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Abstract. Let a < b be positive integers and for any integer k consider the
semigroup Hk = ⟨k, a+ k, b+ k⟩. If K is any field, we study the defining relations
of the semigroup ring K[Hk] and its tangent cone grm K[Hk], for k ≫ 0. Recent
results in [7], [11], [6] show that their Betti numbers are eventually periodic in
k. We give a better threshold ka,b than the one already known for which this
happens and we describe how the defining equations are periodically changing.
We explicitly find all the shifts k > ka,b that produce complete intersections,
completing a result in [7]. We write the minimal free resolution of grm K[Hk] and
we show that its regularity is a quasilinear function for k > ka,b.

Introduction

Let n1 < n2 < · · · < nr be nonnegative integers and H = ⟨n1, n2, . . . , nr⟩ the
monoid they generate. Let K be any field. The semigroup ring K[H] is the K-
algebra generated by the monomials tni in the polynomial ring K[t], for i = 1, . . . , r.
Consider the K-algebra map ϕ : K[x1, . . . , xr] → K[t] given by ϕ(xi) = tni . Its
image is K[H]. When n1, . . . , nr generate H minimally, we let IH = kerϕ and we
call it the defining ideal of K[H].

Note that H has a unique minimal generating set. We shall refer to such monoids
as numerical semigroups. Note that we do not require that the gcd of the elements
in H be 1.

The tangent cone of K[H] is the associated graded ring of K[H] with respect to
the filtration induced by the powers of the maximal ideal m = (th|h ∈ H \{0})K[H],

grmK[H] = K[H]/m⊕m/m2 ⊕m2/m3 ⊕ · · · .

It is known that grmK[H] ∼= K[x1, . . . , xr]/I
∗
H , where for any ideal I inK[x1, . . . , xr]

we let I∗ be the ideal of the initial forms of the polynomials in I. Namely, I∗ =
(f ∗|f ∈ I, f ̸= 0), where f ∗ denotes the component of least degree of f . The
two algebras K[H] and grmK[H] have attracted much attention and it has been of
interest to relate algebraic properties like Cohen-Macaulay, Gorenstein or complete-
intersection for either of them to arithmetic properties of the semigroup H, see [1],
[9] and references therein.
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A recent surge of interest came with the idea of studying these properties for
Hk = ⟨n1 + k, n2 + k, . . . , nr + k⟩ as we let the integer k ≥ 0 vary. We call {Hk}k≥0

the shifted family of (n1, . . . , nr). Note that Hk as defined above depends on the
(not necessarily minimal) system of generators n1, . . . , nr chosen for H. We do not
want to complicate notation, and we hope it will be clear from the context what is
the initial sequence of numbers that we shift.

Herzog and Srinivasan conjectured and Vu ([11]) has recently proved that there
exists a shift kV such that for k > kV the Betti numbers of IHk

as a K[x1, . . . , xr]-
module are periodic in k with period nr − n1. Soon after, Herzog and the author
have shown in [6] that for k ≥ kV the tangent cone grmK[Hk] is Cohen-Macaulay
and moreover

βi(Ik) = βi(I
∗
k) for all i,

hence the eventual periodicity in k of the Betti numbers of grmK[Hk].
This paper started as an attempt to understand asymptotically the defining ideals

of the algebras K[Hk] and grm K[Hk] when we shift sequences with few terms. This
would explain algebraically the periodic behaviour that was mentioned before.

When r = 1 and H = ⟨n1⟩, K[H] ∼= grmK[H] ∼= K[x]. When r = 2 and
H = ⟨n1, n2⟩, one has that K[H] ∼= K[x, y]/(xn2/d − yn1/d), where d = gcd(n1, n2).
Hence grmK[H] ∼= K[x, y]/(yn1/d), a hypersurface ring.

For the first non trivial case, r = 3, it is known from Herzog’s paper [4] how
to canonically construct three polynomials f1, f2, f3 that generate (not necessarily
minimally) the defining ideal IH , see Eq. (2) below.

Without loss of generality and in order to simplify notation we shift 0 < a < b
and for any nonnegative integer k we let Hk = ⟨k, a+ k, b+ k⟩. Note that for k > b
we have b+ k < 2k, hence the semigroup Hk is minimally generated by k, k+ a and
k + b.

Let us introduce

ka,b = max

{
b

(
b− a

D
− 1

)
, b

a

D

}
,

where we let D = gcd(a, b). Our original results are of two kinds: we highlight ka,b
as a numerical improvement of the bound kV known already to ensure a “tame”
status and we also describe new qualitative properties which take place for k > ka,b.

Next we outline the structure of the paper.
As a first result, Theorem 1.2 gives the precise expression of the middle polynomial

f2 above for IHk
and k > ka,b. It is homogeneous and it is the same for all k > ka,b.

As a first consequence, using previous characterizations by Herzog ([5]) and by
Robbiano and Valla ([10]) for Cohen-Macaulay tangent cones of numerical semigroup
rings, we conclude in Theorems 1.3 and 2.5 that for all shifts k > ka,b, grmK[Hk] is
Cohen-Macaulay and its Betti numbers are periodic in k with a period dividing b.

In Section 2 we find the shifts k > ka,b such that grm K[Hk] is a complete intersec-
tion ring, i.e., I∗Hk

is generated by r − 1 = 2 equations. We also have that for such
k the rings K[Hk] and grK[Hk] are complete intersections at the same time. This
is not usually the case for arbitrary numerical semigroups.
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In Theorem 2.1 we determine the principal period for the periodicity described
above, correcting a statement in [7]. In that paper the authors focused on the
periodic occurence of complete intersections in the shifted family K[Hk] for k ≫ 0
and any r. They claim that if r > 3 and there are infinitely many shifts k such that
K[Hk] is a complete intersection, then asymptotically this happens only if n1 + k is
a multiple of nr − n1. Our Example 2.10 contradicts this assertion.

In Section 3 we prove that the canonical defining equations of K[Hk] change
in a controllable fashion for k > ka,b. We have already seen that f2 stays the
same. In Proposition 3.2 we prove that when the shift k increases by b, in f1
and f3 only the exponents of x and z change, increasing by the same amount e =
gcd(a, b)/ gcd(a, b, k).

In Section 4 we use Theorem 1.3 and the Hilbert-Burch Theorem to write down
the minimal resolution of the tangent cone as an K[x, y, z]-module in terms of the
canonical generators f1, f2, f3. We conclude that for k > ka,b the regularity of
grmK[Hk] is a quasilinear function on k, see Theorem 4.1.

In Section 5 we show that ka,b, our threshold for well behaviour, is better (i.e.
smaller) than other bounds from [11] and [7] proved or conjectured to work. In Table
1 we list several examples of shifted families for which we present for comparison the
actual thresholds for the periodicity of the Betti numbers of K[Hk] and grmK[Hk]
respectively, as computed by SINGULAR ([2]), and the theoretical thresholds just
mentioned already. We also conjecture explicit formulas for these actual thresholds,
which seem to be very close to our estimate ka,b.

1. The middle equation and Cohen-Macaulayness

Assume the numerical semigroup H is minimally generated by n1 < n2 < n3.
We first recall the construction of a generating set for the ideal IH , according to
[4]. For each ni, one finds the least positive multiple cini that lies in the semigroup
generated by the other two generators. If, say

cini =
∑
j ̸=i

rijnj, i = 1, 2, 3,(1)

for some nonnegative integers rij (1 ≤ i ̸= j ≤ 3), then the ideal IH is generated by
the polynomials

f1 = xc1 − yr12zr13 , f2 = yc2 − xr21zr23 , f3 = zc3 − xr31yr32 .(2)

We will refer to these polynomials as the canonical generators of IH .
Note that some rij may be zero. If this is the case, then two of the polynomials

f1, f2 and f3 in (2) are the same up to a change of sign, and the other coefficients
rst are not necessarily uniquely determined. This coresponds to the situation when
the semigroup ring K[H] is a complete intersection. However, if all rij in (1) are
positive, they are unique, K[H] is a Cohen-Macaulay domain which is not a complete
intersection, and

ci =
∑
j ̸=i

rji, for all i = 1, 2, 3.(3)
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We will prove in Theorem 1.2 that f2 in (2) is the same for all large enough shifts
k.

Definition 1.1. For the integers 0 < a < b letting D = gcd(a, b) we set

ka,b = max

{
b

(
b− a

D
− 1

)
, b

a

D

}
.(4)

It is easy to see that kna,nb = nka,b for any nonnegative integer n.
The following result is instrumental for the rest of the paper.

Theorem 1.2. Consider the integers 0 < a < b and let D = gcd(a, b). For any
nonnegative integer k, let Hk = ⟨k, a + k, b + k⟩. Then for k > ka,b the semigroup
Hk is minimally generated by k, a + k, b + k, and the smallest positive multiple of
a+ k in ⟨k, b+ k⟩ is

b

D
· (a+ k) =

b− a

D
· k +

a

D
· (b+ k).(5)

Consequently, up to multiplication by a nonzero constant, the polynomial

f2 = y
b
D − x

b−a
D z

a
D(6)

is part of any minimal binomial generating set for the ideal IHk
.

Proof. For k in the above range we have that k > b, equivalently k + b < 2k.
Therefore Hk is minimally generated by k < a+ k < b+ k.

It is straightforward to check that (5) holds. We pick the smallest integer c > 0
such that there exist integers u, v ≥ 0 with

c · (a+ k) = u · k + v · (b+ k).(7)

Clearly c ≤ b/D. We claim that u > 0 and v > 0.
If u = 0, then c(a+ k) = v(b+ k). Let g = gcd(a+ k, b+ k) = gcd(a+ k, b− a),

hence g ≤ b− a. Then b+k
g
|c and since c ≤ b/D we get that

b+ k ≤ gb

D
≤ (b− a)b

D
,

k ≤ (b− a)b

D
− b,

which is a contradiction to our choice of k.
If v = 0, then c(a + k) = uk. Let h = gcd(a + k, k) = gcd(a, k) ≤ a. Then k

h
|c

and since c ≤ b/D we have that

k ≤ bh/D ≤ ab/D,

which is another contradiction.
Therefore u, v > 0. We subtract (7) from (5) and after clearing the denominators

we have

(b− cD)(a+ k) = (b− a− uD)k + (a− vD)(b+ k),

((b− cD)− (b− a− uD)− (a− vD))k = −(b− cD)a+ (a− vD)b.
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After reducing the similar terms, the latter equation becomes

(u+ v − c)k = ca− vb.(8)

We claim that c = u+ v.
Indeed, if c > u + v, then c ≥ v + 2 and vb − ca > 0 is divisible by k. Hence

k ≤ vb − ca ≤ (c − 2)b − ca = c(b − a) − 2b ≤ b
D
(b − a) − 2b, contradiction to our

choice of k.
Similarly, if c < u+v, then ca−vb > 0 is divisible by k. Thus k ≤ ca−vb ≤ b

D
a−b,

another contradiction.
Therefore c = u+ v. Using (8) we obtain vb = ca = (u+ v)a, hence

u

v
=

b− a

a
.

Using it with c = u + v again, the latter gives u = b−a
b
c and v = a

b
c. Since

D = gcd(a, b), we have that b/D divides c and c ≤ b/D, hence they are equal. This
shows that c, u, v in a minimal relation (7) are those given in (5).

By the discussion at the beginning of this section we obtain that the polynomial
f2 in (6) is part of a minimal generating set for IHk

. Up to a nonzero constant, in
any minimal binomial generating set of IHk

there exists a polynomial of the form
yc − xr21zr23 . By the uniqueness of the solutions to equation (7) we also conclude
that up to multiplication by a constant, f2 is part of any minimal generating set for
IHk

.
The proof is now complete. �

As a nice consequence of Theorem 1.2 we show that for all large enough shifts
k, the associated graded ring grmK[Hk] is Cohen-Macaulay. We will use work of
J. Herzog ([4]) and of L. Robbiano and G. Valla ([10]) who independently described
the Cohen-Macaulay property of grmK[H] for a 3-generated semigroup H in terms
of the ci’s and the rij’s introduced in (1).

J. Herzog and the author have recently proved that regardless of the number
of generators of a numerical semigroup H, for all shifts k ≫ 0 the tangent cone
grmK[Hk] is Cohen-Macaulay, see [6, Theorem 1.4]. We recover this result, but
with a better lower bound for k producing Cohen-Macaulay tangent cones.

Theorem 1.3. (Herzog-Stamate [6]) Let 0 < a < b and denote Hk = ⟨k, a+k, b+k⟩.
If k > ka,b, the tangent cone grmK[Hk] is Cohen-Macaulay.

Moreover, if k > ka,b, then grmK[Hk] is a complete intersection if and only if
K[Hk] is a complete intersection.

Proof. As noted in Theorem 1.2, Hk is minimally generated by k, a + k, b + k. By
the classification theorem of Herzog ([5, §3]) and Robbiano and Valla ([10, Table
3.4]), there are two cases to consider.

Case 1: IfK[Hk] is not a complete intersection, then grmK[Hk] is Cohen-Macaulay
if and only if

c2 ≤ r21 + r23.(9)
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By Theorem 1.2, if we let D = gcd(a, b), then c2 = b/D, r21 = (b−a)/D, r23 = a/D,
and the condition (9) is met. If grmK[Hk] were a complete intersection, then K[Hk]
would be a complete intersection, as well, which is not our case.

Case 2: If K[Hk] is a complete intersection, then some rij = 0. Again, using
Theorem 1.2 we have r21, r23 > 0. In the terminology of [10, page 292], K[Hk] is a
complete intersection of type (b13). For such a situation, the classification theorem
says that grmK[Hk] is Cohen-Macaulay (and actually a complete intersection) if and
only if the same inequality (9) holds. This is true in our setup by the discussion of
the previous case. �

In [6] the width wd(H) of a numerical semigroup H is defined as the difference
between the largest and the smallest elements of the minimal generating set of H. It
is a conjecture of Herzog and the author that µ(I∗H) ≤

(
wd(H)+1

2

)
, cf. [6, Conjecture

2.1]. We confirm this holds for large shifts in the shifted family of any 3-generated
numerical semigroup.

As a by-product of the classification theorems in [10] and [5] we have that when the
tangent cone is Cohen-Macaulay, the minimal generators of IH are also a standard
basis, i.e. their initial forms generate I∗H . This gives us the following corollaries.

Corollary 1.4. With notation as in Theorem 1.3, for all k > ka,b one has µ(I∗Hk
) ≤

3.

Corollary 1.5. If 0 < a < b, Hk = ⟨k, k + a, k + b⟩, and D = gcd(a, b), then

for k > ka,b the polynomial f = y
b
D − x

b−a
D z

a
D is part of any minimal homogenous

generating set of I∗Hk
, up to multiplication by a nonzero constant.

Proof. We showed that for such k, the ring grmK[Hk] is Cohen-Macaulay. As a
consequence of Herzog’s work in [5, §3] we have that I∗Hk

is generated by the initial
forms of the generators of IHk

. As f is a homogeneous polynomial, using Theorem
1.2 the conclusion follows. �

Theorem 1.2 may be restated in an equivalent form which does not involve the
shifting. What it says is that if a certain numerical condition holds between the
minimal generators of a 3-generated numerical semigroup H, then we may determine
one of the defining equations of the semigroup ring K[H] and conclude that its
tangent cone is Cohen-Macaulay.

Corollary 1.6. Consider the positive integers n1 < n2 < n3 and let D = gcd(n2 −
n1, n3 − n1) and H = ⟨n1, n2, n3⟩. If

(10) n1 > (n3 − n1) ·max

{
n3 − n2

D
− 1,

n2 − n1

D

}
,

then the smallest positive multiple of n2 that lies in ⟨n1, n3⟩ is
n3 − n1

D
· n2 =

n3 − n2

D
· n1 +

n2 − n1

D
· n3,

and the polynomial

f2 = y
n3−n1

D − x
n3−n2

D z
n2−n1

D
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is part of any minimal generating set of the ideals IH and I∗H . Moreover, the tangent
cone grmK[H] is Cohen-Macaulay.

Proof. The equation and the polynomial we are looking for are the same for the
triplets n1, n2, n3 and n1/∆, n2/∆, n3/∆, where we let ∆ = gcd(n1, n2, n3).

Condition (10) assures that we may apply Theorem 1.2 to the sequence (0, n2−n1

∆
, n3−n1

∆
)

shifted up by n1/∆ and the conclusion follows. �

2. Complete intersections and periodicity

In this section we fix the integers 0 < a < b and we let Hk = ⟨k, a+ k, b+ k⟩. We
are interested to determine precisely for which (large enough) shifts k, if any, are
the rings K[Hk] and grm K[Hk] complete intersections (CI for short). By Theorem
1.3 it is enough to find out for which shifts k is the algebra K[Hk] a complete
intersection. This question was independently considered by A. V. Jayanthan and
H. Srinivasan in [7]. The answer they provide in [7, Theorem 1.4] is partly incorrect,
as our Example 2.10 will show.

We first recall how to verify the CI-property for our type of rings. In [4] Herzog
proved that if the semigroup H is minimally generated by a, b, c with gcd(a, b, c) = 1,
then K[H] is a complete intersection if and only if after eventually rearranging the
generators we have that gcd(a, b) = d > 1 and c ∈ ⟨a

d
, b
d
⟩. The latter condition

means that there exist u, v ∈ N such that

c = u · a
d
+ v · b

d
, or

d · c = u · a+ v · b.
It is easy to see that this is in turn equivalent to

⟨c⟩ ∩ ⟨a, b⟩ = gcd(a, b)⟨c⟩.(11)

Indeed, if K[H] is a complete intersection and if there exist λ, u′, v′ ∈ N such that

λ · c = u′ · a+ v′ · b,

then d divides λ · c. Since gcd(a, b, c) = gcd(d, c) = 1, we obtain that d|λ.
In the following, for a positive integer n and a prime p we denote

νp(n) = max{i : pi|n}.

Theorem 2.1. Consider the integers 0 < a < b. Let

T =
∏

p prime, νp(a)<νp(b)

pνp(b).

If we denote Hk = ⟨k, a + k, b + k⟩, then for k > ka,b we have that K[Hk] and
grmK[Hk] are complete intersections if and only if k is a multiple of T .

Consequently, in the families of algebras {K[Hk]}k>ka,b and {grmK[Hk]}k>ka,b the
complete intersection property occurs periodically with principal period T .
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Proof. By Theorem 1.3 it is enough to see when K[Hk] is a complete intersection.
Let k > ka,b. We denote

∆ = gcd(k, a+ k, b+ k) = gcd(k, a, b).

The semigroups Hk and Lk = ⟨ k
∆
, a+k

∆
, b+k

∆
⟩ are isomorphic, hence K[Hk] is a com-

plete intersection if and only if K[Lk] is so.
It is easy to check that the inequality k > ka,b is equivalent to say that condition

(10) is verified for the triplet k
∆
, a+k

∆
, b+k

∆
. Hence by Corollary 1.6 we have that the

smallest positive multiple of a+k
∆

in
⟨

k
∆
, b+k

∆

⟩
may be obtained (only) as

b
∆

δ
· a+ k

∆
=

b− a

δ∆
· k
∆

+
a

δ∆
· b+ k

∆
,

where we let δ = gcd
(

b
∆
, a
∆

)
= gcd(a,b)

∆
.

If K[Lk] is a complete intersection, by the discussion in Section 1 we get that
some of the corresponding rij’s from the equations (1) is zero. Using (3) we derive
that r12 = 0 or r13 = 0. If r13 = 0, in (1) we should have c1 · k

∆
= c2 · a+k

∆
, which

is a contradiction to the uniqueness of the decomposition from (5). Therefore, if
K[Lk] is a complete intersection then r12 = 0 and the only way we may arrange its
generators to fulfill an equation like (11) is

(12)

⟨
a+ k

∆

⟩
∩
⟨
k

∆
,
b+ k

∆

⟩
= gcd

(
k

∆
,
b+ k

∆

)⟨
a+ k

∆

⟩
.

Combining (2) and (12) gives that K[Lk] is a complete intersection if and only if

b

δ∆
= gcd

(
k

∆
,
b+ k

∆

)
,

b

δ
= gcd(k, b+ k),

b

gcd(k, b)
= δ =

gcd(a, b)

gcd(k, gcd(a, b))
,

b

gcd(k, b)
=

D

gcd(k,D)
, where we let D = gcd(a, b).(13)

This means that for any prime p one has

(14) νp(b)−min{νp(k), νp(b)} = νp(D)−min{νp(k), νp(D)}.
Fix a prime p. As D divides b, there are only two cases to analyze.
If νp(b) = νp(D), then (14) clearly holds for any k.
Otherwise, if νp(D) < νp(b), or equivalently νp(a) < νp(b), we claim that νp(k) >

νp(D). Indeed, if νp(k) ≤ νp(D), then (14) gives νp(b) = νp(D), which is false.
Therefore νp(k) > νp(D). When used in (14), this yields

νp(b)−min{νp(k), νp(b)} = νp(D)− νp(D) = 0,

hence νp(k) ≥ νp(b).
To sum up, for k > ka,b, the ring K[Hk] is a complete intersection if and only if k

is a a multiple of T =
∏

p prime, νp(a)<νp(b)
pνp(b). Therefore, in the family of algebras
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{K[Hk]}k>ka,b the complete intersection property occurs with principal period T .
�

According to [8], a binomial belonging to a toric ideal I is called indispensable if
up to a scalar multiple it belongs to any binomial generating set of I. In the context
of algebraic statistics it is of interest to determine if a binomial ideal is generated by
indispensable binomials. This is not always the case even for 3-generated numerical
semigroups. For instance, for H = ⟨10, 12, 15⟩ one has IH = (x3 − z2, y5 − z4) =
(x3 − z2, y5 − x3z2).

Corollary 2.2. With notation as in Theorem 2.1, for k > ka,b the toric ideal IHk
is

generated by indispensable binomials.

Proof. If IHk
is not CI, it follows from Herzog’s [4] that the polynomials in (2) are

the unique minimal binomial generating set for IHk
. If IHk

is CI, with notation as
in (1), it follows that xc1 , yc2 and zc3 are in the support of any generating set of
IHk

. By Theorem 1.2 and the discussion around equation (12) we conclude that the
polynomials xc1 − zc3 and f2 as in (6) belong to any generating set of IHk

. �
If u, v are positive integers, we say that u strictly divides v, if u|v and for any

prime p such that p|u, then also p| v
u
. The following are immediate consequences of

Theorem 2.1.

Corollary 2.3. With notation as in Theorem 2.1, assume that gcd(a, b) = 1 or that
gcd(a, b) strictly divides b. Then, for k > ka,b we have that K[Hk] and grmK[Hk]
are complete intersections if and only if k is a multiple of b.

As it was the case of Theorem 1.2, we may formulate a shift-free form of Theorem
2.1, as follows.

Corollary 2.4. Consider the semigroup H minimally generated by the positive in-
tegers n1 < n2 < n3 satisfying inequality (10). If we let A = n3 − n1, B = n2 − n1

and
C =

∏
p prime, νp(B)<νp(A)

pνp(A),

then K[H] and grmK[H] are complete intersections if and only if n1 is divisible by
C.

Proof. We view the generators of H as obtained from shifting up by n1 the sequence
(0, n2 − n1, n3 − n1). We may then use Theorem 2.1 along the lines of the proof of
Corollary 1.6. �

The following consequence of Theorem 2.1 mainly recovers [7, Theorem 1.5] and
a special case of [6, Theorem 1.4]. Our careful treatment of the CI-property allows
to formulate a sharper statement regarding the principal period.

Theorem 2.5. (Jayanthan and Srinivasan [7], Herzog and Stamate [6])
Consider the positive integers a < b. Let Hk = ⟨k, a + k, b + k⟩ and T as in

Theorem 2.1. Then, for k > ka,b and all i one has that βi(K[Hk]) = βi(grmK[Hk])
and they are periodic in k with principal period T .
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Proof. The defining ideals IHk
and I∗Hk

are Cohen-Macaulay of height 2 in K[x, y, z].
They are minimally generated by 2 or 3 polynomials, depending whether they are
or they are not a complete intersection. Therefore the corresponding sequences of
Betti numbers for K[Hk] (and grm K[Hk]) are either (1, 2, 1) or (1, 3, 2), and as k
increases this repeats periodically with period T , by Theorem 2.1. �

It is claimed in [7, Theorem 2.1] that when we shift a generating sequence n1 <
n2 < · · · < nr of length r ≥ 4, if there are infinitely many complete intersections
in the family {K[Hk]}k≥0, then for k ≫ 0 these may occur only when (n1 + k) is
divisible by (nr−n1), in particular the principal period of their occurence is nr−n1.
We believe that this numerical condition is a sufficient one, but that it may not
capture all the complete intersections. Example 2.8 below gives a shifted family
with r = 4 generators and where the complete intersections occur more often than
predicted by [7].

Let us recall the following theorem of C. Delorme ([3]) which states that a nu-
merical semigroup whose semigroup ring is a complete intersection is obtained by
glueing two numerical semigroups with the same property.

Theorem 2.6. (Delorme, [3])
Let H be a semigroup minimally generated by the sequence a = a1, a2, . . . , ar with

gcd(a1, a2, . . . , ar) = d. The semigroup ring K[H] is a complete intersection if and
only if r = 1 or a can be written as a disjoint union

a = k1(bi1 , . . . , bis) ⊔ k2(bis+1 , . . . , bir),

where k1, k2 > 1, gcd(k1, k2) = d, k1 ∈ ⟨bis+1 , . . . , bir⟩, k2 ∈ ⟨bi1 , . . . , bis⟩, k1 /∈
{bis+1 , . . . , bir}, k2 /∈ {bi1 , . . . , bis}, gcd(bi1 , . . . , bis) = gcd(bis+1 , . . . , bir) = 1, and
K[⟨bi1 , . . . , bis⟩] and K[⟨bis+1 , . . . , bir⟩] are complete intersections.

Such a writing of a is called a CI-decomposition and a is a CI-sequence. Delorme’s
initial formulation treated the case d = gcd(a1, a2, . . . , ar) = 1. We slightly modified
it to include the case d > 1, necessary for us later.

Example 2.7. Let Hk = ⟨k, k + 4, k + 10⟩. With notation as in Theorem 2.1
D = gcd(4, 10) = 2, ka,b = 20 and T = 5. Hence for k > 20 we have that K[Hk] is
a complete intersection if and only if k = 5ℓ. Indeed, if ℓ is odd, then

(5ℓ, 5ℓ+ 4, 5ℓ+ 10) = (5ℓ+ 4)(1) ⊔ 5(ℓ, ℓ+ 2)

is a CI-decomposition, since 5ℓ+ 4 = 3 · ℓ+ 2 · (ℓ+ 2).
If ℓ is even, ℓ = 2ℓ′, then we have the CI-decomposition

(5ℓ, 5ℓ+ 4, 5ℓ+ 10) = (10ℓ′, 10ℓ′ + 4, 10ℓ′ + 10) = (10ℓ′ + 4)(1) ⊔ 10(ℓ′, ℓ′ + 1).

We’ll use Delorme’s criterion and Example 2.7 to produce a shifted family where
the complete intersections occur more than once for (nr − n1) consecutive shifts,
contrary to the assertions of [7, Theorem 2.1].

Example 2.8. Start with the CI-sequence (5ℓ, 5ℓ+ 4, 5ℓ+ 10) and consider

15ℓ+ 4 = 2 · (5ℓ) + (5ℓ+ 4) ∈
⟨
15ℓ

3
,
15ℓ+ 12

3
,
15ℓ+ 30

3

⟩
.
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Let Hk = ⟨k, k + 4, k + 12, k + 30⟩. A SINGULAR ([2]) computation shows that
the Betti numbers of K[Hk] repeat periodically starting with k0 = 95, with principal
period equal to 30. For k ≥ k0 the CI-intersections correspond to k = 15ℓ. If we let
a = (15ℓ, 15ℓ+ 4, 15ℓ+ 12, 15ℓ+ 30), it has the following CI-decomposition:

• ℓ is odd: a = (15ℓ+4)(1)⊔3(5ℓ, 5ℓ+4, 5ℓ+10), with 15ℓ+4 = 2·(5ℓ)+(5ℓ+4)
and (5ℓ, 5ℓ+ 4, 5ℓ+ 10) a CI-sequence.
• ℓ = 2ℓ′ is even: a = (30ℓ′+4)(1)⊔6(5ℓ′, 5ℓ′+2, 5ℓ′+5), with 30ℓ′+4 = 4·(5ℓ′)+
2·(5ℓ′+2) and the CI-sequence (5ℓ′, 5ℓ′+2, 5ℓ′+5) = (5ℓ′+2)(1)⊔5(ℓ′, ℓ′+1).

We remark that in [7] the authors have independently proposed a criterion to
determine the form of the (large enough) shifts k such that K[Hk] is a complete
intersection, a result similar to Theorem 2.1. With our notation it says:

Theorem 2.9. ([7, Theorem 1.4], Jayanthan, Srinivasan)
Assume b > a and k > max{ba, b(b − a)}. If we let Hk = ⟨k, k + a, k + b⟩, then

K[Hk] is a complete intersection if and only if there exist gcd(k, b) = d > 1 and
nonnegative integers α, β such that d · (k + a) = α · k + β · (k + b).

The following example contradicts this statement.

Example 2.10. (and counterexample to [7, Theorem 1.4] and to Theorem 2.9)
Let Hk = ⟨k, k+12, k+32⟩. With notation as in Theorem 2.1, D = gcd(12, 32) =

4, ka,b = 128, T = 32. Hence for k > 128 we have that K[Hk] is a complete
intersection if and only if k = 32ℓ.

With notation as in Theorem 2.9 we have a = 12, b = 32. It is easy to see that the
equation d · (k+12) = α ·k+β · (k+32) has solutions with d = gcd(k, 32) > 1 if and
only if k = 8ℓ, with ℓ > 0. However, a SINGULAR computation and also Delorme’s
Theorem 2.6 confirm our numerics above that when k ≫ 0 only for k = 32ℓ we
encounter complete intersections.

In Section 5 in Table 1 we present more examples of shifted families and their
infinite subsequences producing complete intersections.

3. Periodic changes in the defining equations

Let 0 < a < b be positive integers and Hk = ⟨k, k + a, k + b⟩. We show that
for k ≫ 0 the canonical generators f1, f2, f3 of IHk

change in a predictable way
when we shift up k by b. More exactly, f2 stays the same, as seen in Theorem
1.2, and in f1 and f3 the exponents of x and of z increase by the same amount
e = gcd(a, b)/ gcd(k, a, b).

If f = m1 − m2 with m1 and m2 distinct monomials in a polynomial ring, we
define the ecart of f as

ecart(f) = | deg(m1)− deg(m2)|.
Clearly the homogeneous binomials correspond to binomials with ecart zero.

Using topological methods and for numerical semigroups with arbitrarily many
generators, Vu shows in [11] that for large enough shifts k the nonhomogenous
minimal generators of IHk

have the same ecart.
11



Next we prove that for 3-generated semigroups the ecarts of the binomial gen-
erators stabilize starting from a shift that, as we see later in Section 5, is sensibly
smaller than the one found in [11].

Proposition 3.1. (see also Vu, [11, Corollary 3.7]) Let 0 < a < b be positive integers
and Hk = ⟨k, k + a, k + b⟩. Then for k > ka,b, ecart(f2) = 0 and

ecart(f1) = ecart(f3) = gcd(a, b)/ gcd(k, a, b).

Proof. By Theorem 1.2 we know that ecart(f2) = 0. For the rest we distinguish two
cases:
Case 1: K[Hk] is a complete intersection.

In this situation f1 = −f3, by the discussion around equation (12). The smallest
positive integer solutions c1 and c3 of the equation

c1 · k = c3 · (k + b)

are c1 = (b + k)/ gcd(k, b) and c3 = k/ gcd(k, b). This gives the minimal relation
f1 = xc1 − zc3 with ecart(f1) = b/ gcd(k, b) = gcd(a, b)/ gcd(k, a, b), where for the
latter equality we used equation (13).
Case 2: K[Hk] is not a complete intersection.

Since ecart(f2) = 0, using (3) and the discussion around it we get that ecart(f1) =
ecart(f3). Next we compute ecart(f1).

Let c1 be the smallest positive integer such that there exist u, v ≥ 0 with

c1 · k = u · (k + a) + v · (k + b), equivalently(15)

(c1 − u− v) · k = u · a+ v · b.(16)

Since K[Hk] is not a complete intersection, u, v are unique and positive. Let
∆ = gcd(k, a, b). Then c1, u, v introduced above are the same as for the semigroup
Lk = ⟨k′, k′ + a′, k′ + b′⟩, where k′ = k/∆, a′ = a/∆, b′ = b/∆ and gcd(k′, a′, b′) = 1.
Let e = gcd(a′, b′) = gcd(a/∆, b/∆) = gcd(a, b)/ gcd(k, a, b). Equation (16) becomes

(c1 − u− v) · k′ = u · a′ + v · b′.(17)

Since e and k′ are coprime we have that e|c1 − u − v. Let c1 − u − v = E · e with
E ≥ 1.

If E = 1, then ecart(f1) = ecart(xc1 − yuzv) = c1 − u− v = e and we’re done.
Assume E ≥ 2 and let D = gcd(a, b).
Our hypothesis on k implies that k > ab/D > D( b

D
−1)( a

D
−1) ≥ ∆( b

D
−1)( a

D
−1),

hence k′ ≥ (a
′

e
−1)( b′

e
−1), which is the conductor of the numerical semigroup ⟨a′

e
, b

′

e
⟩,

see [9]. Therefore there exist nonnegative integers α, β such that

e · k′ = α · a′ + β · b′.(18)

We may pick α and β satisfying (18) such that α + β is minimal. This implies
that 0 ≤ α < b′

e
. Indeed, if α ≥ b′

e
, then we may write e ·k′ = (α− b′

e
) ·a′+(β+ a′

e
) ·b′

with (α− b′

e
) + (β + a′

e
) < α + β, a contradiction.

Equation (18) implies (e+ α+ β) · k′ = α · (k′ + a′) + β · (k′ + b′). Again, by the
minimality of c1 in (15) we infer that

c1 = eE + u+ v ≤ e+ α + β.
12



If equality holds above, by the uniqueness of u and v satisfying (15) we get that
u = α and v = β, hence E = 1, a contradiction. Therefore

eE + u+ v < e+ α + β.(19)

After we multiply (18) by E and we subtract this from (17) we obtain

(u− Eα) · a′ + (v − Eβ) · b′ = 0.

As gcd(a′, b′) = e, there exists an integer t such that

u = Eα− t · b
′

e
,

v = Eβ + t · a
′

e
.

We substitute these into (19) and we obtain that

0 < (E − 1)(e+ α + β) < t · b
′ − a′

e
and t > 0.(20)

If u ≥ b′/e, then the equation

(c1 − u− v) · k′ = (u− b′

e
) · a′ + (v +

a′

e
) · b′

with (c1 − u− v) + (u− b′

e
) + (v + a′

e
) < c1 contradicts the minimality of c1 in (15).

Hence 0 < u < b′/e, that is

t · b
′

e
< Eα < (1 + t) · b

′

e
,

equivalently t = ⌊E · α
b′/e
⌋. Using α < b′

e
, we get that t ≤ E− 1. Together with (20),

this gives

e+ α + β <
b′ − a′

e
.(21)

Using (18) and (21) we get that ek′ ≤ (α + β) · b′ < b′ · ( b′−a′

e
− e), equivalently

k < b ·
(
b′ − a′

e2
− 1

)
≤ b

(
b− a

e2∆
− 1

)
= b

(
b− a

De
− 1

)
≤ b

D

(
b− a

e
−De

)
≤ b

D
(b− a−D),

which contradicts our choice of k. Therefore E = 1 and ecart(f1) = e. �
We can now prove the main result of this section describing the changes that

occur periodically in the minimal generating system of IHk
for large k.

Proposition 3.2. Consider the integers 0 < a < b. For any k denote Hk = ⟨k, k +
a, k + b⟩ and IHk

⊂ K[x, y, z] the defining ideal of K[Hk]. Denote by f1,k, f2,k, f3,k
the canonical generators of IHk

obtained as in (2).
If k > ka,b, then f2,k = f2,k+b and the polynomials f1,k+b and f3,k+b are obtained

from f1,k and f3,k, respectively, by increasing the exponents of x and of z by the same
amount e = gcd(a, b)/ gcd(k, a, b).
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Proof. By Theorem 1.2 we have f2,k = f2,k+b. We only prove the statement about
f1,k and f1,k+b; the one about f3,k and f3,k+b may be checked similarly.

Note that by Theorem 2.1 for k in our range either both ideals IHk
and IHk+b

are
complete intersections or none of them is.

If IHk
is a complete intersection, the smallest positive integer solutions c1 and c3

of the equation
c1 · k = c3 · (k + b).

are c1 = (b + k)/ gcd(k, b) and c3 = k/ gcd(k, b), which gives that f1,k = xc1 − zc3 .
Similarly, f1,k+b = xc′1 − zc

′
3 with c′1 = (b + k + b)/ gcd(k + b, b) = c1 +

b
gcd(k,b)

and

c′3 = (k+b)/ gcd(k+b, b) = c3+
b

gcd(k,b)
. By (13), b/ gcd(k, b) = gcd(a, b)/ gcd(k, a, b)

and this finishes the proof of this case.
If IHk

is not a complete intersection, then for f1,k and f1,k+b we look at the smallest
positive integer solutions c1 and c′1 for the equations

c1 · k = u · (k + a) + v · (k + b), and

c′1 · (k + b) = u′ · (k + a+ b) + v′ · (k + 2b), respectively.

Equivalently,

(c1 − u− v) · k = u · a+ v · b, and

(c′1 − u′ − v′) · (k + b) = u′ · a+ v′ · b.
We subtract these two equations and after using the formula for the ecart given

in Proposition 3.1 we obtain

e · b = (u′ − u) · a+ (v′ − v) · b,(22)

therefore b
gcd(a,b)

|u − u′. On the other hand, using Theorem 1.2 combined with (3)

we have that 0 < u, u′ < b
gcd(a,b)

, hence u = u′. From (22) we get v′ = v + e, and

by using Proposition 3.1 we also get that c′1 = c1 + e. Thus f1,k = xc1 − yuzv and
f1,k+b = xc1+e − yuzv+e, which finishes the proof. �
Example 3.3. For Hk = ⟨k, k + 4, k + 10⟩ we have k4,10 = 20. We computed with
SINGULAR several defining ideals of K[Hk] in order to put in evidence the changes
that occur periodically with k. We denote e = gcd(a, b)/ gcd(k, a, b).

Let us consider first some complete intersections. We have

• for k = 35: Hk = ⟨35, 39, 45⟩, e = 2, IH35 = (x9 − z7, y5 − x3z2).
• for k = 45: Hk = ⟨45, 49, 55⟩, e = 2, IH45 = (x11 − z9, y5 − x3z2).

And examples of non-complete intersections:

• for k = 36: Hk = ⟨36, 40, 46⟩, e = 1, IH36 = (x7 − y4z2, y5 − x3z2, z4 − x4y).
• for k = 46: Hk = ⟨46, 50, 56⟩, e = 1, IH46 = (x8 − y4z3, y5 − x3z2, z5 − x5y).

Note that the CIs occur with periodicity T = 5 (see Example 2.7) and the common
ecart e of the nonhomogeneous generators changes with period 2. Therefore we can
not expect that the equations of IHk

change by the rule of Proposition 3.2 with a
principal period less than b = 10. Indeed, regarding the numerical examples above,
we computed

• for k = 40: Hk = ⟨40, 44, 49⟩, e = 1, IH40 = (x5 − z4, y5 − x3z2).
14



• for k = 41: Hk = ⟨41, 45, 50⟩, e = 2, IH41 = (x12−y3z7, y5−x3z2, z9−x9y2).

One possible use of Proposition 3.2 is to reduce the computation of IHk
for a large

value of k to the computation of IHℓ
such that ℓ ≡ kmod b and ℓ > k0, where k0 is

a periodicity threshold that we can estimate from a and b, e.g. by the formula in
(4); see also Section 5.

Remark 3.4. Exploring the ideas in [11], given a1 < · · · < ar one could show
that a statement similar to Proposition 3.2 holds asymptotically in the shifted family
{Hk := ⟨a1 + k, . . . , ar + k⟩}k≥0 with arbitrary r. More precisely, if we let d =
gcd(ar−a1, . . . , ar−ar−1) for k > kV the inhomogeneous equations of K[Hk+(ar−a1)]
are obtained from the inhomogeneous equations of K[Hk] by adding the same amount
e = d/ gcd(k, d) to both the exponents of x1 and of xr.

4. Regularity for tangent cones

We keep the usual notation for Hk = ⟨k, k + a, k + b⟩ where 0 < a < b and k
are integers. In this section we study the asymptotic behaviour of the Castelnuovo-
Mumford regularity of grmK[Hk] viewed as an S = K[x, y, z]-module. Recall that

reg grmK[Hk] = max{j − i : βS
ij(grmK[Hk]) > 0}.

For k large enough we can access directly the maps and the shifts in the minimal
graded S-free resolution of grmK[Hk] ∼= S/I∗Hk

.

Let k > ka,b and e = gcd(a,b)
gcd(k,a,b)

.

Case 1: K[Hk] is not a complete intersection.
In this case the canonical generators in (2) are obtained from the equations

c1 · k = r12 · (a+ k) + r13 · (b+ k),

c2 · (a+ k) = r21 · k + r23 · (b+ k),

c3 · (b+ k) = r31 · k + r32 · (a+ k)

By Corollary 1.4 and the discussion before it, I∗Hk
is minimally generated by the

initial forms of canonical generators of IHk
. It is easy to see from the equations

above that c1 > r12 + r13 and c3 < r31 + r32, hence

I∗Hk
= (yr12zr13 , yc2 − xr21zr23 , zc3).

It is a Cohen-Macaulay ideal of codimension 2 and the ideal of maximal minors of

the matrix

(
zr23 0 −yr12
−yr32 zr13 xr21

)
. By the Hilbert-Burch Theorem (see [1, Section

1.5]) the minimal free resolution of S/I∗Hk
is

0← S
(yr12zr13 ,yc2−xr21zr23 ,zc3 )←−−−−−−−−−−−−−−−−

S(−r12 − r13)
⊕

S(−c2)
⊕

S(−c3)


zr23 −yr32
0 zr13

−yr12 xr21


←−−−−−−−−−−−−

S(−r12 − c3)
⊕

S(−r21 − c3)
← 0.
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Note that for the last map to be homogeneous it is important that c2 = r21 + r23,
which is true in our case by Theorem 1.2. The regularity of a Cohen-Macaulay
K-algebra is read off the shifts in the last step of the minimal resolution, hence

regS/I∗Hk
= c3 − 2 + max{r12, r21}.

Observe that for k in our range one has, by Theorem 1.2, r21 = (b− a)/ gcd(a, b)
and that, according to Proposition 3.2, r12 is a constant that depends on kmod b.

Consequently

(23) regS/I∗Hk+b
= regS/I∗Hk

+ e.

Case 2: K[Hk] is a complete intersection.
In this situation, by the first part of the proof of Proposition 3.2 we get IHk

=
(xc1− zc3 , yc2−xr21zr23), where c3 = k/ gcd(b, k). With the same argument as in the
previous case one gets that the initial forms of the generators also generate I∗Hk

,

I∗Hk
= (zc3 , yc2 − xr21zr23).

The minimal graded free resolution of S/I∗Hk
is

0← S
(zc3 ,yc2−xr21zr23 )←−−−−−−−−−−−

S(−c3)
⊕

S(−c2)

yc2 − xr21zr23

−zc3


←−−−−−−−−−−−− S(−c2 − c3)← 0,

hence

regS/I∗Hk
= c2 + c3 − 2 =

b

gcd(a, b)
+

k

gcd(b, k)
− 2.

Using (13) we conclude that equation (23) holds in this case, as well.
We summarize our findings in the following statement.

Theorem 4.1. With notation as above, for k > ka,b

regS/I∗Hk+b
= regS/I∗Hk

+ e.

In particular reg grmK[Hk] is a quasilinear function for k ≫ 0 and

lim
k→∞

reg grm K[Hk] =∞.

5. Estimates for well behavior

Let 0 < a < b and Hk = ⟨k, a+ k, b+ k⟩. Our estimate for the threshold

ka,b = max

{
b

(
b− a

D
− 1

)
, b

a

D

}
in Theorems 1.2, 2.1, 1.3 or 2.5 is not optimal. In practice, the phenomena described
by those results may start happening earlier, from smaller shifts. However, as the
examples in Table 1 show, our estimate is not too far from those and it is sometimes
exact.

In [11] it is presented a bound kV such that for all shifts k > kV the Betti numbers
of IHk

are periodic in k. In [6, Theorem 1.4] it is shown that starting with the same
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shift kV one has βi(IHk
) = βi(I

∗
Hk

) for all i, hence the periodicity in k of βi(I
∗
Hk

).
We next show that our threshold ka,b is better (i.e. lower) than kV .

In this setup we recall how the constant kV was introduced in [11]. One needs the
ideal J of homogeneous polynomials in IHk

for some (hence for all) k > 0. It is an
easy exercise to see that J is generated by homogeneous binomials and from here to

derive that J = (y
b
D − x

b−a
D z

a
D ) and reg J = b/D, where D = gcd(a, b).

If we denote by c =
(

b
D
− 1

) (
b−a
D
− 1

)
the conductor of the semigroup

⟨
b
D
, b−a

D

⟩
,

and B = b+ (b− a) + 3 +D, we let

kV = max

{
b(3 + reg J), b(b− a)

(
Dc+ b

b− a
+B

)}
.

Let us denote k
(1)
V and k

(2)
V , respectively, the two quantities in the formula above

defining kV .

Proposition 5.1. With notation as above kV > (b− a)ka,b.

Proof. A conservative estimation is B ≥ 7 and

b(b− a)

(
Dc+ b

b− a
+B

)
= b (Dc+ b+B(b− a)) ≥ b(b+ 7) > b

(
3 +

b

D

)
= k

(1)
V .

On one side

k
(2)
V = b

((
b

D
− 1

)
(b− a−D) + b+B(b− a)

)
= b

(
(b− a−D)

(
b

D
− 1 + B

)
+BD + b

)
> b(b− a−D) · b

D
.

On the other side, we may write

k
(2)
V = b

(
(b− a)

(
b

D
− 1 +B

)
− b+D + b

)
> b(b− a)

a

D
.

Hence kV = k
(2)
V > (b− a)ka,b. �

Based on numerical experiments, it is suggested in [11, pp. 68] that the periodicity
for the Betti numbers of S/IHk

might occur already when k > kV (1) . Our results
confirm this bound for 3-generated semigroups, since ka,b < kV (1) .

It is also clear that ka,b improves the threshold kJS = max{ab, (b−a)b} introduced
in [7, Theorem 1.4].

For several families of semigroups Hk = ⟨k, k+a, k+ b⟩ we used SINGULAR ([2])
to compute

kCM = min{j ≥ 0 : grmK[Hk] is Cohen-Macaulay for all k > j},
kS1 = min{j ≥ 0 : βS

i (K[Hk]) is periodic in k for all k > j and all i},
kS2 = min{j ≥ 0 : βS

i (grmK[Hk]) is periodic in k for all k > j and all i}.
As a general fact, kCM ≤ kS2 ≤ kS1 .
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We recorded these values in Table 1 together with the estimates kV , kJS, kV (1)

and our bound ka,b. We also listed the asymptotic complete intersections as given
by Theorem 2.1.

Table 1. Thresholds

(0, a, b) kCM kS1 kS2 CI ka,b kV kJS kV (1)

(0, 4, 10) 0 16 16 (5ℓ, 5ℓ+ 4, 5ℓ+ 10) 20 1520 60 80
(0, 4, 6) 0 8 8 (3ℓ, 3ℓ+ 4, 3ℓ+ 6) 12 192 24 36
(0, 6, 15) 0 24 24 (5ℓ, 5ℓ+ 6, 5ℓ+ 15) 30 4635 135 120
(0, 12, 32) 76 108 84 (32ℓ, 32ℓ+ 12, 32ℓ+ 32) 128 42368 640 352
(0, 30, 57) 372 540 540 (19ℓ, 19ℓ+ 30, 19ℓ+ 57) 570 166383 1710 1254
(0, 1, 9) 46 55 46 (9ℓ, 9ℓ+ 1, 9ℓ+ 9) 63 2097 72 108
(0, 7, 8) 0 49 49 (8ℓ, 8ℓ+ 7, 8ℓ+ 8) 56 168 56 88

(0, 18, 20) 0 162 162 (20ℓ, 20ℓ+ 18, 20ℓ+ 20) 180 1480 360 260
(0, 2, 6) 0 4 4 (3ℓ, 3ℓ+ 2, 3ℓ+ 6) 6 420 24 36
(0, 2, 11) 68 79 68 (11ℓ, 11ℓ+ 2, 11ℓ+ 11) 88 3377 99 154

If we let

k3 = min{j ≥ 0 : Hk is minimally 3-generated for all k > j},
then 0 < k3 ≤ b ≤ ka,b. We always considered for K[H] the presentation K[x, y, z]/I
coming from the K-algebra map ϕ described in the Introduction. Thus it may
happen that kS1 ≤ k3. Indeed, as one can see from the table, if (a, b) = (2, 6) one
has kS1 = 4 < k3 = 6 = ka,b, which shows that our new bound ka,b is exact if we
restrict the study of the periodicity to minimally 3-generated semigroups.

The data in the table indicates that kS1 differs from ka,b by either a or b− a, de-
pending on which term dominates in the max-formula defining ka,b. More numerical
experiments encourage us to formulate the following conjecture.

Conjecture 5.2. With notation as above

(i)

kS1 =

{(
b
D
− 1

)
· a if b ≤ 2a+D,(

b
D
− 1

)
· (b− a)− b if b > 2a+D.

(ii)

kS2 =


kS1 if b ≤ 2a+D,

kS1 − 2a if b = 2a+ 2D,

kS1 − b if b > 2a+ 2D.

Our methods allowed to improve kV for 3-generated semigroups only. We hope
this work provides motivation to look for better estimates of the various thresholds
of interest, for arbitrary families of shifted semigroups. This goes hand in hand
with a better understanding of the reasons that trigger the periodic behaviour of
the Betti numbers, of the regularity and the others aspects discussed in this paper.
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