
COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDSLIVIU ORNEA AND PAOLO PICCINNIDediated to the memory of Prof. Gheorghe Vr�aneanuAbstrat. We give some appliations of a onstrution, appeared in [14℄, ofan integrable omplex struture on the total spae of an indued Hopf S3-bundle over a Sasakian manifold. We show how this onstrution allows toobtain an unountable family of inequivalent omplex strutures on the Stiefelmanifolds V2(Cn+1 ) and eV4(Rn+1), as well as on some speial Stiefel manifoldsrelated to the groups G2 and Spin(7). In the ase of V2(Cn+1 ), these omplexstrutures are not ompatible with its standard hyperomplex struture.1. IntrodutionThe Stiefel manifolds Vk(C n+1 ) of orthonormal k-frames in C n+1 and eV2h(Rn+1 )of oriented orthonormal real 2h-frames in Rn+1 appear in the lassial work ofH.-C. Wang [18℄ as examples of ompat manifolds that admit an in�nite familyof inequivalent homogeneous omplex strutures, desribed by a real parameter.The lass of homogeneous manifolds with this property, all non-k�ahlerian, inludesalso ompat simple Lie groups, studied in this respet almost simultaneously byH. Samelson [17℄. More reently, both Wang's and Samelson's work inspired re-markable onstrutions of both homogeneous and inhomogeneous hyperomplexstrutures on some lasses of manifolds that inlude V2(C n+1 ): [10℄, [7℄.The aim of this note is to present a simple onstrution of an in�nite family ofhomogeneous omplex strutures - this time desribed by a omplex parameter - onV2(C n+1 ), eV4(Rn+1 ), G2 and Spin(7)=Sp(1), the latter two manifolds being speialStiefel with respet to the geometry of the Cayley numbers. This onstrution wassuggested by our work on the geometry of the zero level set of some moment mapsde�ned on the quaternioni projetive spae [14℄, where some diagrams involvethese Stiefel manifolds and a de�nition on them of a omplex struture in theCalabi-Ekmann spirit is quite natural.The onstrution of a omplex struture on the total spae of an indued HopfS1-bundle over a Sasakian manifold is lassial. Loally, one makes the produtbetween the Sasakian struture of the base manifold and the standard one of theirle. By a similar tehnique, one an produe a hyperomplex struture on thetotal spae of a framed S1-bundle over a 3-Sasakian manifold, and this is the wayto obtain the unountably many hyperomplex strutures on V2(C n+1 ) [7℄.In Proposition 2.1 below we arry on a similar onstrution, but using one of theSasakian strutures in the the standard 3-Sasakian struture of the unit sphere S3that is the �ber of an indued Hopf bundle over a Sasakian manifold.1991 Mathematis Subjet Classi�ation. 53C15, 53C25, 53C55.Key words and phrases. Quaternion K�ahler manifold, Sasakian struture, omplex struture,Riemannian submersion, moment map, indued Hopf bundle.1



2 LIVIU ORNEA AND PAOLO PICCINNIThis onstrution an be applied to some Sasakian manifolds that turn out tobe the zero level sets of some moment maps de�ned on the quaternioni projetivespae. Again, the Sasakian strutures are here indued by that of a sphere, nowS2N+1, by means of appropriate indued Hopf irle bundles. With these Sasakianmanifolds as base spaes, our method provides a omplex struture on the Stiefelmanifolds V2(C n+1 ), eV4(Rn+1 ), G2 and Spin(7)=Sp(1) (Theorem 4.1 and Corollary5.1). But then, it is not diÆult to see that suh a omplex struture is not unique:sine everything is de�ned by means of indued Hopf bundles, a parallelizationis indued on the �bers of a bundle in Hopf surfaes. For the simplest ase, ofV2(C n+1 ), this bundle is just the projetion V2(C n+1 ) ! Gr2(C n+1 ) to the orre-sponding Grassmannian. Thus on the �bers S3 � S1 one an hoose any omplexstruture that insures the integrability of the de�ned almost omplex struture onthe whole total spae. The family of omplex strutures on S3�S1 that is studiedin [8℄ has this property.As already realled, V2(C n+1 ) admits also a family of generally inhomogeneoushyperomplex strutures that ontains a subfamily of homogeneneous hyperomplexstrutures depending on a real parameter [7℄. As a omparison with them, wean say that all omplex strutures in our family (now desribed by a omplexparameter), projet to the omplex K�ahler struture of Gr2(C n+1 ). Thus, sine thislatter omplex struture is not ompatible with the quaternion K�ahler struture ofthis Grassmannian, it follows that any of our omplex strutures on V2(C n+1 ) isnon-ompatible with its standard hyperomplex strutures desribed in [2℄ and [7℄.Aknowledgement. We thank Paul Gauduhon for suggesting us to use alsonon-standard omplex strutures on our �bers S3 � S1.2. A omplex struture on some indued Hopf S3-bundleIn this paragraph we present the key tehnial steps for what follows.Proposition 2.1. Let B be a ompat real submanifold of HPn and let � : P ! Bbe the prinipal S3-bundle indued over B by the Hopf bundle S4n+3 ! HP n . IfB admits a Sasakian struture ('; �; �; gB), then one an endow P with an almostHermitian struture.Proof. We let P have the natural pulled bak metri g with respet to whih �beomes a Riemannian submersion with totally geodesi �bers ([3℄, Theorem 9.59).For any X 2 X (B) we denote with X� its horizontal lift on P . Let �1, �2, �3 be theunit Killing vetor �elds whih give the usual 3-Sasakian struture of S3 (namely, ifwe think about S3 as embedded in R4 �= H , �1(x) = �ix, �2(x) = �jx, �3(x) = �kxwhere i, j, k are the unit imaginary quaternions) and let �1, �2, �3 be their dualswith respet to the anonial metri of S3. We regard the �i as vetor �elds on P .Let �̂i be their dual forms with respet to the metri g; their restritions to any�bre oinide with the �i. The usual splitting of TP �= V � H into vertial andhorizontal parts is now re�ned toTP �= spanf�1; �2; �3g � spanf��g �H0;where H0 represents the horizontal vetor �elds orthogonal to ��.We now de�ne an almost omplex struture J on P by:� J�1 = �2; J�2 = ��1,



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 3� J�3 = ��; J�� = ��3,� JX� = ('X)� for any X 2 X (B) orthogonal to �.As forX ? �, X� is a setion ofH0 and the restrition of ' to �? is an endomorphismof �?, the last item in the de�nition is onsistent.One easily shows that J2 = �1 and is ompatible with g. �To study the integrability of J we �rst ompute its Nijenhuis tensor �eld:[J; J ℄(A1; A2) = [A1; A2℄+J [JA1; A2℄+J [A1; JA2℄� [JA1; JA2℄; A1; A2 2 X (P ):As in [7℄, we analyse separately the di�erent possible positions of A1, A2. We reallthat, due to the tensorial harater of [J; J ℄, when dealing with horizontal vetor�elds it is enough to work with basi ones whereas we always an take the �i asvertial �elds.1. Let �rst A1 = X�, A2 = Y �. The braket of two basi �elds X�; Y � deom-poses as [X�; Y �℄ = [X�; Y �℄0 + �̂([X�; Y �℄)�� + vertial part:where the 0 denotes the H0 part. By �-orelation, [X�; Y �℄ = [X;Y ℄�0. Moreover,the usual formula for the exterior derivative of a one-form d�̂(A1; A2) = A1(�̂(A2))�A2(�̂(A1)) � �̂([A1; A2℄) ombined with �̂(X�) = �̂(Y �) = 0 (as X ? � impliesX� ? ��), we have �̂([X�; Y �℄) = �d�̂(X�; Y �):The vertial part of [X�; Y �℄ must be of the formP3i=1 ai([X�; Y �℄)�i. Making thesalar produt of (2) with �j , we �nd that ai = �̂i. Hene[X�; Y �℄ = [X�; Y �℄0 � d�̂(X�; Y �)�� �X d�̂i(X�; Y �)�i:Similarly we obtain:[JX�; Y �℄ = [('X)�; Y �℄ = ['X; Y ℄�0� d�̂(('X)�; Y �)�� �X d�̂i(('X)�; Y �)�i;J [JX�; Y �℄ = ('['X; Y ℄)�0 + d�̂(('X)�; Y �)�3�� d�̂1(('X)�; Y �)�2 + d�̂2(('X)�; Y �)�1 � d�̂3(('X)�; Y �)��J [X�; JY �℄ = ('[X;'Y ℄)�0 + d�̂(X�; ('Y )�)�3�� d�̂1(X�; ('Y )�)�2 + d�̂2(X�; ('Y )�)�1 � d�̂3(X�; ('Y )�)��;[JX�; JY �℄ = ['X;'Y ℄�0 � d�̂(('X)�; ('Y )�)�� �X d�̂i(('X)�; ('Y )�)�iHene we �nd[J;J ℄(X�; Y �) = ['X;'Y ℄�0� fd�̂(X�; Y �)� d�̂(('X)�; ('Y )�) + d�̂3(('X)�; Y �) + d�̂3(X�; ('Y )�)g ��+ fd�̂1(('X)�; ('Y )�)� d�̂1(X�; Y �) + d�̂2(('X)�; Y �) + d�̂2(X�; ('Y )�)g �1+ fd�̂2(('X)�; ('Y )�)� d�̂2(X�; Y �)� d�̂1(('X)�; Y �)� d�̂2(X�; ('Y )�)g �2+ fd�̂3(('X)�; ('Y )�)� d�̂3(X�; Y �) + d�̂(('X)�; Y �) + d�̂(X�; ('Y )�)g �3
(2.1)
As we know ['X;'Y ℄ + 2d�(X;Y )� = 0 (this is the normality ondition of theSasakian struture of B) the horizontal lift of this (null) tensor �eld is zero, henealso its omponent in H0 is zero. But this is preisely ['X;'Y ℄�0.



4 LIVIU ORNEA AND PAOLO PICCINNIOn the other hand, on any Sasakian manifold one has:d�(X;Y ) = g(X;'Y ); '2X = �X + �(X)�hene d�(X;'Y ) + d�('X; Y ) = 0 and d�('X;'Y ) � d�(X;Y ) = 0. By hori-zontally lifting these equations we get d�̂(X�; ('Y )�) + d�̂(('X)�; Y �) = 0 andd�̂(('X)�; ('Y )�)� d�̂(X;Y ) = 0. Hene (2.1) redues to:[J;J ℄(X�; Y �) =� fd�̂3(('X)�; Y �) + d�̂3(X�; ('Y )�)g ��+ fd�̂1(('X)�; ('Y )�)� d�̂1(X�; Y �) + d�̂2(('X)�; Y �) + d�̂2(X�; ('Y )�)g �1+ fd�̂2(('X)�; ('Y )�)� d�̂2(X�; Y �)� d�̂1(('X)�; Y �)� d�̂2(X�; ('Y )�)g �2+ fd�̂3(('X)�; ('Y )�)� d�̂3(X�; Y �)g �3
(2.2)

We note that d�̂i(('X)�; Y �) + d�̂i(X�; ('Y )�) = 0 i� d�̂i(('X)�; ('Y )�) �d�̂i(X�; Y �) = 0 (beause we an lift ' to P by de�ning '̂X� = ('X)� and then '̂satis�es ('̂)2X� = �X� + �̂(X�)��).Hene, in order to annihilate the �� and �i omponents, it is enough to imposethe ondition:(2.3) d�̂i(('X)�; ('Y )�) = d�̂i(X�; Y �):2. We now onsider the ase A1 = X�, A2 = �� (X ? �). Then[J; J ℄(X�; ��) = [X�; ��℄ + J [JX�; ��℄ + J [X�; J��℄� [JX�; J��℄ == [X�; ��℄ + J [('X)�; ��℄� J [X�; �3℄ + [('X)�; �3℄Here we note two wellknown fats :a) On any Riemannian submersion the braket between a vertial �eld and abasi �eld is vertial. Hene the brakets [X�; �3℄ and [('X)�; �3℄ are vertial.b) For any onnetion in a prinipal bundle, the braket between a horizontal�eld and a vertial one is horizontal.As P ! B is an indued S3 Hopf bundle, the horizontal distribution of thesubmersion H is also the horizontal distribution of a sp(1)-onnetion (note that in[7℄, when dealing with framed irle bundles, not neessarily indued bundles, thishad to be adopted as a hypothesis). Consequently, [X�; �3℄ = [('X)�; �3℄ = 0.It remains to ompute the �rst two terms in the expression of [J; J ℄(X�; ��). Wehave: [X�; ��℄ = [X; �℄�0 �X d�̂i(X�; ��)�i;[('X)�; ��℄ = ['X; �℄�0 �X d�̂i(('X)�; ��)�i;J [('X)�; ��℄ = ('['X; �℄)�0� d�̂1(('X)�; ��)�1 + d�̂2(('X)�; ��)�2 � d�̂3(('X)�; ��)�3:Thus we obtain:[J; J ℄(X�;��) = ([X; �℄ + '['X; �℄)�0 � d�̂3(('X)�; ��)��+ (d�̂2(('X)�; ��)� d�̂1(X�; ��))�1 � (d�̂1(('X)�; ��) + d�̂2(X�; ��))�2� d�̂3(X�; ��)�3



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 5We reall that on a Sasakian manifold '� = 0. Thus we an add to the �rstparanthesis the terms [X;'�℄� ['X;'�℄ obtaining ([X; �℄ + '['X; �℄ + '[X;'�℄ �['X;'�℄)�0 = (['; '℄(X; �))�0 = 0 by the normality ondition on B.Hene, in order to have [J; J ℄(X�; ��) = 0 it is enough to ask(2.4) d�̂i(X�; ��) = 0; X ? �3. We now hoose A1 = X� and A2 = �i (i = 1; 2). For i = 1 (the other ase isompletely similar) we �nd[J; J ℄(X�; �1) = [X�; �1℄ + J [JX�; �1℄ + J [X�; J�1℄� [JX�; J�1℄ == [X�; �1℄ + J [('X)�; �1℄� J [X�; �2℄� [('X)�; �2℄ = 0beause (see above) all the brakets are both vertial and horizontal.4. For A1 = X� and A2 = �3 we �nd:[J; J ℄(X�; �3) = [X�; �3℄ + J [JX�; �3℄ + J [X�; J�3℄� [JX�; J�3℄ == J [X�; ��℄� [('X)�; ��℄The horizontal omponent of the reamining two brakets is (['[X; �℄� ['X; �℄)�0 �d�̂3(X�; ��)��. By normality, �(X) = 0, '� = 0 and d�('X; �) = 0 we have:0 = ['; '℄('X; �) + 2d�('X; �) = ['X; �℄ + '['2X; �℄ + '['X;'�℄� ['2X;'�℄= ['X; �℄ + '[�X + �(X)�; �℄ = ['[X; �℄� ['X; �℄We dedue that (['[X; �℄ � ['X; �℄)�0 = 0, hene, as d�̂3(X�; ��) = 0 aording to(2.4), the horizontal part of [J; J ℄(X�; �3) is zero. Moreover, the same equation(2.4) annihilates the vertial omponents.5. Diret omputation shows that in the remaining "mixed" ase [J; J ℄(�i; ��) =0 if [�i; ��℄ = 0 (i = 1; 2; 3). As these brakets are vertial, their annulation isequivalent with �̂k([�i; ��℄) = 0, k = 1; 2; 3. Again using the expression of d�̂k wesee that we have to onsider the ondition:(2.5) d�̂k(�i; ��) = 0 i; k = 1; 2; 3:6. We are left with the omputation of [J; J ℄ on vertial �elds. Obviously[J; J ℄(�1; �2) = 0. Then[J; J ℄(�1; �3) = [�1; �3℄ + J [J�1; �3℄ + J [�1; J�3℄� [J�1; J�3℄= [�1�3℄ + J [�2; �3℄ + J [�1; ��℄� [�2; ��℄= �2�2 + 2J�1 + J [�1; ��℄� [�2; ��℄ = 0:by (2.5). The ase A1 = �2, A2 = �3 is similar.Summing up we have proved:Proposition 2.2. The following onditions are suÆient for the almost omplexstruture de�ned in Proposition 2.1 to be integrable:1) d�̂k(�i; ��) = 0 i; k = 1; 2; 3:2) d�̂i(X�; ��) = 0, for any X ? � and i = 1; 2; 3.3) d�̂i(('X)�; ('Y )�) = d�̂i(X�; Y �) for any X;Y ? � and i = 1; 2; 3.Observe now that d�̂k an be identi�ed as the vertial parts of the urvatureform 
 of the sp(1) onnetion H. Moreover:Proposition 2.3. H is an sp(1) onnetion if and only if the vetor �elds �i areKilling on (P; g).



6 LIVIU ORNEA AND PAOLO PICCINNIProof. Reall that H is a onnetion i� for any X 2 �(H) and any vertial V , thebrakets [X;V ℄ are horizontal. As any horizontal �eld is of the form aX�+ b��, wehave [a�� + bX�; V ℄ = a[��; V ℄� V (a)�� + b[X�; V ℄� V (b)X� hene [a�� + bX�; V ℄is horizontal i� [��; V ℄ and [X�; V ℄ are horizontal. We an take V = �i. The abovetwo brakets are surely vertial, thus they will be horizontal i� they are zero.Let us ompute the Lie derivative of the metri g on the total spae in thediretion �i. We obtain suessively:(L�ig)(X�; ��) = �ig(X�; ��)� g([�i; X�℄; ��)� g(X�; [�i; ��℄ = 0beause g(X�; ��) = 0 and the brakets in the last two terms are vertial.(L�ig)(X�; Y �) = �ig(X�; Y �)� g([�i; X�℄; Y �)� g(X�; [�i; Y �℄ = 0as g(X�; Y �) does not depend on vertial diretions and again beause the braketsin the last two terms are vertial.(L�ig)(X�; �k) = �ig(X�; �k)� g([�i; X�℄; �k)� g(X�; [�i; �k℄Here g(X�; �k) = 0, [�i; �k℄2�ikj�j and g(X�; �j) = 0. Hene(L�ig)(X�; �k) = �g([�i; X�℄; �k) = ��̂k([�i; X�℄) = d�̂k(�i; X�):(L�ig)(��; �k) = �g([�i; ��℄; �k) = ��̂k([�i; ��℄) = d�̂k(�i; ��):We obtained that �i are Killing �elds i� [�i; X�℄ and [�1; ��℄ are horizontal. �From the proof we also obtained that ondition 1) of the above proposition isassured. We an �nally give the integrability ondition of the onstruted J interms of urvature properties of H.Theorem 2.1. The almost omplex struture in Proposition 2.1 is integrable if theurvature form of the sp(1) onnetion H satis�es the onditions:� 
(('X)�; ('Y )�) = 
(X�; Y �) for any X;Y ? � and i = 1; 2; 3.� 
(X�; ��) = 0, for any X ? � and i = 1; 2; 3.We may observe that the stated onditions express the ompatibility betweenthe Sasakian struture of the base (whih is not indued by the immersion of B inHPn ) and the bundle struture of P ! B.Remark 2.1. (i) The K�ahler form ! of (P; g; J) is non-losed, and indeed it doesnot satisfy any of the Gray-Hervella onditions besides the integrability of J . Asimilar omputation proves that L��J = L�3J = 0, thus �� and �3 are in�nitesimalautomorphisms of the onstruted omplex struture.(ii) We note also that by its de�nition the omplex struture J on P depends onthe hoie of a the 3-Sasakian struture of S3. Di�erent hoies of the 3-Sasakiantriples f�1; �2; �3g de�ne omplex strutures that are onjugated in End(TP ). Moreinformations about the dependene of J on the hosen parallelization of S3 are givenin x4 for the ase of V2(C n+1 ) and ~V4(Rn+1 ).(iii) Although the onstrution of J does not use expliitely the indued Hopfbundle, the onstrution doesn't work for merely Riemannian submersions with�bres S3: one needs a anonial way of hoosing the parallelization of S3 in orderto avoid monodromy problems.



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 73. The zero level sets of two moment mapsConsider now the two maps� : H n+1 ! Im H ; � : H n+1 ! Im H 3 ;de�ned in the oordinates h = [h0 : h1 : ::: : hn℄ of H n+1 by�(h) = nXa=0haiha; �(h) = ( nXa=0haiha; nXa=0hajha; nXa=0hakha);and reall that � and � an be interpreted as the moment maps assoiated to thediagonal ation of U(1) and of Sp(1) on the 3-Sasakian sphere S4n+3 � H n+1 �ber-ing over HPn . The orresponding quaternion K�ahler redutions are the quaternionK�ahler Wolf spaes SU(n + 1)=S(U(n � 1) � U(2)) �= Gr2(C n+1 ) and SO(n +1)=(SO(n� 3)� SO(4)) �= fGr4(Rn+1 ), respetively (f. for example [6℄).We proved in [14℄ the following:Proposition 3.1. (i) ��1(0) is di�eomorphi to the total spae of the induedHopf S1-bundle via the Pl�uker embedding Gr2(C n+1 ) ,! CPN , and onsequently aSasakian metri is indued on ��1(0) by the Pl�uker embedding of this Grassman-nian.(ii) The zero level set ��1(0) is di�eomorphi to the total spae of the induedHopf S1-bundle over the Fano manifold ZfGr4(Rn+1), by means of the embeddingsZfGr4(Rn+1) ,! Gr2(C n+1 ) ,! CPN , the �rst of whih is de�ned by regardingZfGr4(Rn+1) as the spae of totally isotropi two-planes in C n+1 . Thus an induedSasakian metri is obtained on ��1(0).Sine both ��1(0) and ��1(0) an be shown to be simply onneted, the �rststatement both of (i) and of (ii) is a onsequene of the following observation: Let� : P ! B be a prinipal irle bundle with simply onneted P over a smoothomplex algebrai projetive submanifold B of CPN with H2(B;Z)�= Z. Then P isdi�eomorphi to the total spae of the indued Hopf bundle of S2N+1 ! CPN , viathe embedding B ,! CPN . In the ase of ��1(0), the submanifold B is the Grass-mannian Gr2(C n+1 ) and its Pl�uker embedding is used in CPN , N = �n+12 � � 1.As for ��1(0), it is also an indued Hopf S1-bundle but over the twistor spaeZfGr4(Rn+1) of the quaternion K�ahler real Grassmannian fGr4(Rn+1 ). This twistorspae is a omplex submanifold of Gr2(C n+1 ) [11℄. On the other hand, the ompo-sition of the �berings ��1(0) S1! ZfGr4(Rn+1) S2! fGr4(Rn+1 )is a SO(3)-bundle whih endows ��1(0) with a 3-Sasakian struture via the inver-sion theorem 4.6 of [5℄.4. Appliations to Stiefel manifoldsIf we regard the Stiefel manifolds V2(C n+1 ) and eV4(Rn+1 ) as homogeneous man-ifolds, we immediately reognize them as total spaes of the indued bundles S3 !S4n+3 ! HP n over ��1(0), respetively. The onditions stated in Theorem 2.1 areveri�ed for these bundles (f. [14℄). This gives the following:



8 LIVIU ORNEA AND PAOLO PICCINNITheorem 4.1. A family of unountably many homogeneous omplex strutureson the Stiefel manifolds V2(C n+1 ) and eV4(Rn+1 ) an be obtained by ombining theK�ahler-Einstein strutures of Gr2(C n+1 ) and ZfGr4(Rn+1) with any of the omplexstruture on the Hopf surfae C 2 � f0g=(z ! �z), given by all hoies of � 2C � ; j�j > 1.Proof. A standard omplex struture on V2(C n+1 ) and eV4(Rn+1 ) is obtained byapplying Proposition 2.1 and Theorem 2.1 to the highest vertial arrows in thediagram: eV4(Rn+1 ) ,! V2(C n+1 ) ,! S4n+3??yS3 ??yS3 ??yS3��1(0) ,! ��1(0) ,! HPn S2N+1??yS1 ??yS1 .ZfGr4(Rn+1) ,! Gr2(C n+1 ) ,! CPN??yS2fGr4(Rn+1 )where Proposition 3.1 is applied to zero level sets ��1(0) and ��1(0) to obtain theirindued Sasakian strutures on them.The same diagram tells us that V2(C n+1 ) and eV4(Rn+1 ) are bundles in Hopf sur-faes S3�S1 over the omplex K�ahler-Einstein manifoldsGr2(C n+1 ) and ZfGr4(Rn+1)respetively. On all these �bers S3 � S1 a simultaneous parallelization is induedby a hoie of a 3-Sasakian struture on S4n+3 and a Sasakian struture on S2N+1.From this point of view, the above mentioned omplex struture on the Stiefel man-ifold is by onstrution given by the hoie of the standard omplex struture on the�bers S3�S1 and by the lift of the omplex struture of the K�ahler-Einstein bases.The integrability of the whole omplex struture was insured by the omputationsdesribed above.Observe now that these same omputations, leading to [J; J ℄ = 0, an be arriedout even if the omplex struture on the �bers is not de�ned in the standard way(i.e. J�1 = �2; J�2 = ��1; J�3 = ��; J�� = ��3), but aording to formulaslike: J�1 = �2; J�2 = ��1J�� = ��� + ��3; J�3 = �� + Æ�3;where the matrix (�; �; Æ), whose entries are real and onstant, has trae 0 anddeterminant 1. The omplex strutures de�ned in this way on S3 � S1 = C 2 �f0g=(z ! �z) orrespond to all the possible hoies of the generator � 2 C � =C �f0g; j�j > 1, and it an be shown that all these omplex strutures on the Hopfsurfae are inequivalent (f. [8℄, p. 142-143). �Note that these omplex strutures on V2(C n+1 ) projet to the omplex struturewith respet to whih the symmetri Grassmannian Gr2(C n+1 ) is K�ahlerian. Butthis Grassmannian also has a quaternion K�ahler struture whih does not ontainthe K�ahler struture (i.e. whilst the K�ahler metri oinides with the quaternion-K�ahler one, the omplex struture ompatible with the K�ahler metri is not a



COMPLEX STRUCTURES ON SOME STIEFEL MANIFOLDS 9setion of the quaternion bundle). On the other hand, it is the quaternion K�ahlerstruture of the Grassmannian Gr2(C n+1 ) that produes, via the assoiated homo-geneous 3-Sasakian manifold and its deformations, the hyperomplex strutures onV2(C n+1 ) [2℄, [7℄. This gives the following:Corollary 4.1. The onstruted omplex strutures on V2(C n+1 ) are non-ompa-tible with its standard hyperomplex struture.5. Two speial asesMore omplex strutures on Stiefel manifolds an be obtained by looking at thefollowing exeptional ases. Observe that the group G2 an be regarded as the"speial" Stiefel manifold of oassoiative orthonormal 4-frames (e1; e2; e3; e4) inR7 . This means that the orresponding 4-plane has an orthogonal omplement thatis an assoiative 3-plane, i.e. losed under the vetor produt of R7 . This followseasily from the referenes [12℄, p. 252, [9℄, p.115. The seond referene states in fatthat G2 �= V �3 (R7 ), the latter being the Stiefel manifold of orthonormal 3-frames(e1; e2; e4) suh that, with respet to the produt of Cayley numbers, e4 ? e1e2. Ofourse suh 3-frames are in one-to-one orrespondene with oassoiative 4-framesvia (e1; e2; e4) $ (e1; e2; e1e2; e4). The Stiefel manifold G2 �bers in Hopf surfaesS3 � S1 over the ag manifold G2=U(2)+, twistor spae of the quaternion K�ahlersubmanifold G2=SO(4) of fGr4(R7 ).Also related to the geometry of Cayley numbers, one an onsider the "speial"Stiefel manifold of Cayley 4-frames in R8 , i.e. orthonormal 4-frames spanning 4-planes in R8 that are losed under the double ross-produt (f. again [12℄, p. 261,[9℄, p. 118). The Stiefel manifold of Cayley 4-frames is easily reognized to be thehomogeneous spae Spin(7)=Sp(1), �bering again in Hopf surfaes over the twistorspae of the Grassmannian of Cayley 4-planes Spin(7)=(Sp(1)�Sp(1)�Sp(1))=Z2).This latter manifold is a quaternion K�ahler submanifold of fGr4(R8 ).This disussion extends to the homogeneous 3-Sasakian bundles and yields thefollowing two diagrams of submanifolds onsidered in more detail in [15℄. The �rstdiagram is:V = G2 ,! eV4(R7 ) ,! V2(C 7 ) ,! S27 � H 7??yS3 ??yS3 ??yS3 ??yS3G2=Sp(1)+ ,! ��1(0) ,! ��1(0) ,! HP 6??yS1 ??yS1 ??yS1G2=U(2)+ ,! ZfGr4(R7) ,! Gr2(C 7 )??yS2 ??yS2G2=SO(4) ,! fGr4(R7 );where the + sign appearing in the left olumn orresponds to a hoie that issigni�ant for the struture of the two homogeneous manifolds G2=Sp(1)+ andG2=U(2)+, f. [16℄, p. 164.



10 LIVIU ORNEA AND PAOLO PICCINNISimilarly, one gets a seond diagram by onsidering Cayley 4-frames and Cayley4-planes in R8 :V = Spin(7)Sp(1) ,! eV4(R8 ) ,! V2(C 8 ) ,! S31 � H 8??yS3 ??yS3 ??yS3 ??yS3Spin(7)Sp(1)�Sp(1) ,! ��1(0) ,! ��1(0) ,! HP 7??yS1 ??yS1 ??yS1Spin(7)(Sp(1)�Sp(1)�U(1))=Z2 ,! ZfGr4(R8) ,! Gr2(C 8 )??yS2 ??yS2Spin(7)(Sp(1)�Sp(1)�Sp(1))=Z2 ,! fGr4(R8 ):These two diagrams, ombined with Proposition 2.1 and Theorem 2.1, give:Corollary 5.1. An unountable family of homogeneous omplex strutures is ob-tained on the speial Stiefel manifolds G2 and Spin(7)=Sp(1), by regarding themas indued Hopf bundles of S27 ! HP 6 and of S31 ! HP 7 over the Sasakiansubmanifolds G2=Sp(1)+ � HP 6 , Spin(7)Sp(1)�Sp(1) � HP 7 , respetively.Referenes[1℄ D. N. Akhiezer, Homogeneous Complex Manifolds, in Several Complex Variables IV, Enyl.Math. S. vol. 10, Springer-Verlag (1990).[2℄ F. Battaglia, A hyperomplex Stiefel manifold, Di�. Geom. and Appl. 6 (1996), 121-128.[3℄ A. Besse, Einstein manifolds, Springer-Verlag (1987).[4℄ D. E. Blair, Contat manifolds in Riemannian geometry, LNM 509, Springer-Verlag (1976).[5℄ Ch. P. Boyer, K. Galiki, The twistor spae of 3-Sasakian manifolds, Int. J. Math., 8 (1997),31-60.[6℄ Ch. P. Boyer, K. Galiki, 3-Sasakian Manifolds, hep-th/9810250, Essays on Einstein Man-ifolds (C. LeBrun and M. Wang, Eds), Surveys in Di�erential Geometry, vol. V, Int. Press(2000).[7℄ Ch. P. Boyer, K. Galiki, B. Mann, Hyperomplex strutures on Stiefel manifolds, Ann. GlobalAnal. Geom. 14 (1996), 81-105.[8℄ P. Gauduhon, Surfaes de Hopf. Varietes presque omplexes de dimension 4, GeometrieRiemannienne en dimension 4, Seminaire A. Besse, Cedi (1981).[9℄ R. Harvey, H. B. Lawson Jr., Calibrated geometries, Ata Math. 148 (1982), 47-157.[10℄ D. Joye, Compat hyperomplex and quaternioni manifolds, J. Di�. Geom. 35 (1992), 743-761.[11℄ P. Z. Kobak, Quaternioni geometry and harmoni maps, Ph. D. Thesis, Oxford (1993).[12℄ S. Marhiafava, Alune osservazioni riguardanti i gruppi di Lie G2 e Spin(7), andidati agruppi di olonomia, Ann. Mat. Pura. Appl., 129 (1981), 247-264.[13℄ L. Ornea, P. Piinni, Indued Hopf bundles and Einstein metris, in "New developments indi�erential geometry, Budapest 1996", Kluwer Publ. (1998), 295-306.[14℄ L. Ornea, P. Piinni, On some moment maps and indued Hopf bundles on the quaternioniprojetive spae, math.DG/0001066, to appear in Int. J. Math.[15℄ L. Ornea, P. Piinni, Some quaternion K�ahler redutions and an exeptional Wolf spae, inpreparation.[16℄ S.M. Salamon, Riemannian geometry and holonomy groups, Ed. Longman Sienti� & Teh-nial, UK (1989).[17℄ H. Samelson, A lass of omplex analyti manifolds, Portug. Math. 12 (1953), 129-132.
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