ON THE OCCURRENCE OF COMPLETE INTERSECTIONS IN SHIFTED FAMILIES OF NUMERICAL SEMIGROUPS

DUMITRU I. STAMATE

Dedicated to Professor Jürgen Herzog on his 80th anniversary

ABSTRACT. We give a necessary and sufficient condition for the existence of infinitely many complete intersections in the shifted family of a numerical semigroup.

In this note we give a necessary and sufficient condition for the existence of infinitely many complete intersections in the shifted family of a numerical semigroup. We first introduce the terminology and the necessary background before giving the result in Theorem 7 and Corollary 8.

Let K be any field and $\mathbf{a} = a_1 < \cdots < a_r$ a list of nonnegative integers, $r \geq 2$. We denote by $I(\mathbf{a})$ the kernel of the K-algebra map $\varphi : K[x_1, \ldots, x_r] \to K[t]$ letting $\varphi(x_i) = t^{a_i}$ for $i = 1, \ldots, r$. The image of φ is the semigroup ring $K[\langle \mathbf{a} \rangle]$ over K of the numerical semigroup $\langle \mathbf{a} \rangle := \sum_{i=1}^r \mathbb{N} a_i \subseteq \mathbb{N}$ spanned by \mathbf{a} . Note that we do not impose that the elements in \mathbf{a} be coprime.

It has been an ongoing topic of research to describe generators for $I(\mathbf{a})$ explicitly, or its algebraic properties in terms of the integers \mathbf{a} . Unless \mathbf{a} has some special form, it is computationally challenging to write down a minimal generating set for $I(\mathbf{a})$, see [10] or the survey [9].

When r = 2, $I(\mathbf{a})$ is a principal ideal. When r = 3, in one of his very first and also one of his most cited papers [6], Herzog proved that $I(\mathbf{a})$ is generated by at most three binomials, which he shows how to obtain in terms of \mathbf{a} . Moreover, Herzog in loc. cit. describes for which a_1, a_2, a_3 the ideal $I(\mathbf{a})$ is generated by two binomials, i.e. $I(\mathbf{a})$ is a complete interesection ideal. Recall that an ideal I in the polynomial ring $K[x_1, \ldots, x_r]$ is called a complete intersection (CI for short) if it can be generated by height I elements. One also says thay $K[x_1, \ldots, x_r]/I$ is a CI ring.

Extending [6], in [3] Delorme proves for arbitrary r that $I(\mathbf{a})$ is a CI ideal if and only if the sequence \mathbf{a} can be obtained by a recursive procedure which nowadays is called gluing.

For any nonnegative integer k we let $\mathbf{a} + k = a_1 + k, \dots, a_r + k$. The sequence $\{\langle \mathbf{a} + k \rangle\}_k$ is called the *shifted family* of (numerical) semigroups generated by \mathbf{a} . Based on numerical experiments, Herzog and Srinivasan conjectured, and Vu proved in [11] that the *i*th Betti number of $I(\mathbf{a} + k)$ is eventually periodic in k for $k \gg 0$.

²⁰¹⁰ Mathematics Subject Classification. Primary 13C40, 16S36; Secondary 20M13.

Key words and phrases. complete intersection, numerical semigroup, shifted family.

Theorem 1. (Vu, [11, Theorem 1.1]) For all $i \ge 0$, $\beta_i(I(\mathbf{a}+k)) = \beta_i(I(\mathbf{a}+k+(a_r-a_1)))$ for $k \gg 0$.

In particular, for $k \gg 0$, $I(\mathbf{a} + k)$ is CI if and only if $I(\mathbf{a} + k + (a_r - a_1))$ is CI, as it was already proved by Jayanthan and Srinivasan in [7], see Theorem 3. The question remains, if complete intersections do occur for $k \gg 0$ in the shifted family $\langle \mathbf{a} + k \rangle$. Equivalently, whether $I(\mathbf{a} + k)$ is CI for infinitely many values of k. When r = 3, the answer is positive as indicated in [7], and in [8, Theorem 3.1] we give the precise values of k (large enough) for which $I(\mathbf{a} + k)$ is CI.

When $r \geq 4$, the number of CIs may be finite or not in shifted families, as noticed in [7]. Of course, we can compute a threshold k_0 proved in [11] (usually it is very large) from where the Betti numbers of $I(\mathbf{a} + k)$ start repeating periodically, and then finding with Singular ([2]) or other specialized software minimal systems of generators for $I(\mathbf{a} + k_0), \ldots, I(\mathbf{a} + k_0 + (a_r - a_1 - 1))$. Yet, we would like to know without computing many toric ideals in the shifted family, whether CIs occur infinitely many times.

We consider the ideal

$$J(\mathbf{a}) = (f \in I(\mathbf{a}) : f \text{ homogeneous}),$$

where by homogeneous we refer to the standard grading with deg $x_i = 1$ for all i. Note that $J(\mathbf{a}) = J(\mathbf{a} + k)$ for all $k \ge 0$.

It was remarked in [7] and in [11] that the ideal $J(\mathbf{a})$ plays a role in studying the asymptotic properties in the shifted family $\{I(\mathbf{a}+k)\}_{k\geq 0}$. Related to the CI property, in [1] we proved the following.

Proposition 2. ([1, Corollary 1.6]) Let $r \ge 3$ and $\mathbf{a} = a_1 < \cdots < a_r$. Then if $I(\mathbf{a}+k)$ is CI for some $k \ge (a_r - a_1)^2 - a_1$, the ideal $J(\mathbf{a})$ is CI and it is minimally generated by its reduced Gröbner basis with respect to the reverse lexicographic order.

The next result is from [7], but we give it in the form from [1, Lemma 1.2 (2)].

Theorem 3. (Jayanthan and Srinivasan, [7, Theorem 2.1]) Assume $r \geq 3$ and $k \geq (a_r - a_1)^2 - a_1$. If $I(\mathbf{a} + k)$ is CI, then $I(\mathbf{a} + k + \ell(a_r - a_1))$ is CI for all $\ell \geq 0$.

In particular, if $I(\mathbf{a} + k)$ is CI for infinitely many shifts k, the ideal $J(\mathbf{a})$ is a CI ideal. The purpose of this note is to show in Theorem 7 and Corollary 8 that the converse of this statement also holds.

A key observation is that $J(\mathbf{a})$ is a toric ideal. Lacking a proper reference, we include a proof here.

Lemma 4. Given the nonnegative integers $\mathbf{a} = a_1 < \cdots < a_r$, the ideal $J(\mathbf{a})$ is the defining ideal of the semigroup ring associated to the affine semigroup generated by $(a_1, 1), \ldots, (a_r, 1)$.

Proof. We denote $L = \sum_{i=1}^{r} \mathbb{N}(a_i, 1) \subset \mathbb{N}^2$ and K[L] the attached semigroup ring. The defining ideal of K[L] is the kernel of the monomial map $\psi : K[x_1, \ldots, x_r] \to K[s, t]$ given by $\psi(x_i) = s^{a_i}t$ for $i = 1, \ldots, r$. As explained in [10], Ker ψ is generated by the binomials $\prod_{i=1}^{r} x_i^{\alpha_i} - \prod_{i=1}^{r} x_i^{\beta_i}$ where $\sum_{i=1}^{r} a_i \alpha_i = \sum_{i=1}^{r} a_i \beta_i$ and $\sum_{i=1}^{r} \alpha_i = \sum_{i=1}^{r} \beta_i$. Clearly, Ker $\psi \subseteq J(\mathbf{a})$. For the reverse inclusion, we consider the grading on $K[x_1, \ldots, x_r]$ induced by **a** where $\deg_{\mathbf{a}}(x_i) = a_i$ for $i = 1, \ldots, r$. It is known that $I(\mathbf{a})$ is homogeneous with respect to this **a**-grading.

Let $0 \neq f$ be a homogeneous polynomial in $I(\mathbf{a})$ with respect to the standard grading. We prove that $f \in \operatorname{Ker} \psi$. We decompose f into \mathbf{a} -graded components, and each of these will be homogeneous (in the standard grading). So, without loss of generality we may assume that $f \in I(\mathbf{a})$ is homogeneous with respect to both the standard grading and the \mathbf{a} -grading.

We write $f = \sum_{i=1}^{p} c_i m_i$ where $c_i \in K$ and m_i is a monomial for $i = 1, \ldots, p$ with $\deg_{\mathbf{a}}(m_i)$ the same for all *i*. Since $f \in I(\mathbf{a})$ and $I(\mathbf{a})$ is the kernel of the *K*-algebra map $\varphi : K[x_1, \ldots, x_r] \to K[s]$ letting $\varphi(x_i) = s^{a_i}$ for $i = 1, \ldots, r$, we get that $p \ge 2$ and $\sum_{i=1}^{p} c_i = 0$.

Consequently, $f = \sum_{i=1}^{p=1} c_i (m_i - m_p)$ is generated by binomials in Ker ψ , which proves $J(\mathbf{a}) = \text{Ker}(\psi)$.

Extending the work of Delorme [3], for affine semigroups in \mathbb{N}^d the CI property was characterized by Fisher, Morris and Shapiro ([4]) as follows.

Theorem 5. (Fischer, Morris and Shapiro [4, Theorem 3.1])

Let H be an affine semigroup that is not a free abelian semigroup and assume that H is minimally generated by $\mathcal{V} = \{v_1, \ldots, v_r\} \subset \mathbb{N}^d$. The semigroup ring K[H] is CI if and only if there exists a partition $\mathcal{V} = \mathcal{V}_1 \sqcup \mathcal{V}_2$ and $0 \neq v \in \langle \mathcal{V}_1 \rangle \cap \langle \mathcal{V}_2 \rangle$ such that $\mathbb{Z}\mathcal{V}_1 \cap \mathbb{Z}\mathcal{V}_2 = \mathbb{Z}v$ and both semigroup rings $K[\langle \mathcal{V}_1 \rangle]$ and $K[\langle \mathcal{V}_2 \rangle]$ are CI.

A partition of \mathcal{V} as above will be called *a CI-split*.

Lemma 6. Let $r \geq 3$ and the nonnegative integers $\mathbf{a} = a_1 < \cdots < a_r$. Assume $J(\mathbf{a})$ is a CI ideal. Fix $k \geq 0$ and set $\mathcal{V} = \{(a_1 + k, 1), \ldots, (a_r + k, 1)\}$. If $\mathcal{V} = \mathcal{V}_1 \sqcup \mathcal{V}_2$ is any CI-split for \mathcal{V} and $|\mathcal{V}_1| \leq |\mathcal{V}_2|$ then

(i) $|\mathcal{V}_1| = 1$, (ii) $\mathcal{V}_1 \cap \{(a_1 + k, 1), (a_r + k, 1)\} = \emptyset$.

Proof. Let $\mathbb{Z}\mathcal{V}_1 \cap \mathbb{Z}\mathcal{V}_2 = \mathbb{Z}v$ and $v = (a, b) \in \mathbb{N}^2$ is as given by Theorem 5.

(i) If we assume $2 \leq |\mathcal{V}_1|$, then we may subtract two generators in \mathcal{V}_1 and in \mathcal{V}_2 , respectively, and we obtain that $(e_1, 0) \in \mathbb{Z}\mathcal{V}_1$ and $(e_2, 0) \in \mathbb{Z}\mathcal{V}_2$ for some e_1, e_2 positive integers. Clearly $(e_1 \cdot e_2, 0) \in \mathbb{Z}\mathcal{V}_1 \cap \mathbb{Z}\mathcal{V}_2$, therefore b = 0. Since v = (a, 0) is also a linear combination of vectors in \mathcal{V} with nonnegative integer coefficients we get that a = 0 and $e_1e_2 = 0$, a contradiction. Hence $|\mathcal{V}_1| = 1$.

(*ii*) Let $\mathcal{V}_1 = \{a_p + k\}$ with $1 \leq p \leq r$. Then $v = c(a_p + k, 1) = \sum_{i=1}^r c_i(a_i + k, 1)$ for some nonnegative integers c, c_1, \ldots, c_r , with c > 0 and $c_p = 0$. Thus $c = \sum_{i=1}^r c_i$. Also, since r > 2 we obtain

$$\left(\sum_{i=1}^{r} c_i\right)(a_1+k) < \sum_{i=1}^{r} c_i(a_i+k) < \left(\sum_{i=1}^{r} c_i\right)(a_r+k),$$

which gives $a_1 + k < a_p + k < a_r + k$ and $\mathcal{V}_1 \cap \{(a_1 + k, 1), (a_r + k, 1)\} = \emptyset$.

Theorem 7. Let $r \ge 3$ and the nonnegative integers $\mathbf{a} = a_1 < \cdots < a_r$. If $J(\mathbf{a})$ is a CI ideal, then $I(\mathbf{a} + \ell(a_r - a_1) - a_1)$ is a CI ideal for all $\ell \ge a_r - a_1$.

Proof. We prove the statement by induction on $r \geq 3$.

If r = 3, then it is an easy exercise to show that if we let $d = \gcd(a_2 - a_1, a_3 - a_1)$, then $J(\mathbf{a}) = (x_2^{(a_3-a_1)/d} - x_1^{(a_3-a_2)/d}x_3^{(a_2-a_1)/d})$, hence it is always a CI. It is proven in [8, Theorem 3.1] that for shifts $k > (a_3 - a_1)^2 - a_3$, $I(\mathbf{a} + k)$ is CI if and only if $a_1 + k$ is a multiple of a certain constant T that is a divisor of $\gcd(a_3 - a_1, a_2 - a_1)$. In particular, $I(\mathbf{a} + \ell(a_3 - a_1) - a_1)$ is CI for all $\ell \ge a_3 - a_1$.

Assume r > 3 and $k = \ell(a_r - a_1) - a_1$ with $\ell \ge a_r - a_1$. If we let $\mathcal{V} = \{(a_1 + k, 1), \dots, (a_r + k, 1)\}$, by Theorem 5 and Lemma 6, there exists a CI-split

(1)
$$\mathcal{V} = \mathcal{V}_1 \sqcup \mathcal{V}_2$$

with $\mathcal{V}_1 = \{(a_p, 1)\}$ for some 1 . Denote by**b**the sequence obtained from**a** $by removing <math>a_p$. Since $J(\mathbf{b})$ is CI, by the induction hypothesis we get that $I(\mathbf{b} + k)$ is CI for our choice of k.

Notice that

$$\begin{aligned} \mathbb{Z}\mathcal{V}_2 &= \mathbb{Z}\{(a_i + k, 1) : 1 \le i \le r, i \ne p\} \\ &= \mathbb{Z}\{(a_1 + k, 1), (a_i - a_1, 0) : 2 \le i \le r, i \ne p\} \\ &= \mathbb{Z}\{(a_1 + k, 1), (d, 0)\}, \end{aligned}$$

where we let $d = \gcd(a_2 - a_1, \ldots, \widehat{a_p - a_1}, a_r - a_1)$ and we marked by $\widehat{}$ the absence of that term from the enumeration.

Using this observation, it is routine to check that

$$\mathbb{Z}(a_p+k,1) \cap \mathbb{Z}\mathcal{V}_2 = \mathbb{Z}(D(a_p+k),D),$$

where $D = d/\gcd(d, a_p - a_1)$. Clearly D > 1, otherwise $(a_p + k, 1) \in \langle \mathcal{V}_2 \rangle$, which is false.

From the CI-split (1) we also obtain that $D(a_p + k, 1) \in \langle \mathcal{V}_2 \rangle$. Therefore, there exist nonnegative integers c, c_1, \ldots, c_r with $c > 0, c_p = 0$ such that $\sum_{i=0}^r c_i = D$ and

(2)
$$D \cdot (a_p + k) = \sum_{1 \le i \le r, i \ne p} c_i(a_i + k).$$

As $\mathbb{Z}(\mathbf{b}+k) = \mathbb{Z}\{a_1+k,d\} = \mathbb{Z}d$, it follows that $\mathbb{Z}(a_p+k) \cap \mathbb{Z}(\mathbf{b}+k) = \mathbb{Z}v$, where $v = \operatorname{lcm}(a_p+k,d) = (a_p+k) \cdot d/\operatorname{gcd}(a_p-a_1,d) = (a_p+k) \cdot D$. Equation (2) gives that $v \in \mathbb{Z}(\mathbf{b}+k)$, hence

$$\mathbf{a} + k = \{a_p + k\} \sqcup \{\mathbf{b} + k\}$$

is a CI-split for $\mathbf{a} + k$, by Theorem 5. This finishes the proof.

Corollary 8. Let $\mathbf{a} = a_1 < \cdots < a_r$ and $r \geq 2$. The ideal $I(\mathbf{a} + k)$ is CI for infinitely many k > 0 if and only if $J(\mathbf{a})$ is a CI ideal.

Example 9. (1) For $\mathbf{a} = (0, 4, 12, 30)$ a computation with Singular ([2]) shows that $J(\mathbf{a}) = (x_2^3 - x_1^2 x_3, x_3^5 - x_1^3 x_4^2)$, which is a CI ideal. Therefore, by Theorem 7 the ideal I(k, k + 4, k + 12, k + 30) is CI for $k = 30\ell$ and $\ell \ge 30$. In fact, as noted in [8, Example 3.8], when $k \ge 95$ the ideal I(k, k + 4, k + 12, k + 30) is CI if and only if k is a multiple of 15.

(2) On the other hand, when $\mathbf{a} = (0, 1, 2, 3)$, using Singular we obtain that $J(\mathbf{a}) = (x_3^2 - x_2x_4, x_2x_3 - x_1x_4, x_2^2 - x_1x_3)$, which is not a CI ideal since height $J(\mathbf{a}) = 2$. Therefore, by Corollary 8 the ideal I(k, k + 1, k + 2, k + 3) is not CI for any $k \gg 0$. In fact, the latter is not CI for any $k \ge 0$, see [5].

Acknowledgement. We greatfully acknowledge the use of the computer algebra system SINGULAR ([2]) for our experiments. We thank Ignacio García Marco for useful discussions and an anonymous referee for suggestions which improved the exposition. The author was partly supported by a grant of the Romanian Ministry of Education, CNCS–UEFISCDI under the project PN-III-P1-1.1-TE2021-1633.

Data Availability Statement. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] M. Cimpoeaş, D.I. Stamate, On intersections of complete intersection ideals, J. Pure Appl. Algebra **220** (2016), 3702–3712.
- [2] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR 4-3-0 A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2022).
- [3] C. Delorme, Sous-monoïdes d'intersection complète de N, Ann. Sci. Ecole Norm. Sup. (4) 9 (1976), no. 1, 145–154.
- [4] K. G. Fischer, W. Morris, J. Shapiro, Affine semigroup rings that are complete intersection, Proc. Amer. Math. Soc. 125 no 11 (1997), 3137–3145.
- [5] P. Gimenez, I. Sengupta, I. Srinivasan, Minimal graded free resolutions for monomial curves defined by arithmetic sequences, J. Algebra 388 (2013) 294–310.
- [6] J. Herzog, Generators and relations of Abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175–193.
- [7] A.V. Jayanthan, H. Srinivasan, Periodic occurence of complete intersection monomial curves, Proc. Amer. Math. Soc. 141 no 12 (2013), 4199–4208.
- [8] D. I. Stamate, Asymptotic properties in the shifted family of a numerical semigroup with few generators, Semigroup Forum **93** (2016), 225–246.
- [9] D.I. Stamate, Betti numbers for numerical semigroup rings, In: Multigraded algebra and applications (V. Ene, E. Miller, Eds.), 133–157, Springer Proc. Math. Stat., 238, Springer, Cham, 2018.
- [10] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American Mathematical Society, 1996.
- [11] T. Vu, Periodicity of Betti numbers of monomial curves, J. Algebra 418 (2014), 66–90.

DUMITRU I. STAMATE, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF BUCHAREST, STR. ACADEMIEI 14, BUCHAREST -010014, ROMANIA

Email address: dumitru.stamate@fmi.unibuc.ro