The Hilbert-Kunz Functions of Surfaces of Type ADE

Daniel Brinkmann Universität Osnabrück

Mangalia, 05. September 2012

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE

(日)

Outline

Introduction

- Basic definitions
- The geometric approach of Brenner/ Trivedi
- 2 Matrix factorizations
 - MCMs over hypersurfaces
 - Matrix factorizations
- 3 MCMs as syzygies
 - Representations of MCMs as syzygies
 - How to control the Frobenius pullbacks?

The Hilbert-Kunz functions of surfaces of type ADE

A ⊡ ► A ⊡ ► A

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト 二日

The Hilbert-Kunz function

- Let (R, m) be a local, Noetherian ring of (Krull-)dimension d,
- $k \subset R$ a field of characteristic p,
- and $I = (f_1, \ldots, f_n)$ be an m-primary ideal.
- Denote by $F: R \to R, r \mapsto r^p$ the Frobenius morphism and
- let $I^{[q]} := (f_1^q, ..., f_n^q) = F^e(I)$ with $q = p^e$.

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

3

The Hilbert-Kunz function

- Let (R, m) be a local, Noetherian ring of (Krull-)dimension d,
- $k \subset R$ a field of characteristic p,
- and $I = (f_1, \ldots, f_n)$ be an m-primary ideal.
- Denote by $F: R \to R, r \mapsto r^p$ the Frobenius morphism and
- let $I^{[q]} := (f_1^q, \dots, f_n^q) = F^e(I)$ with $q = p^e$.

Then the map

$$e \mapsto \dim_k((R/I^{[p^e]}))$$

is called the Hilbert-Kunz function of R with respect to I.

Basic definitions The geometric approach of Brenner/ Trivedi

(日)

The Hilbert-Kunz multiplicity

$$e_{HK}(R,I) := \lim_{e o \infty} rac{\dim_k(R/I^{[q]})}{q^d}$$

is a positive real number (Monsky, 1983) and is called the *Hilbert-Kunz multiplicity of R with respect to I.*

1

Basic definitions The geometric approach of Brenner/ Trivedi

The Hilbert-Kunz multiplicity

$$\mathfrak{e}_{HK}(R, I) := \lim_{e o \infty} rac{\dim_k(R/I^{[q]})}{q^d}$$

is a positive real number (Monsky, 1983) and is called the *Hilbert-Kunz multiplicity of R with respect to I.*

We call $e_{HK}(R) := e_{HK}(R, \mathfrak{m})$ the Hilbert-Kunz multiplicity of R.

1

Basic definitions The geometric approach of Brenner/ Trivedi

э

The Hilbert-Kunz multiplicity

$$\mathfrak{e}_{HK}(R, I) := \lim_{e o \infty} rac{\dim_k(R/I^{[q]})}{q^d}$$

is a positive real number (Monsky, 1983) and is called the *Hilbert-Kunz multiplicity of R with respect to I.*

We call $e_{HK}(R) := e_{HK}(R, \mathfrak{m})$ the Hilbert-Kunz multiplicity of R.

Question: Is $e_{HK}(R)$ rational?

Basic definitions The geometric approach of Brenner/ Trivedi

э

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

R := k[[X, Y]] and S := k[[X, Y, Z]]/(ZX, ZY).

Basic definitions The geometric approach of Brenner/ Trivedi

э

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

 $\begin{aligned} R &:= k\llbracket X, Y \rrbracket \quad \text{and} \quad S &:= k\llbracket X, Y, Z \rrbracket / (ZX, ZY). \\ \dim_k(R/(X^q, Y^q)) \end{aligned}$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

$$R := k[[X, Y]] \text{ and } S := k[[X, Y, Z]]/(ZX, ZY).$$

$$\dim_k(R/(X^q, Y^q)) = \left| \{X^i Y^j | 0 \le i, j \le q-1\} \right|$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

$$R := k[[X, Y]] \text{ and } S := k[[X, Y, Z]]/(ZX, ZY).$$

$$\dim_k(R/(X^q, Y^q)) = \left| \left\{ X^i Y^j \mid 0 \le i, j \le q-1 \right\} \right|$$

$$= q^2$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

$$R := k[[X, Y]] \text{ and } S := k[[X, Y, Z]]/(ZX, ZY).$$

$$\dim_k(R/(X^q, Y^q)) = \left| \{X^i Y^j \mid 0 \le i, j \le q - 1\} \right|$$

$$= q^2$$

$$\dim_k(S/(X^q, Y^q, Z^q)) = \left| \{X^i Y^j \mid 0 \le i, j \le q - 1\} \cup \{Z^i \mid 0 \le i \le q - 1\}$$

$$= q^2 + q - 1$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

$$R := k[[X, Y]] \text{ and } S := k[[X, Y, Z]]/(ZX, ZY).$$

$$\dim_k(R/(X^q, Y^q)) = \left| \left\{ X^i Y^j \mid 0 \le i, j \le q - 1 \right\} \right|$$

$$= q^2$$

$$\dim_k(S/(X^q, Y^q, Z^q)) = \left| \left\{ X^i Y^j \mid 0 \le i, j \le q - 1 \right\} \cup \left\{ Z^i \mid 0 \le i \le q - 1 \right\}$$

$$= q^2 + q - 1$$

Both rings have the same Hilbert-Kunz multiplicity (one).

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Examples

We want to compute the Hilbert-Kunz functions with respect to the maximal ideal of the rings

$$R := k[[X, Y]] \text{ and } S := k[[X, Y, Z]]/(ZX, ZY).$$

$$\dim_k(R/(X^q, Y^q)) = \left| \left\{ X^i Y^j \mid 0 \le i, j \le q - 1 \right\} \right|$$

$$= q^2$$

$$\dim_k(S/(X^q, Y^q, Z^q)) = \left| \left\{ X^i Y^j \mid 0 \le i, j \le q - 1 \right\} \cup \left\{ Z^i \mid 0 \le i \le q - 1 \right\}$$

$$= q^2 + q - 1$$

Both rings have the same Hilbert-Kunz multiplicity (one). BUT: R is regular, while S is not.

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

3

The previous examples shows that studying only Hilbert-Kunz multiplicities is not enough.

イロト イポト イヨト イヨト

The previous examples shows that studying only Hilbert-Kunz multiplicities is not enough.

Regular rings have Hilbert-Kunz multiplicity one. The converse does not hold by the example.

The previous examples shows that studying only Hilbert-Kunz multiplicities is not enough.

Regular rings have Hilbert-Kunz multiplicity one. The converse does not hold by the example.

For the converse one needs to add "equidimensional" to the assumptions. In this case the Hilbert-Kunz multiplicity measures the singularity of the ring (high values for bad singularities).

Basic definitions The geometric approach of Brenner/ Trivedi

(日)

э

Surfaces of type ADE

Surfaces of type ADE are the rings of invariants of k[u, v] under the group actions of finite subgroups of $SL_2(k)$, where |G| is invertible in k.

Basic definitions The geometric approach of Brenner/ Trivedi

э

Surfaces of type ADE

Surfaces of type ADE are the rings of invariants of k[u, v] under the group actions of finite subgroups of $SL_2(k)$, where |G| is invertible in k.

They are of the form k[X, Y, Z]/(f) with

Basic definitions The geometric approach of Brenner/ Trivedi

э

Surfaces of type ADE

Surfaces of type ADE are the rings of invariants of k[u, v] under the group actions of finite subgroups of $SL_2(k)$, where |G| is invertible in k.

They are of the form k[X, Y, Z]/(f) with

$$\begin{array}{l} A_n: \ f = X^{n+1} + YZ, \ \omega = (2, n+1, n+1) \\ D_n: \ f = X^2 + Y^{n-1} + YZ^2, \ \omega = (n-1, 2, n-2), \ n \geq 4 \\ E_6: \ f = X^2 + Y^3 + Z^4, \ \omega = (6, 4, 3) \\ E_7: \ f = X^2 + Y^3 + YZ^3, \ \omega = (9, 6, 4) \\ E_8: \ f = X^2 + Y^3 + Z^5, \ \omega = (15, 10, 6) \end{array}$$

By Watanabe & Yoshida these rings have Hilbert-Kunz multiplicity 2 - 1/|G|.

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Reduction to a standard-graded case I

Let *R* be a surface of type ADE. The map

$$k[X,Y,Z] \longrightarrow k[U,V,W],$$

$$X \mapsto U^{\deg(X)}, \ Y \mapsto V^{\deg(Y)}, \ Z \mapsto W^{\deg(Z)}$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト 不得 トイヨト イヨト

3

Reduction to a standard-graded case I

Let *R* be a surface of type ADE. The map

$$k[X,Y,Z] \longrightarrow k[U,V,W],$$

$$X \mapsto U^{\deg(X)}, \ Y \mapsto V^{\deg(Y)}, \ Z \mapsto W^{\deg(Z)}$$

induces a map from *R* to $S_R := k[U, V, W]/(F)$, where *F* is the image of *f* under this map.

Basic definitions The geometric approach of Brenner/ Trivedi

3

Reduction to a standard-graded case I

Let *R* be a surface of type ADE. The map

$$k[X,Y,Z] \longrightarrow k[U,V,W],$$

$$X \mapsto U^{\deg(X)}, \ Y \mapsto V^{\deg(Y)}, \ Z \mapsto W^{\deg(Z)}$$

induces a map from *R* to $S_R := k[U, V, W]/(F)$, where *F* is the image of *f* under this map. The induced map $R \to S_R$ is local and flat.

Basic definitions The geometric approach of Brenner/ Trivedi

3

Reduction to a standard-graded case II

Theorem

Let $(R, \mathfrak{m}) \rightarrow S$ be a flat, local morphism and *M* an *R*-module. Assume $k \subset R, S$. Then

$$\dim_k(M) \cdot \dim_k(S/\mathfrak{m}S) = \dim_k(M \otimes_R S).$$

Basic definitions The geometric approach of Brenner/ Trivedi

э

Reduction to a standard-graded case II

Theorem

Let $(R, \mathfrak{m}) \rightarrow S$ be a flat, local morphism and *M* an *R*-module. Assume $k \subset R, S$. Then

$$\dim_k(M) \cdot \dim_k(S/\mathfrak{m}S) = \dim_k(M \otimes_R S).$$

In our situation we get

$$\dim_k(M) = \frac{\dim_k(M \otimes_R S_R)}{\deg(X) \cdot \deg(Y) \cdot \deg(Z)}.$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Reduction to a standard-graded case II

Theorem

Let $(R, \mathfrak{m}) \rightarrow S$ be a flat, local morphism and *M* an *R*-module. Assume $k \subset R, S$. Then

$$\dim_k(M) \cdot \dim_k(S/\mathfrak{m}S) = \dim_k(M \otimes_R S).$$

In our situation we get

$$\dim_k(M) = \frac{\dim_k(M \otimes_R S_R)}{\deg(X) \cdot \deg(Y) \cdot \deg(Z)}.$$

This reduces our computation to a standard-graded case.

Some notation

Basic definitions The geometric approach of Brenner/ Trivedi

3

- Let *R* be a normal, standard-graded domain and *Y* its Proj.
- Let $k \subset R$ an algebraically closed field with char(k)= p,
- *f*₁,..., *f*_n ∈ *R* homogeneous elements of degree *d*_i, generating an *R*₊-primary ideal

Some notation

Basic definitions The geometric approach of Brenner/ Trivedi

э

- Let *R* be a normal, standard-graded domain and *Y* its Proj.
- Let $k \subset R$ an algebraically closed field with char(k)= p,
- *f*₁,..., *f*_n ∈ *R* homogeneous elements of degree *d*_i, generating an *R*₊-primary ideal
- We have the short exact sequence

(*)
$$0 \rightarrow \operatorname{Syz}_{Y}(f_{1}, \ldots, f_{n}) \rightarrow \bigoplus_{i=1}^{n} O_{Y}(-d_{i}) \rightarrow O_{Y} \rightarrow 0.$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

Frobenius pullbacks

 Let F : Y → Y be the absolute Frobenius morphism (induced by the ordinary Frobenius on section rings).

Basic definitions The geometric approach of Brenner/ Trivedi

3

Frobenius pullbacks

- Let F : Y → Y be the absolute Frobenius morphism (induced by the ordinary Frobenius on section rings).
- Taking the *e*-th iterated pullback of (*) and tensoring it with O_Y(m) yields

$$0 \to F^{*e}(\operatorname{Syz}_{Y}(f_{1},\ldots,f_{n}))(m) \to \bigoplus_{i=1}^{n} O_{Y}(m-qd_{i}) \to O_{Y}(m) \to 0.$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト 不得 トイヨト イヨト

3

Frobenius pullbacks

- Let F : Y → Y be the absolute Frobenius morphism (induced by the ordinary Frobenius on section rings).
- Taking the *e*-th iterated pullback of (*) and tensoring it with O_Y(m) yields

$$0 \to F^{*e}(\operatorname{Syz}_Y(f_1,\ldots,f_n))(m) \to \bigoplus_{i=1}^n O_Y(m-qd_i) \to O_Y(m) \to 0.$$

Note that we have $F^{*e}(Syz_Y(f_1, \ldots, f_n)) = Syz_Y(f_1^q, \ldots, f_n^q)$.

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

э

The connection to Hilbert-Kunz functions

Taking global sections yields

$$0 \rightarrow H^{0}(\operatorname{Syz}_{Y}(f_{1}^{q}, \dots, f_{n}^{q})(m)) \rightarrow \oplus_{i=1}^{n} H^{0}(O_{Y}(m - qd_{i}))$$

$$\rightarrow H^{0}(O_{Y}(m)) \rightarrow$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

э

The connection to Hilbert-Kunz functions

Taking global sections yields

$$0 \rightarrow H^{0}(\operatorname{Syz}_{Y}(f_{1}^{q}, \ldots, f_{n}^{q})(m)) \rightarrow \bigoplus_{i=1}^{n} H^{0}(O_{Y}(m - qd_{i}))$$

$$\rightarrow H^{0}(O_{Y}(m)) \rightarrow (R/I^{[q]})_{m} \rightarrow 0.$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

The connection to Hilbert-Kunz functions

Taking global sections yields

$$0 \rightarrow H^{0}(\operatorname{Syz}_{Y}(f_{1}^{q}, \ldots, f_{n}^{q})(m)) \rightarrow \bigoplus_{i=1}^{n} H^{0}(O_{Y}(m - qd_{i}))$$

$$\rightarrow H^{0}(O_{Y}(m)) \rightarrow (R/I^{[q]})_{m} \rightarrow 0.$$

Summing up the dimensions, we get

$$\dim(R/(I^{[q]})_m) = h^0(O_Y(m)) - \sum_{i=1}^n h^0(O_Y(m-qd_i)) + h^0(\operatorname{Syz}_Y(f_1^q, \dots, f_n^q)(m)).$$

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

э

How does this help?

We have to control $h^0(\operatorname{Syz}_Y(f_1^q, \ldots, f_n^q)(m))$.

Basic definitions The geometric approach of Brenner/ Trivedi

イロト イポト イヨト イヨト

э

How does this help?

We have to control $h^0(\operatorname{Syz}_Y(f_1^q,\ldots,f_n^q)(m))$.

The easiest case would be a splitting into free sheaves.

Basic definitions The geometric approach of Brenner/ Trivedi

3

How does this help?

We have to control $h^0(\operatorname{Syz}_Y(f_1^q,\ldots,f_n^q)(m))$.

The easiest case would be a splitting into free sheaves.

The idea is to look for a finite list of "easier" sheafs of O_Y -modules such that $Syz_Y(f_1^q, \ldots, f_n^q)(m)$ is one of those (up to twist).

Basic definitions The geometric approach of Brenner/ Trivedi

3

How does this help?

We have to control $h^0(\operatorname{Syz}_Y(f_1^q,\ldots,f_n^q)(m))$.

The easiest case would be a splitting into free sheaves.

The idea is to look for a finite list of "easier" sheafs of O_Y -modules such that $Syz_Y(f_1^q, \ldots, f_n^q)(m)$ is one of those (up to twist).

Idea: Hypersurfaces of type *ADE* are Cohen-Macaulay finite (= there are up to isomorphism only finitely many indecomposable, maximal CM modules).

Basic definitions The geometric approach of Brenner/ Trivedi

3

Syzygies are MCM

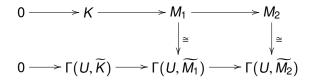
Let *K* be the kernel of the map $M_1 \rightarrow M_2$ between reflexive *R*-modules and $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}.$

Basic definitions The geometric approach of Brenner/ Trivedi

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Syzygies are MCM

Let *K* be the kernel of the map $M_1 \rightarrow M_2$ between reflexive *R*-modules and $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$. The commutative diagram

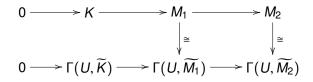


Basic definitions The geometric approach of Brenner/ Trivedi

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Syzygies are MCM

Let *K* be the kernel of the map $M_1 \rightarrow M_2$ between reflexive *R*-modules and $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$. The commutative diagram



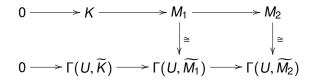
induces an isomorphism $K \cong (K^{\vee})^{\vee}$.

Basic definitions The geometric approach of Brenner/ Trivedi

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Syzygies are MCM

Let *K* be the kernel of the map $M_1 \rightarrow M_2$ between reflexive *R*-modules and $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$. The commutative diagram



induces an isomorphism $K \cong (K^{\vee})^{\vee}$.

Since we are in a two-dimensional situation, maximal Cohen-Macaulay and reflexive are equivalent.

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces I

Let (S, \mathfrak{n}) be a regular, local, Noetherian ring, $f \in \mathfrak{n}^2$ non-zero and R := S/(f).

イロト 不得 トイヨト イヨト

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces I

Let (S, \mathfrak{n}) be a regular, local, Noetherian ring, $f \in \mathfrak{n}^2$ non-zero and R := S/(f).

For a MCM *R*-module *M* the Auslander-Buchsbaum formula $(pd_S(M)+depth_S(M) = depth_S(S))$ says that *M* as an *S*-module has a free resolution of length one:

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces I

Let (S, \mathfrak{n}) be a regular, local, Noetherian ring, $f \in \mathfrak{n}^2$ non-zero and R := S/(f).

For a MCM *R*-module *M* the Auslander-Buchsbaum formula $(pd_S(M)+depth_S(M) = depth_S(S))$ says that *M* as an *S*-module has a free resolution of length one:

$$0 \to S^n \xrightarrow{\varphi} S^n \to M \to 0.$$

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces I

Let (S, \mathfrak{n}) be a regular, local, Noetherian ring, $f \in \mathfrak{n}^2$ non-zero and R := S/(f).

For a MCM *R*-module *M* the Auslander-Buchsbaum formula $(pd_S(M)+depth_S(M) = depth_S(S))$ says that *M* as an *S*-module has a free resolution of length one:

$$0 \to S^n \xrightarrow{\varphi} S^n \to M \to 0.$$

Since *M* is an *R*-module, we have $f \cdot M = 0$. We get

$$f \cdot S^n \subseteq \varphi(S^n).$$

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces II

Because φ is injective, we get for a given $x \in S^n$ an unique $y \in S^n$ with $fx = \varphi(y)$.

イロト 不得 トイヨト イヨト

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces II

Because φ is injective, we get for a given $x \in S^n$ an unique $y \in S^n$ with $fx = \varphi(y)$.

Let ψ be the map $x \mapsto y$. Then ψ is linear and $\varphi \psi = f \cdot id$.

イロト イポト イヨト イヨト

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces II

Because φ is injective, we get for a given $x \in S^n$ an unique $y \in S^n$ with $fx = \varphi(y)$.

Let ψ be the map $x \mapsto y$. Then ψ is linear and $\varphi \psi = f \cdot id$.

Moreover, $\varphi \psi \varphi = f \cdot \varphi = \varphi(f \cdot id)$ gives $\psi \varphi = f \cdot id$, because φ is injective.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

MCMs over hypersurfaces Matrix factorizations

MCM modules over hypersurfaces II

Because φ is injective, we get for a given $x \in S^n$ an unique $y \in S^n$ with $fx = \varphi(y)$.

Let ψ be the map $x \mapsto y$. Then ψ is linear and $\varphi \psi = f \cdot id$.

Moreover, $\varphi \psi \varphi = f \cdot \varphi = \varphi(f \cdot id)$ gives $\psi \varphi = f \cdot id$, because φ is injective.

Let Γ be the "map" that attaches to *M* the tuple (φ, ψ) .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations I

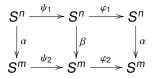
 A pair (φ, ψ) ∈ Mat_{n×n}(S) with φψ = ψφ = f · id is called matrix factorization of f.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations I

- A pair (φ, ψ) ∈ Mat_{n×n}(S) with φψ = ψφ = f · id is called matrix factorization of f.
- A pair of matrices (α, β) is called a morphism of matrix factorizations (φ₁, ψ₁) and (φ₂, ψ₂) if the following diagram commutes:

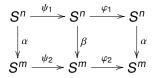


(日)

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations I

- A pair (φ, ψ) ∈ Mat_{n×n}(S) with φψ = ψφ = f · id is called matrix factorization of f.
- A pair of matrices (α, β) is called a morphism of matrix factorizations (φ₁, ψ₁) and (φ₂, ψ₂) if the following diagram commutes:



We call (φ₁, ψ₁) and (φ₂, ψ₂) equivalent if α and β are isomorphisms.

イロト イポト イヨト イヨト 二日

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations II

Given a matrix factorization (φ, ψ) , we get a short exact sequence

$$0 \to S^n \xrightarrow{\varphi} S^n \to \operatorname{coker}(\varphi) \to 0.$$

イロト イポト イヨト イヨト

э

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations II

Given a matrix factorization (φ, ψ) , we get a short exact sequence

$$0 \to S^n \xrightarrow{\varphi} S^n \to \operatorname{coker}(\varphi) \to 0.$$

Since $f \cdot S^n = \varphi(\psi(S^n)) \subset \varphi(S^n)$ we have $f \cdot \operatorname{coker}(\varphi) = 0$, hence $\operatorname{coker}(\varphi) \in R-\operatorname{mod}$.

イロト イポト イヨト イヨト 二日

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations II

Given a matrix factorization (φ, ψ) , we get a short exact sequence

$$0 \to S^n \xrightarrow{\varphi} S^n \to \operatorname{coker}(\varphi) \to 0.$$

Since $f \cdot S^n = \varphi(\psi(S^n)) \subset \varphi(S^n)$ we have $f \cdot \operatorname{coker}(\varphi) = 0$, hence $\operatorname{coker}(\varphi) \in R$ -mod.

The sequence of maps and modules

$$\cdots \to S^n \xrightarrow{\varphi} S^n \xrightarrow{\psi} S^n \xrightarrow{\varphi} S^n \to \operatorname{coker}(\varphi) \to 0$$

reduces modulo *f* to an 2-periodic *R*-free of $coker(\varphi)$.

イロト イポト イヨト イヨト 二日

MCMs over hypersurfaces Matrix factorizations

The category of matrix factorizations II

Given a matrix factorization (φ, ψ) , we get a short exact sequence

$$0 \to S^n \xrightarrow{\varphi} S^n \to \operatorname{coker}(\varphi) \to 0.$$

Since $f \cdot S^n = \varphi(\psi(S^n)) \subset \varphi(S^n)$ we have $f \cdot \operatorname{coker}(\varphi) = 0$, hence $\operatorname{coker}(\varphi) \in R-\operatorname{mod}$.

The sequence of maps and modules

$$\cdots \to S^n \xrightarrow{\varphi} S^n \xrightarrow{\psi} S^n \xrightarrow{\varphi} S^n \to \operatorname{coker}(\varphi) \to 0$$

reduces modulo *f* to an 2-periodic *R*-free of $coker(\varphi)$. Because $Syz^{i}(M)$ is either 0 or MCM for all $M \in R$ -mod and every $i \ge \dim R$, $coker(\varphi)$ is MCM over *R*.

MCMs over hypersurfaces Matrix factorizations

The equivalence of categories

Theorem (Eisenbud 1980)

The functors coker and Γ induce an equivalence of categories

イロト イポト イヨト イヨト

MCMs over hypersurfaces Matrix factorizations

The equivalence of categories

Theorem (Eisenbud 1980)

The functors coker and Γ induce an equivalence of categories

reduced, indecomposable matrix factorizations of *f* up to equivalence

≅

(日)

MCMs over hypersurfaces Matrix factorizations

The equivalence of categories

Theorem (Eisenbud 1980)

The functors coker and Γ induce an equivalence of categories

reduced, indecomposable matrix factorizations of *f* up to equivalence

non-free, indecomposable, maximal Cohen-Macaulay

R – modules up to isomorphism.

(日)

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

э

An observation

In 2006 Kajura, Saito and Takahashi computed the matrix factorizations of surfaces of type ADE. In the E_6 case ($X^2 + Y^3 + Z^4 = 0$) there are three that give a MCM module of rank 2.

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

ヘロト 人間 ト ヘヨト ヘヨト

э

An observation

In 2006 Kajura, Saito and Takahashi computed the matrix factorizations of surfaces of type ADE. In the E_6 case ($X^2 + Y^3 + Z^4 = 0$) there are three that give a MCM module of rank 2. One of these is

$$\varphi = \psi = \begin{pmatrix} -X & 0 & Y^2 & Z^3 \\ 0 & -X & Z & -Y \\ Y & Z^3 & X & 0 \\ Z & -Y^2 & 0 & X \end{pmatrix}.$$

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

3

An observation

In 2006 Kajura, Saito and Takahashi computed the matrix factorizations of surfaces of type ADE. In the E_6 case ($X^2 + Y^3 + Z^4 = 0$) there are three that give a MCM module of rank 2. One of these is

$$arphi = \psi = egin{pmatrix} -X & Y^2 & Z^3 \ 0 & Z & -Y \ Y & X & 0 \ Z & 0 & X \end{pmatrix}.$$

Deleting the second column, the rows of the remaining 4×3 matrix generate

$$\operatorname{Syz}_{R}(-X, Y, Z)$$

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

Representation I

We now show that $\operatorname{coker}(\varphi)$ and $\operatorname{Syz}_R(-X, Y, Z)$ become isomorphic as sheafs on the punctured spectrum $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}.$

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

Representation I

We now show that $\operatorname{coker}(\varphi)$ and $\operatorname{Syz}_R(-X, Y, Z)$ become isomorphic as sheafs on the punctured spectrum $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}.$

• Because $\varphi = \psi$ we get a 1-periodic free *R*-resolution

$$\cdots \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \longrightarrow \operatorname{coker}(\varphi) \to 0.$$

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

Representation I

We now show that $\operatorname{coker}(\varphi)$ and $\operatorname{Syz}_R(-X, Y, Z)$ become isomorphic as sheafs on the punctured spectrum $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}.$

• Because $\varphi = \psi$ we get a 1-periodic free *R*-resolution

$$\cdots \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \rightarrow \operatorname{coker}(\varphi) \rightarrow 0.$$

This gives coker(φ) = im(φ), which is generated by the columns of φ.

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

3

Representation I

We now show that $\operatorname{coker}(\varphi)$ and $\operatorname{Syz}_R(-X, Y, Z)$ become isomorphic as sheafs on the punctured spectrum $U := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}.$

• Because $\varphi = \psi$ we get a 1-periodic free *R*-resolution

$$\cdots \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \xrightarrow{\varphi} R^4 \rightarrow \operatorname{coker}(\varphi) \rightarrow 0.$$

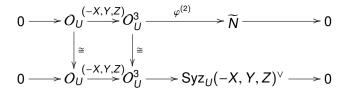
- This gives coker(φ) = im(φ), which is generated by the columns of φ.
- Show that on D(Y) ∪ D(Z) the second column belongs to N, where N is the module generated by the columns 1,3,4.

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト 二日

Representation II

The commutative diagram

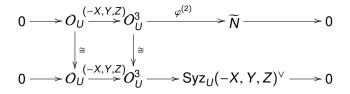


Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト 二日

Representation II

• The commutative diagram



induces an isomorphism $\widetilde{N} \cong \operatorname{Syz}_U(-X, Y, Z)^{\vee}$.

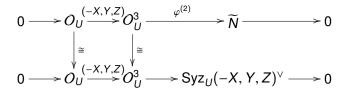
Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

3

Representation II

The commutative diagram



induces an isomorphism $\widetilde{N} \cong \operatorname{Syz}_U(-X, Y, Z)^{\vee}$.

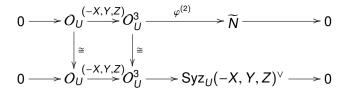
 Since M and Syz_R(-X, Y, Z) are reflexive, the above isomorphism lifts to R.

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

Representation II

The commutative diagram



induces an isomorphism $\widetilde{N} \cong \operatorname{Syz}_U(-X, Y, Z)^{\vee}$.

- Since M and Syz_R(-X, Y, Z) are reflexive, the above isomorphism lifts to R.
- Show Syz_R(-X, Y, Z)[∨] ≅ Syz_R(-X, Y, Z) by the theory of matrix factorizations.

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

A short exact Sequence

We need a criterium to distinguish the different MCM of rank 2 and to compute the isomorphism class of the Frobenius pullbacks of Syz(X, Y, Z).

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

(日)

A short exact Sequence

We need a criterium to distinguish the different MCM of rank 2 and to compute the isomorphism class of the Frobenius pullbacks of Syz(X, Y, Z). This can be done by the ordinary Hilbert series.

Theorem (Brenner, Kaid 2007,_)

Let $R := k[x, y, z]/(x^2 - f(y, z))$ with weights $\omega = (\alpha, \beta, \gamma)$ where f is homogeneous of degree $2 \cdot \alpha$. For $a = 2 \cdot l + 1$, with $l \in \mathbb{N}$ and b, $c \in \mathbb{N}$ we have a short exact sequence:

Representations of MCMs as syzygies How to control the Frobenius pullbacks?

イロト イポト イヨト イヨト

A short exact Sequence

We need a criterium to distinguish the different MCM of rank 2 and to compute the isomorphism class of the Frobenius pullbacks of Syz(X, Y, Z). This can be done by the ordinary Hilbert series.

Theorem (Brenner, Kaid 2007,_)

Let $R := k[x, y, z]/(x^2 - f(y, z))$ with weights $\omega = (\alpha, \beta, \gamma)$ where f is homogeneous of degree $2 \cdot \alpha$. For $a = 2 \cdot l + 1$, with $l \in \mathbb{N}$ and b, $c \in \mathbb{N}$ we have a short exact sequence:

$$\begin{array}{rcl} 0 & \rightarrow & \operatorname{Syz}_R(x^a, y^b, z^c)(-\alpha) \\ & \rightarrow & \operatorname{Syz}_R(f^l, y^b, z^c)(-\alpha) \oplus \operatorname{Syz}_R(f^{l+1}, y^b, z^c) \\ & \rightarrow & \operatorname{Syz}_R(x^a, y^b, z^c) \to 0. \end{array}$$

Note that this Theorem holds also in much bigger generality.

э

To control the Frobenius-pullbacks of Syz(X, Y, Z) we have to do the following:

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE

э

To control the Frobenius-pullbacks of Syz(X, Y, Z) we have to do the following:

• Represent all MCM of rank 2 as syzygy modules

- Represent all MCM of rank 2 as syzygy modules
- Compute their Hilbert series (and recognize that they are different)

э

- Represent all MCM of rank 2 as syzygy modules
- Compute their Hilbert series (and recognize that they are different)
- Show that all $Syz(X^q, Y^q, Z^q)$ are indecomposable.

э

- Represent all MCM of rank 2 as syzygy modules
- Compute their Hilbert series (and recognize that they are different)
- Show that all $Syz(X^q, Y^q, Z^q)$ are indecomposable.
- Compute the Hilbert series of $Syz(X^q, Y^q, Z^q)$.

イロト 不得 トイヨト イヨト

3

- Represent all MCM of rank 2 as syzygy modules
- Compute their Hilbert series (and recognize that they are different)
- Show that all $Syz(X^q, Y^q, Z^q)$ are indecomposable.
- Compute the Hilbert series of $Syz(X^q, Y^q, Z^q)$.
- This will be of the form t^n times the Hilbert series of a rank 2 MCM $M = Syz(f_1, f_2, f_3)$.

イロト 不得 トイヨト イヨト

3

- Represent all MCM of rank 2 as syzygy modules
- Compute their Hilbert series (and recognize that they are different)
- Show that all $Syz(X^q, Y^q, Z^q)$ are indecomposable.
- Compute the Hilbert series of $Syz(X^q, Y^q, Z^q)$.
- This will be of the form t^n times the Hilbert series of a rank 2 MCM $M = Syz(f_1, f_2, f_3)$.
- One gets

$$\operatorname{Syz}(X^q, Y^q, Z^q) \cong M(-n/2).$$

Theorem (_)

The Hilbert-Kunz function of D_n is the map

$$e\mapsto \left(2-rac{1}{4n-8}
ight)(p^e)^2+rac{m^2}{4n-8}-rac{m+1}{2},$$

where
$$m \equiv p^e (2n - 4)$$
.

Theorem (_)

The Hilbert-Kunz function of E_6 is the map

$$e\mapsto \left(2-\frac{1}{24}\right)(p^e)^2-\frac{23}{24}.$$

イロト イロト イヨト イヨト

э

Theorem (_)

The Hilbert-Kunz function of E_7 is the map

$$e \mapsto \begin{cases} \left(2 - \frac{1}{48}\right)(p^e)^2 - \frac{71}{48}, & \text{if } p^e \ (24) \in \{\pm 5, \pm 11\}\\ \left(2 - \frac{1}{48}\right)(p^e)^2 - \frac{47}{48}, & \text{else} \end{cases}$$

Theorem (_)

The Hilbert-Kunz function of E₈ is the map

$$e \mapsto \begin{cases} \left(2 - \frac{1}{120}\right) (p^e)^2 - \frac{191}{120}, & \text{if } p^e \ (30) \in \{\pm 7, \pm 13\} \\ \left(2 - \frac{1}{120}\right) (p^e)^2 - \frac{119}{120}, & \text{else} \end{cases}$$

イロト イポト イヨト イヨト