
ON THE OCCURRENCE OF COMPLETE INTERSECTIONS IN
SHIFTED FAMILIES OF NUMERICAL SEMIGROUPS

DUMITRU I. STAMATE

Dedicated to Professor Jürgen Herzog on his 80th anniversary

Abstract. We give a necessary and sufficient condition for the existence of infin-
itely many complete intersections in the shifted family of a numerical semigroup.

In this note we give a necessary and sufficient condition for the existence of in-
finitely many complete intersections in the shifted family of a numerical semigroup.
We first introduce the terminology and the necessary background before giving the
result in Theorem 7 and Corollary 8.

Let K be any field and a = a1 < · · · < ar a list of nonnegative integers, r ≥ 2.
We denote by I(a) the kernel of the K-algebra map ϕ : K[x1, . . . , xr]→ K[t] letting
ϕ(xi) = tai for i = 1, . . . , r. The image of ϕ is the semigroup ring K[〈a〉] over K of
the numerical semigroup 〈a〉 :=

∑r
i=1Nai ⊆ N spanned by a. Note that we do not

impose that the elements in a be coprime.
It has been an ongoing topic of research to describe generators for I(a) explicitly,

or its algebraic properties in terms of the integers a. Unless a has some special form,
it is computationally challenging to write down a minimal generating set for I(a),
see [10] or the survey [9].

When r = 2, I(a) is a principal ideal. When r = 3, in one of his very first
and also one of his most cited papers [6], Herzog proved that I(a) is generated by
at most three binomials, which he shows how to obtain in terms of a. Moreover,
Herzog in loc. cit. describes for which a1, a2, a3 the ideal I(a) is generated by two
binomials, i.e. I(a) is a complete interesection ideal. Recall that an ideal I in the
polynomial ring K[x1, . . . , xr] is called a complete intersection (CI for short) if it
can be generated by height I elements. One also says thay K[x1, . . . , xr]/I is a CI
ring.

Extending [6], in [3] Delorme proves for arbitrary r that I(a) is a CI ideal if and
only if the sequence a can be obtained by a recursive procedure which nowadays is
called gluing.

For any nonnegative integer k we let a + k = a1 + k, . . . , ar + k. The sequence
{〈a + k〉}k is called the shifted family of (numerical) semigroups generated by a.
Based on numerical experiments, Herzog and Srinivasan conjectured, and Vu proved
in [11] that the ith Betti number of I(a + k) is eventually periodic in k for k � 0.
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Theorem 1. (Vu, [11, Theorem 1.1]) For all i ≥ 0, βi(I(a + k)) = βi(I(a + k +
(ar − a1))) for k � 0.

In particular, for k � 0, I(a + k) is CI if and only if I(a + k + (ar − a1)) is CI,
as it was already proved by Jayanthan and Srinivasan in [7], see Theorem 3. The
question remains, if complete intersections do occur for k � 0 in the shifted family
〈a + k〉. Equivalently, whether I(a + k) is CI for infinitely many values of k. When
r = 3, the answer is positive as indicated in [7], and in [8, Theorem 3.1] we give the
precise values of k (large enough) for which I(a + k) is CI.

When r ≥ 4, the number of CIs may be finite or not in shifted families, as
noticed in [7]. Of course, we can compute a threshold k0 proved in [11] (usually it
is very large) from where the Betti numbers of I(a+ k) start repeating periodically,
and then finding with Singular ([2]) or other specialized software minimal systems
of generators for I(a + k0), . . . , I(a + k0 + (ar − a1 − 1)). Yet, we would like to
know without computing many toric ideals in the shifted family, whether CIs occur
infinitely many times.

We consider the ideal

J(a) = (f ∈ I(a) : f homogeneous),

where by homogeneous we refer to the standard grading with deg xi = 1 for all i.
Note that J(a) = J(a + k) for all k ≥ 0.

It was remarked in [7] and in [11] that the ideal J(a) plays a role in studying
the asymptotic properties in the shifted family {I(a + k)}k≥0. Related to the CI
property, in [1] we proved the following.

Proposition 2. ([1, Corollary 1.6]) Let r ≥ 3 and a = a1 < · · · < ar. Then if
I(a+ k) is CI for some k ≥ (ar− a1)2− a1, the ideal J(a) is CI and it is minimally
generated by its reduced Gröbner basis with respect to the reverse lexicographic order.

The next result is from [7], but we give it in the form from [1, Lemma 1.2 (2)].

Theorem 3. (Jayanthan and Srinivasan, [7, Theorem 2.1]) Assume r ≥ 3 and
k ≥ (ar − a1)2− a1. If I(a+ k) is CI, then I(a+ k+ `(ar − a1)) is CI for all ` ≥ 0.

In particular, if I(a + k) is CI for infinitely many shifts k, the ideal J(a) is a CI
ideal. The purpose of this note is to show in Theorem 7 and Corollary 8 that the
converse of this statement also holds.

A key observation is that J(a) is a toric ideal. Lacking a proper reference, we
include a proof here.

Lemma 4. Given the nonnegative integers a = a1 < · · · < ar, the ideal J(a) is the
defining ideal of the semigroup ring associated to the affine semigroup generated by
(a1, 1), . . . , (ar, 1).

Proof. We denote L = Σr
i=1N(ai, 1) ⊂ N2 and K[L] the attached semigroup ring.

The defining ideal of K[L] is the kernel of the monomial map ψ : K[x1, . . . , xr] →
K[s, t] given by ψ(xi) = sait for i = 1, . . . , r. As explained in [10], Kerψ is generated

by the binomials
∏r

i=1 x
αi
i −

∏r
i=1 x

βi
i where

∑r
i=1 aiαi =

∑r
i=1 aiβi and

∑r
i=1 αi =∑r

i=1 βi.
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Clearly, Kerψ ⊆ J(a). For the reverse inclusion, we consider the grading on
K[x1, . . . , xr] induced by a where dega(xi) = ai for i = 1, . . . , r. It is known that
I(a) is homogeneous with respect to this a-grading.

Let 0 6= f be a homogeneous polynomial in I(a) with respect to the standard
grading. We prove that f ∈ Kerψ. We decompose f into a-graded components,
and each of these will be homogeneous (in the standard grading). So, without loss
of generality we may assume that f ∈ I(a) is homogeneous with respect to both the
standard grading and the a-grading.

We write f =
∑p

i=1 cimi where ci ∈ K and mi is a monomial for i = 1, . . . , p with
dega(mi) the same for all i. Since f ∈ I(a) and I(a) is the kernel of the K-algebra
map ϕ : K[x1, . . . , xr]→ K[s] letting ϕ(xi) = sai for i = 1, . . . , r, we get that p ≥ 2
and

∑p
i=1 ci = 0.

Consequently, f =
∑p=1

i=1 ci(mi −mp) is generated by binomials in Kerψ, which
proves J(a) = Ker(ψ). �

Extending the work of Delorme [3], for affine semigroups in Nd the CI property
was characterized by Fisher, Morris and Shapiro ([4]) as follows.

Theorem 5. (Fischer, Morris and Shapiro [4, Theorem 3.1])
Let H be an affine semigroup that is not a free abelian semigroup and assume that

H is minimally generated by V = {v1, . . . , vr} ⊂ Nd. The semigroup ring K[H] is
CI if and only if there exists a partition V = V1 t V2 and 0 6= v ∈ 〈V1〉 ∩ 〈V2〉 such
that ZV1 ∩ ZV2 = Zv and both semigroup rings K[〈V1〉] and K[〈V2〉] are CI.

A partition of V as above will be called a CI-split.

Lemma 6. Let r ≥ 3 and the nonnegative integers a = a1 < · · · < ar. Assume J(a)
is a CI ideal. Fix k ≥ 0 and set V = {(a1 + k, 1), . . . , (ar + k, 1)}. If V = V1 t V2 is
any CI-split for V and |V1| ≤ |V2| then

(i) |V1| = 1,
(ii) V1 ∩ {(a1 + k, 1), (ar + k, 1)} = ∅.

Proof. Let ZV1 ∩ ZV2 = Zv and v = (a, b) ∈ N2 is as given by Theorem 5.
(i) If we assume 2 ≤ |V1|, then we may subtract two generators in V1 and in
V2, respectively, and we obtain that (e1, 0) ∈ ZV1 and (e2, 0) ∈ ZV2 for some e1, e2
positive integers. Clearly (e1 · e2, 0) ∈ ZV1 ∩ ZV2, therefore b = 0. Since v = (a, 0)
is also a linear combination of vectors in V with nonnegative integer coefficients we
get that a = 0 and e1e2 = 0, a contradiction. Hence |V1| = 1.

(ii) Let V1 = {ap + k} with 1 ≤ p ≤ r. Then v = c(ap + k, 1) =
∑r

i=1 ci(ai + k, 1)
for some nonnegative integers c, c1, . . . , cr, with c > 0 and cp = 0. Thus c =

∑r
i=1 ci.

Also, since r > 2 we obtain(
r∑
i=1

ci

)
(a1 + k) <

r∑
i=1

ci(ai + k) <

(
r∑
i=1

ci

)
(ar + k),

which gives a1 + k < ap + k < ar + k and V1 ∩ {(a1 + k, 1), (ar + k, 1)} = ∅. �

Theorem 7. Let r ≥ 3 and the nonnegative integers a = a1 < · · · < ar. If J(a) is
a CI ideal, then I(a + `(ar − a1)− a1) is a CI ideal for all ` ≥ ar − a1.
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Proof. We prove the statement by induction on r ≥ 3.
If r = 3, then it is an easy exercise to show that if we let d = gcd(a2−a1, a3−a1),

then J(a) = (x
(a3−a1)/d
2 − x(a3−a2)/d1 x

(a2−a1)/d
3 ), hence it is always a CI. It is proven

in [8, Theorem 3.1] that for shifts k > (a3 − a1)2 − a3, I(a + k) is CI if and only if
a1 + k is a multiple of a certain constant T that is a divisor of gcd(a3− a1, a2− a1).
In particular, I(a + `(a3 − a1)− a1) is CI for all ` ≥ a3 − a1.

Assume r > 3 and k = `(ar − a1) − a1 with ` ≥ ar − a1. If we let V = {(a1 +
k, 1), . . . , (ar + k, 1)}, by Theorem 5 and Lemma 6, there exists a CI-split

(1) V = V1 t V2
with V1 = {(ap, 1)} for some 1 < p < r. Denote by b the sequence obtained from a
by removing ap. Since J(b) is CI, by the induction hypothesis we get that I(b+ k)
is CI for our choice of k.

Notice that

ZV2 = Z{(ai + k, 1) : 1 ≤ i ≤ r, i 6= p}
= Z{(a1 + k, 1), (ai − a1, 0) : 2 ≤ i ≤ r, i 6= p}
= Z{(a1 + k, 1), (d, 0)},

where we let d = gcd(a2 − a1, . . . , âp − a1, ar − a1) and we marked by ̂ the absence
of that term from the enumeration.

Using this observation, it is routine to check that

Z(ap + k, 1) ∩ ZV2 = Z(D(ap + k), D),

where D = d/ gcd(d, ap − a1). Clearly D > 1, otherwise (ap + k, 1) ∈ 〈V2〉, which is
false.

From the CI-split (1) we also obtain that D(ap + k, 1) ∈ 〈V2〉. Therefore, there
exist nonnegative integers c, c1, . . . , cr with c > 0, cp = 0 such that

∑r
i=0 ci = D and

D · (ap + k) =
∑

1≤i≤r,i 6=p

ci(ai + k).(2)

As Z(b + k) = Z{a1 + k, d} = Zd, it follows that Z(ap + k) ∩ Z(b + k) = Zv,
where v = lcm(ap + k, d) = (ap + k) · d/ gcd(ap − a1, d) = (ap + k) ·D. Equation (2)
gives that v ∈ Z(b + k), hence

a + k = {ap + k} t {b + k}

is a CI-split for a + k, by Theorem 5. This finishes the proof. �

Corollary 8. Let a = a1 < · · · < ar and r ≥ 2. The ideal I(a + k) is CI for
infinitely many k > 0 if and only if J(a) is a CI ideal.

Example 9. (1) For a = (0, 4, 12, 30) a computation with Singular ([2]) shows that
J(a) = (x32 − x21x3, x

5
3 − x31x

2
4), which is a CI ideal. Therefore, by Theorem 7 the

ideal I(k, k + 4, k + 12, k + 30) is CI for k = 30` and ` ≥ 30. In fact, as noted in [8,
Example 3.8], when k ≥ 95 the ideal I(k, k + 4, k + 12, k + 30) is CI if and only if k
is a multiple of 15.
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(2) On the other hand, when a = (0, 1, 2, 3), using Singular we obtain that J(a) =
(x23 − x2x4, x2x3 − x1x4, x22 − x1x3), which is not a CI ideal since height J(a) = 2.
Therefore, by Corollary 8 the ideal I(k, k + 1, k + 2, k + 3) is not CI for any k � 0.
In fact, the latter is not CI for any k ≥ 0, see [5].
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