphere, nowS2N+1, by means of appropriate indu
ed Hopf 
ir
le bundles. With these Sasakianmanifolds as base spa
es, our method provides a 
omplex stru
ture on the Stiefelmanifolds V2(C n+1 ), eV4(Rn+1 ), G2 and Spin(7)=Sp(1) (Theorem 4.1 and Corollary5.1). But then, it is not diÆ
ult to see that su
h a 
omplex stru
ture is not unique:sin
e everything is de�ned by means of indu
ed Hopf bundles, a parallelizationis indu
ed on the �bers of a bundle in Hopf surfa
es. For the simplest 
ase, ofV2(C n+1 ), this bundle is just the proje
tion V2(C n+1 ) ! Gr2(C n+1 ) to the 
orre-sponding Grassmannian. Thus on the �bers S3 � S1 one 
an 
hoose any 
omplexstru
ture that insures the integrability of the de�ned almost 
omplex stru
ture onthe whole total spa
e. The family of 
omplex stru
tures on S3�S1 that is studiedin [8℄ has this property.As already re
alled, V2(C n+1 ) admits also a family of generally inhomogeneoushyper
omplex stru
tures that 
ontains a subfamily of homogeneneous hyper
omplexstru
tures depending on a real parameter [7℄. As a 
omparison with them, we
an say that all 
omplex stru
tures in our family (now des
ribed by a 
omplexparameter), proje
t to the 
omplex K�ahler stru
ture of Gr2(C n+1 ). Thus, sin
e thislatter 
omplex stru
ture is not 
ompatible with the quaternion K�ahler stru
ture ofthis Grassmannian, it follows that any of our 
omplex stru
tures on V2(C n+1 ) isnon-
ompatible with its standard hyper
omplex stru
tures des
ribed in [2℄ and [7℄.A
knowledgement. We thank Paul Gaudu
hon for suggesting us to use alsonon-standard 
omplex stru
tures on our �bers S3 � S1.2. A 
omplex stru
ture on some indu
ed Hopf S3-bundleIn this paragraph we present the key te
hni
al steps for what follows.Proposition 2.1. Let B be a 
ompa
t real submanifold of HPn and let � : P ! Bbe the prin
ipal S3-bundle indu
ed over B by the Hopf bundle S4n+3 ! HP n . IfB admits a Sasakian stru
ture ('; �; �; gB), then one 
an endow P with an almostHermitian stru
ture.Proof. We let P have the natural pulled ba
k metri
 g with respe
t to whi
h �be
omes a Riemannian submersion with totally geodesi
 �bers ([3℄, Theorem 9.59).For any X 2 X (B) we denote with X� its horizontal lift on P . Let �1, �2, �3 be theunit Killing ve
tor �elds whi
h give the usual 3-Sasakian stru
ture of S3 (namely, ifwe think about S3 as embedded in R4 �= H , �1(x) = �ix, �2(x) = �jx, �3(x) = �kxwhere i, j, k are the unit imaginary quaternions) and let �1, �2, �3 be their dualswith respe
t to the 
anoni
al metri
 of S3. We regard the �i as ve
tor �elds on P .Let �̂i be their dual forms with respe
t to the metri
 g; their restri
tions to any�bre 
oin
ide with the �i. The usual splitting of TP �= V � H into verti
al andhorizontal parts is now re�ned toTP �= spanf�1; �2; �3g � spanf��g �H0;where H0 represents the horizontal ve
tor �elds orthogonal to ��.We now de�ne an almost 
omplex stru
ture J on P by:� J�1 = �2; J�2 = ��1,



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 3� J�3 = ��; J�� = ��3,� JX� = ('X)� for any X 2 X (B) orthogonal to �.As forX ? �, X� is a se
tion ofH0 and the restri
tion of ' to �? is an endomorphismof �?, the last item in the de�nition is 
onsistent.One easily shows that J2 = �1 and is 
ompatible with g. �To study the integrability of J we �rst 
ompute its Nijenhuis tensor �eld:[J; J ℄(A1; A2) = [A1; A2℄+J [JA1; A2℄+J [A1; JA2℄� [JA1; JA2℄; A1; A2 2 X (P ):As in [7℄, we analyse separately the di�erent possible positions of A1, A2. We re
allthat, due to the tensorial 
hara
ter of [J; J ℄, when dealing with horizontal ve
tor�elds it is enough to work with basi
 ones whereas we always 
an take the �i asverti
al �elds.1. Let �rst A1 = X�, A2 = Y �. The bra
ket of two basi
 �elds X�; Y � de
om-poses as [X�; Y �℄ = [X�; Y �℄0 + �̂([X�; Y �℄)�� + verti
al part:where the 0 denotes the H0 part. By �-
orelation, [X�; Y �℄ = [X;Y ℄�0. Moreover,the usual formula for the exterior derivative of a one-form d�̂(A1; A2) = A1(�̂(A2))�A2(�̂(A1)) � �̂([A1; A2℄) 
ombined with �̂(X�) = �̂(Y �) = 0 (as X ? � impliesX� ? ��), we have �̂([X�; Y �℄) = �d�̂(X�; Y �):The verti
al part of [X�; Y �℄ must be of the formP3i=1 ai([X�; Y �℄)�i. Making thes
alar produ
t of (2) with �j , we �nd that ai = �̂i. Hen
e[X�; Y �℄ = [X�; Y �℄0 � d�̂(X�; Y �)�� �X d�̂i(X�; Y �)�i:Similarly we obtain:[JX�; Y �℄ = [('X)�; Y �℄ = ['X; Y ℄�0� d�̂(('X)�; Y �)�� �X d�̂i(('X)�; Y �)�i;J [JX�; Y �℄ = ('['X; Y ℄)�0 + d�̂(('X)�; Y �)�3�� d�̂1(('X)�; Y �)�2 + d�̂2(('X)�; Y �)�1 � d�̂3(('X)�; Y �)��J [X�; JY �℄ = ('[X;'Y ℄)�0 + d�̂(X�; ('Y )�)�3�� d�̂1(X�; ('Y )�)�2 + d�̂2(X�; ('Y )�)�1 � d�̂3(X�; ('Y )�)��;[JX�; JY �℄ = ['X;'Y ℄�0 � d�̂(('X)�; ('Y )�)�� �X d�̂i(('X)�; ('Y )�)�iHen
e we �nd[J;J ℄(X�; Y �) = ['X;'Y ℄�0� fd�̂(X�; Y �)� d�̂(('X)�; ('Y )�) + d�̂3(('X)�; Y �) + d�̂3(X�; ('Y )�)g ��+ fd�̂1(('X)�; ('Y )�)� d�̂1(X�; Y �) + d�̂2(('X)�; Y �) + d�̂2(X�; ('Y )�)g �1+ fd�̂2(('X)�; ('Y )�)� d�̂2(X�; Y �)� d�̂1(('X)�; Y �)� d�̂2(X�; ('Y )�)g �2+ fd�̂3(('X)�; ('Y )�)� d�̂3(X�; Y �) + d�̂(('X)�; Y �) + d�̂(X�; ('Y )�)g �3
(2.1)
As we know ['X;'Y ℄ + 2d�(X;Y )� = 0 (this is the normality 
ondition of theSasakian stru
ture of B) the horizontal lift of this (null) tensor �eld is zero, hen
ealso its 
omponent in H0 is zero. But this is pre
isely ['X;'Y ℄�0.



4 LIVIU ORNEA AND PAOLO PICCINNIOn the other hand, on any Sasakian manifold one has:d�(X;Y ) = g(X;'Y ); '2X = �X + �(X)�hen
e d�(X;'Y ) + d�('X; Y ) = 0 and d�('X;'Y ) � d�(X;Y ) = 0. By hori-zontally lifting these equations we get d�̂(X�; ('Y )�) + d�̂(('X)�; Y �) = 0 andd�̂(('X)�; ('Y )�)� d�̂(X;Y ) = 0. Hen
e (2.1) redu
es to:[J;J ℄(X�; Y �) =� fd�̂3(('X)�; Y �) + d�̂3(X�; ('Y )�)g ��+ fd�̂1(('X)�; ('Y )�)� d�̂1(X�; Y �) + d�̂2(('X)�; Y �) + d�̂2(X�; ('Y )�)g �1+ fd�̂2(('X)�; ('Y )�)� d�̂2(X�; Y �)� d�̂1(('X)�; Y �)� d�̂2(X�; ('Y )�)g �2+ fd�̂3(('X)�; ('Y )�)� d�̂3(X�; Y �)g �3
(2.2)

We note that d�̂i(('X)�; Y �) + d�̂i(X�; ('Y )�) = 0 i� d�̂i(('X)�; ('Y )�) �d�̂i(X�; Y �) = 0 (be
ause we 
an lift ' to P by de�ning '̂X� = ('X)� and then '̂satis�es ('̂)2X� = �X� + �̂(X�)��).Hen
e, in order to annihilate the �� and �i 
omponents, it is enough to imposethe 
ondition:(2.3) d�̂i(('X)�; ('Y )�) = d�̂i(X�; Y �):2. We now 
onsider the 
ase A1 = X�, A2 = �� (X ? �). Then[J; J ℄(X�; ��) = [X�; ��℄ + J [JX�; ��℄ + J [X�; J��℄� [JX�; J��℄ == [X�; ��℄ + J [('X)�; ��℄� J [X�; �3℄ + [('X)�; �3℄Here we note two wellknown fa
ts :a) On any Riemannian submersion the bra
ket between a verti
al �eld and abasi
 �eld is verti
al. Hen
e the bra
kets [X�; �3℄ and [('X)�; �3℄ are verti
al.b) For any 
onne
tion in a prin
ipal bundle, the bra
ket between a horizontal�eld and a verti
al one is horizontal.As P ! B is an indu
ed S3 Hopf bundle, the horizontal distribution of thesubmersion H is also the horizontal distribution of a sp(1)-
onne
tion (note that in[7℄, when dealing with framed 
ir
le bundles, not ne
essarily indu
ed bundles, thishad to be adopted as a hypothesis). Consequently, [X�; �3℄ = [('X)�; �3℄ = 0.It remains to 
ompute the �rst two terms in the expression of [J; J ℄(X�; ��). Wehave: [X�; ��℄ = [X; �℄�0 �X d�̂i(X�; ��)�i;[('X)�; ��℄ = ['X; �℄�0 �X d�̂i(('X)�; ��)�i;J [('X)�; ��℄ = ('['X; �℄)�0� d�̂1(('X)�; ��)�1 + d�̂2(('X)�; ��)�2 � d�̂3(('X)�; ��)�3:Thus we obtain:[J; J ℄(X�;��) = ([X; �℄ + '['X; �℄)�0 � d�̂3(('X)�; ��)��+ (d�̂2(('X)�; ��)� d�̂1(X�; ��))�1 � (d�̂1(('X)�; ��) + d�̂2(X�; ��))�2� d�̂3(X�; ��)�3



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 5We re
all that on a Sasakian manifold '� = 0. Thus we 
an add to the �rstparanthesis the terms [X;'�℄� ['X;'�℄ obtaining ([X; �℄ + '['X; �℄ + '[X;'�℄ �['X;'�℄)�0 = (['; '℄(X; �))�0 = 0 by the normality 
ondition on B.Hen
e, in order to have [J; J ℄(X�; ��) = 0 it is enough to ask(2.4) d�̂i(X�; ��) = 0; X ? �3. We now 
hoose A1 = X� and A2 = �i (i = 1; 2). For i = 1 (the other 
ase is
ompletely similar) we �nd[J; J ℄(X�; �1) = [X�; �1℄ + J [JX�; �1℄ + J [X�; J�1℄� [JX�; J�1℄ == [X�; �1℄ + J [('X)�; �1℄� J [X�; �2℄� [('X)�; �2℄ = 0be
ause (see above) all the bra
kets are both verti
al and horizontal.4. For A1 = X� and A2 = �3 we �nd:[J; J ℄(X�; �3) = [X�; �3℄ + J [JX�; �3℄ + J [X�; J�3℄� [JX�; J�3℄ == J [X�; ��℄� [('X)�; ��℄The horizontal 
omponent of the reamining two bra
kets is (['[X; �℄� ['X; �℄)�0 �d�̂3(X�; ��)��. By normality, �(X) = 0, '� = 0 and d�('X; �) = 0 we have:0 = ['; '℄('X; �) + 2d�('X; �) = ['X; �℄ + '['2X; �℄ + '['X;'�℄� ['2X;'�℄= ['X; �℄ + '[�X + �(X)�; �℄ = ['[X; �℄� ['X; �℄We dedu
e that (['[X; �℄ � ['X; �℄)�0 = 0, hen
e, as d�̂3(X�; ��) = 0 a

ording to(2.4), the horizontal part of [J; J ℄(X�; �3) is zero. Moreover, the same equation(2.4) annihilates the verti
al 
omponents.5. Dire
t 
omputation shows that in the remaining "mixed" 
ase [J; J ℄(�i; ��) =0 if [�i; ��℄ = 0 (i = 1; 2; 3). As these bra
kets are verti
al, their annulation isequivalent with �̂k([�i; ��℄) = 0, k = 1; 2; 3. Again using the expression of d�̂k wesee that we have to 
onsider the 
ondition:(2.5) d�̂k(�i; ��) = 0 i; k = 1; 2; 3:6. We are left with the 
omputation of [J; J ℄ on verti
al �elds. Obviously[J; J ℄(�1; �2) = 0. Then[J; J ℄(�1; �3) = [�1; �3℄ + J [J�1; �3℄ + J [�1; J�3℄� [J�1; J�3℄= [�1�3℄ + J [�2; �3℄ + J [�1; ��℄� [�2; ��℄= �2�2 + 2J�1 + J [�1; ��℄� [�2; ��℄ = 0:by (2.5). The 
ase A1 = �2, A2 = �3 is similar.Summing up we have proved:Proposition 2.2. The following 
onditions are suÆ
ient for the almost 
omplexstru
ture de�ned in Proposition 2.1 to be integrable:1) d�̂k(�i; ��) = 0 i; k = 1; 2; 3:2) d�̂i(X�; ��) = 0, for any X ? � and i = 1; 2; 3.3) d�̂i(('X)�; ('Y )�) = d�̂i(X�; Y �) for any X;Y ? � and i = 1; 2; 3.Observe now that d�̂k 
an be identi�ed as the verti
al parts of the 
urvatureform 
 of the sp(1) 
onne
tion H. Moreover:Proposition 2.3. H is an sp(1) 
onne
tion if and only if the ve
tor �elds �i areKilling on (P; g).



6 LIVIU ORNEA AND PAOLO PICCINNIProof. Re
all that H is a 
onne
tion i� for any X 2 �(H) and any verti
al V , thebra
kets [X;V ℄ are horizontal. As any horizontal �eld is of the form aX�+ b��, wehave [a�� + bX�; V ℄ = a[��; V ℄� V (a)�� + b[X�; V ℄� V (b)X� hen
e [a�� + bX�; V ℄is horizontal i� [��; V ℄ and [X�; V ℄ are horizontal. We 
an take V = �i. The abovetwo bra
kets are surely verti
al, thus they will be horizontal i� they are zero.Let us 
ompute the Lie derivative of the metri
 g on the total spa
e in thedire
tion �i. We obtain su

essively:(L�ig)(X�; ��) = �ig(X�; ��)� g([�i; X�℄; ��)� g(X�; [�i; ��℄ = 0be
ause g(X�; ��) = 0 and the bra
kets in the last two terms are verti
al.(L�ig)(X�; Y �) = �ig(X�; Y �)� g([�i; X�℄; Y �)� g(X�; [�i; Y �℄ = 0as g(X�; Y �) does not depend on verti
al dire
tions and again be
ause the bra
ketsin the last two terms are verti
al.(L�ig)(X�; �k) = �ig(X�; �k)� g([�i; X�℄; �k)� g(X�; [�i; �k℄Here g(X�; �k) = 0, [�i; �k℄2�ikj�j and g(X�; �j) = 0. Hen
e(L�ig)(X�; �k) = �g([�i; X�℄; �k) = ��̂k([�i; X�℄) = d�̂k(�i; X�):(L�ig)(��; �k) = �g([�i; ��℄; �k) = ��̂k([�i; ��℄) = d�̂k(�i; ��):We obtained that �i are Killing �elds i� [�i; X�℄ and [�1; ��℄ are horizontal. �From the proof we also obtained that 
ondition 1) of the above proposition isassured. We 
an �nally give the integrability 
ondition of the 
onstru
ted J interms of 
urvature properties of H.Theorem 2.1. The almost 
omplex stru
ture in Proposition 2.1 is integrable if the
urvature form of the sp(1) 
onne
tion H satis�es the 
onditions:� 
(('X)�; ('Y )�) = 
(X�; Y �) for any X;Y ? � and i = 1; 2; 3.� 
(X�; ��) = 0, for any X ? � and i = 1; 2; 3.We may observe that the stated 
onditions express the 
ompatibility betweenthe Sasakian stru
ture of the base (whi
h is not indu
ed by the immersion of B inHPn ) and the bundle stru
ture of P ! B.Remark 2.1. (i) The K�ahler form ! of (P; g; J) is non-
losed, and indeed it doesnot satisfy any of the Gray-Hervella 
onditions besides the integrability of J . Asimilar 
omputation proves that L��J = L�3J = 0, thus �� and �3 are in�nitesimalautomorphisms of the 
onstru
ted 
omplex stru
ture.(ii) We note also that by its de�nition the 
omplex stru
ture J on P depends onthe 
hoi
e of a the 3-Sasakian stru
ture of S3. Di�erent 
hoi
es of the 3-Sasakiantriples f�1; �2; �3g de�ne 
omplex stru
tures that are 
onjugated in End(TP ). Moreinformations about the dependen
e of J on the 
hosen parallelization of S3 are givenin x4 for the 
ase of V2(C n+1 ) and ~V4(Rn+1 ).(iii) Although the 
onstru
tion of J does not use expli
itely the indu
ed Hopfbundle, the 
onstru
tion doesn't work for merely Riemannian submersions with�bres S3: one needs a 
anoni
al way of 
hoosing the parallelization of S3 in orderto avoid monodromy problems.



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 73. The zero level sets of two moment mapsConsider now the two maps� : H n+1 ! Im H ; � : H n+1 ! Im H 3 ;de�ned in the 
oordinates h = [h0 : h1 : ::: : hn℄ of H n+1 by�(h) = nXa=0haiha; �(h) = ( nXa=0haiha; nXa=0hajha; nXa=0hakha);and re
all that � and � 
an be interpreted as the moment maps asso
iated to thediagonal a
tion of U(1) and of Sp(1) on the 3-Sasakian sphere S4n+3 � H n+1 �ber-ing over HPn . The 
orresponding quaternion K�ahler redu
tions are the quaternionK�ahler Wolf spa
es SU(n + 1)=S(U(n � 1) � U(2)) �= Gr2(C n+1 ) and SO(n +1)=(SO(n� 3)� SO(4)) �= fGr4(Rn+1 ), respe
tively (
f. for example [6℄).We proved in [14℄ the following:Proposition 3.1. (i) ��1(0) is di�eomorphi
 to the total spa
e of the indu
edHopf S1-bundle via the Pl�u
ker embedding Gr2(C n+1 ) ,! CPN , and 
onsequently aSasakian metri
 is indu
ed on ��1(0) by the Pl�u
ker embedding of this Grassman-nian.(ii) The zero level set ��1(0) is di�eomorphi
 to the total spa
e of the indu
edHopf S1-bundle over the Fano manifold ZfGr4(Rn+1), by means of the embeddingsZfGr4(Rn+1) ,! Gr2(C n+1 ) ,! CPN , the �rst of whi
h is de�ned by regardingZfGr4(Rn+1) as the spa
e of totally isotropi
 two-planes in C n+1 . Thus an indu
edSasakian metri
 is obtained on ��1(0).Sin
e both ��1(0) and ��1(0) 
an be shown to be simply 
onne
ted, the �rststatement both of (i) and of (ii) is a 
onsequen
e of the following observation: Let� : P ! B be a prin
ipal 
ir
le bundle with simply 
onne
ted P over a smooth
omplex algebrai
 proje
tive submanifold B of CPN with H2(B;Z)�= Z. Then P isdi�eomorphi
 to the total spa
e of the indu
ed Hopf bundle of S2N+1 ! CPN , viathe embedding B ,! CPN . In the 
ase of ��1(0), the submanifold B is the Grass-mannian Gr2(C n+1 ) and its Pl�u
ker embedding is used in CPN , N = �n+12 � � 1.As for ��1(0), it is also an indu
ed Hopf S1-bundle but over the twistor spa
eZfGr4(Rn+1) of the quaternion K�ahler real Grassmannian fGr4(Rn+1 ). This twistorspa
e is a 
omplex submanifold of Gr2(C n+1 ) [11℄. On the other hand, the 
ompo-sition of the �berings ��1(0) S1! ZfGr4(Rn+1) S2! fGr4(Rn+1 )is a SO(3)-bundle whi
h endows ��1(0) with a 3-Sasakian stru
ture via the inver-sion theorem 4.6 of [5℄.4. Appli
ations to Stiefel manifoldsIf we regard the Stiefel manifolds V2(C n+1 ) and eV4(Rn+1 ) as homogeneous man-ifolds, we immediately re
ognize them as total spa
es of the indu
ed bundles S3 !S4n+3 ! HP n over ��1(0), respe
tively. The 
onditions stated in Theorem 2.1 areveri�ed for these bundles (
f. [14℄). This gives the following:



8 LIVIU ORNEA AND PAOLO PICCINNITheorem 4.1. A family of un
ountably many homogeneous 
omplex stru
tureson the Stiefel manifolds V2(C n+1 ) and eV4(Rn+1 ) 
an be obtained by 
ombining theK�ahler-Einstein stru
tures of Gr2(C n+1 ) and ZfGr4(Rn+1) with any of the 
omplexstru
ture on the Hopf surfa
e C 2 � f0g=(z ! �z), given by all 
hoi
es of � 2C � ; j�j > 1.Proof. A standard 
omplex stru
ture on V2(C n+1 ) and eV4(Rn+1 ) is obtained byapplying Proposition 2.1 and Theorem 2.1 to the highest verti
al arrows in thediagram: eV4(Rn+1 ) ,! V2(C n+1 ) ,! S4n+3??yS3 ??yS3 ??yS3��1(0) ,! ��1(0) ,! HPn S2N+1??yS1 ??yS1 .ZfGr4(Rn+1) ,! Gr2(C n+1 ) ,! CPN??yS2fGr4(Rn+1 )where Proposition 3.1 is applied to zero level sets ��1(0) and ��1(0) to obtain theirindu
ed Sasakian stru
tures on them.The same diagram tells us that V2(C n+1 ) and eV4(Rn+1 ) are bundles in Hopf sur-fa
es S3�S1 over the 
omplex K�ahler-Einstein manifoldsGr2(C n+1 ) and ZfGr4(Rn+1)respe
tively. On all these �bers S3 � S1 a simultaneous parallelization is indu
edby a 
hoi
e of a 3-Sasakian stru
ture on S4n+3 and a Sasakian stru
ture on S2N+1.From this point of view, the above mentioned 
omplex stru
ture on the Stiefel man-ifold is by 
onstru
tion given by the 
hoi
e of the standard 
omplex stru
ture on the�bers S3�S1 and by the lift of the 
omplex stru
ture of the K�ahler-Einstein bases.The integrability of the whole 
omplex stru
ture was insured by the 
omputationsdes
ribed above.Observe now that these same 
omputations, leading to [J; J ℄ = 0, 
an be 
arriedout even if the 
omplex stru
ture on the �bers is not de�ned in the standard way(i.e. J�1 = �2; J�2 = ��1; J�3 = ��; J�� = ��3), but a

ording to formulaslike: J�1 = �2; J�2 = ��1J�� = ��� + ��3; J�3 = 
�� + Æ�3;where the matrix (�; �
; Æ), whose entries are real and 
onstant, has tra
e 0 anddeterminant 1. The 
omplex stru
tures de�ned in this way on S3 � S1 = C 2 �f0g=(z ! �z) 
orrespond to all the possible 
hoi
es of the generator � 2 C � =C �f0g; j�j > 1, and it 
an be shown that all these 
omplex stru
tures on the Hopfsurfa
e are inequivalent (
f. [8℄, p. 142-143). �Note that these 
omplex stru
tures on V2(C n+1 ) proje
t to the 
omplex stru
turewith respe
t to whi
h the symmetri
 Grassmannian Gr2(C n+1 ) is K�ahlerian. Butthis Grassmannian also has a quaternion K�ahler stru
ture whi
h does not 
ontainthe K�ahler stru
ture (i.e. whilst the K�ahler metri
 
oin
ides with the quaternion-K�ahler one, the 
omplex stru
ture 
ompatible with the K�ahler metri
 is not a
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tion of the quaternion bundle). On the other hand, it is the quaternion K�ahlerstru
ture of the Grassmannian Gr2(C n+1 ) that produ
es, via the asso
iated homo-geneous 3-Sasakian manifold and its deformations, the hyper
omplex stru
tures onV2(C n+1 ) [2℄, [7℄. This gives the following:Corollary 4.1. The 
onstru
ted 
omplex stru
tures on V2(C n+1 ) are non-
ompa-tible with its standard hyper
omplex stru
ture.5. Two spe
ial 
asesMore 
omplex stru
tures on Stiefel manifolds 
an be obtained by looking at thefollowing ex
eptional 
ases. Observe that the group G2 
an be regarded as the"spe
ial" Stiefel manifold of 
oasso
iative orthonormal 4-frames (e1; e2; e3; e4) inR7 . This means that the 
orresponding 4-plane has an orthogonal 
omplement thatis an asso
iative 3-plane, i.e. 
losed under the ve
tor produ
t of R7 . This followseasily from the referen
es [12℄, p. 252, [9℄, p.115. The se
ond referen
e states in fa
tthat G2 �= V �3 (R7 ), the latter being the Stiefel manifold of orthonormal 3-frames(e1; e2; e4) su
h that, with respe
t to the produ
t of Cayley numbers, e4 ? e1e2. Of
ourse su
h 3-frames are in one-to-one 
orresponden
e with 
oasso
iative 4-framesvia (e1; e2; e4) $ (e1; e2; e1e2; e4). The Stiefel manifold G2 �bers in Hopf surfa
esS3 � S1 over the 
ag manifold G2=U(2)+, twistor spa
e of the quaternion K�ahlersubmanifold G2=SO(4) of fGr4(R7 ).Also related to the geometry of Cayley numbers, one 
an 
onsider the "spe
ial"Stiefel manifold of Cayley 4-frames in R8 , i.e. orthonormal 4-frames spanning 4-planes in R8 that are 
losed under the double 
ross-produ
t (
f. again [12℄, p. 261,[9℄, p. 118). The Stiefel manifold of Cayley 4-frames is easily re
ognized to be thehomogeneous spa
e Spin(7)=Sp(1), �bering again in Hopf surfa
es over the twistorspa
e of the Grassmannian of Cayley 4-planes Spin(7)=(Sp(1)�Sp(1)�Sp(1))=Z2).This latter manifold is a quaternion K�ahler submanifold of fGr4(R8 ).This dis
ussion extends to the homogeneous 3-Sasakian bundles and yields thefollowing two diagrams of submanifolds 
onsidered in more detail in [15℄. The �rstdiagram is:V = G2 ,! eV4(R7 ) ,! V2(C 7 ) ,! S27 � H 7??yS3 ??yS3 ??yS3 ??yS3G2=Sp(1)+ ,! ��1(0) ,! ��1(0) ,! HP 6??yS1 ??yS1 ??yS1G2=U(2)+ ,! ZfGr4(R7) ,! Gr2(C 7 )??yS2 ??yS2G2=SO(4) ,! fGr4(R7 );where the + sign appearing in the left 
olumn 
orresponds to a 
hoi
e that issigni�
ant for the stru
ture of the two homogeneous manifolds G2=Sp(1)+ andG2=U(2)+, 
f. [16℄, p. 164.



10 LIVIU ORNEA AND PAOLO PICCINNISimilarly, one gets a se
ond diagram by 
onsidering Cayley 4-frames and Cayley4-planes in R8 :V = Spin(7)Sp(1) ,! eV4(R8 ) ,! V2(C 8 ) ,! S31 � H 8??yS3 ??yS3 ??yS3 ??yS3Spin(7)Sp(1)�Sp(1) ,! ��1(0) ,! ��1(0) ,! HP 7??yS1 ??yS1 ??yS1Spin(7)(Sp(1)�Sp(1)�U(1))=Z2 ,! ZfGr4(R8) ,! Gr2(C 8 )??yS2 ??yS2Spin(7)(Sp(1)�Sp(1)�Sp(1))=Z2 ,! fGr4(R8 ):These two diagrams, 
ombined with Proposition 2.1 and Theorem 2.1, give:Corollary 5.1. An un
ountable family of homogeneous 
omplex stru
tures is ob-tained on the spe
ial Stiefel manifolds G2 and Spin(7)=Sp(1), by regarding themas indu
ed Hopf bundles of S27 ! HP 6 and of S31 ! HP 7 over the Sasakiansubmanifolds G2=Sp(1)+ � HP 6 , Spin(7)Sp(1)�Sp(1) � HP 7 , respe
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