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The Hilbert-Kunz function

Let (R ,m) be a local, Noetherian ring of (Krull-)dimension d,

k ⊂ R a field of characteristic p,

and I = (f1, . . . , fn) be an m-primary ideal.

Denote by F : R → R, r 7→ rp the Frobenius morphism and

let I[q] := (fq
1 , . . . , f

q
n ) = Fe(I) with q = pe .

Then the map
e 7→ dimk (

(
R/I[p

e ]
)
)

is called the Hilbert-Kunz function of R with respect to I.
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The Hilbert-Kunz multiplicity

eHK (R , I) := lim
e→∞

dimk (R/I[q])
qd

is a positive real number (Monsky, 1983) and is called the
Hilbert-Kunz multiplicity of R with respect to I.

We call eHK (R) := eHK (R ,m) the Hilbert-Kunz multiplicity of R.

Question: Is eHK (R) rational?
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Examples

We want to compute the Hilbert-Kunz functions with respect to the
maximal ideal of the rings

R := k~X ,Y� and S := k~X ,Y ,Z�/(ZX ,ZY).

dimk (R/(Xq,Yq)) =
∣∣∣∣{X iY j | 0 ≤ i, j ≤ q − 1

}∣∣∣∣
= q2

dimk (S/(Xq,Yq,Zq)) =
∣∣∣∣{X iY j | 0 ≤ i, j ≤ q − 1

}
∪

{
Z i | 0 ≤ i ≤ q − 1

}∣∣∣∣
= q2 + q − 1

Both rings have the same Hilbert-Kunz multiplicity (one). BUT: R is
regular, while S is not.
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The previous examples shows that studying only Hilbert-Kunz
multiplicities is not enough.

Regular rings have Hilbert-Kunz multiplicity one. The converse
does not hold by the example.

For the converse one needs to add ”equidimensional” to the
assumptions. In this case the Hilbert-Kunz multiplicity measures
the singularity of the ring (high values for bad singularities).

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

The previous examples shows that studying only Hilbert-Kunz
multiplicities is not enough.

Regular rings have Hilbert-Kunz multiplicity one. The converse
does not hold by the example.

For the converse one needs to add ”equidimensional” to the
assumptions. In this case the Hilbert-Kunz multiplicity measures
the singularity of the ring (high values for bad singularities).

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

The previous examples shows that studying only Hilbert-Kunz
multiplicities is not enough.

Regular rings have Hilbert-Kunz multiplicity one. The converse
does not hold by the example.

For the converse one needs to add ”equidimensional” to the
assumptions. In this case the Hilbert-Kunz multiplicity measures
the singularity of the ring (high values for bad singularities).

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

Surfaces of type ADE

Surfaces of type ADE are the rings of invariants of k [u, v] under
the group actions of finite subgroups of SL2(k), where |G| is
invertible in k .

They are of the form k [X ,Y ,Z ]/(f) with

An: f = Xn+1 + YZ , ω = (2, n + 1, n + 1)

Dn: f = X2 + Yn−1 + YZ2, ω = (n − 1, 2, n − 2), n ≥ 4

E6: f = X2 + Y3 + Z4, ω = (6, 4, 3)

E7: f = X2 + Y3 + YZ3, ω = (9, 6, 4)

E8: f = X2 + Y3 + Z5, ω = (15, 10, 6)

By Watanabe & Yoshida these rings have Hilbert-Kunz multiplicity
2 − 1/|G|.

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

Surfaces of type ADE

Surfaces of type ADE are the rings of invariants of k [u, v] under
the group actions of finite subgroups of SL2(k), where |G| is
invertible in k .
They are of the form k [X ,Y ,Z ]/(f) with

An: f = Xn+1 + YZ , ω = (2, n + 1, n + 1)

Dn: f = X2 + Yn−1 + YZ2, ω = (n − 1, 2, n − 2), n ≥ 4

E6: f = X2 + Y3 + Z4, ω = (6, 4, 3)

E7: f = X2 + Y3 + YZ3, ω = (9, 6, 4)

E8: f = X2 + Y3 + Z5, ω = (15, 10, 6)

By Watanabe & Yoshida these rings have Hilbert-Kunz multiplicity
2 − 1/|G|.

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

Surfaces of type ADE

Surfaces of type ADE are the rings of invariants of k [u, v] under
the group actions of finite subgroups of SL2(k), where |G| is
invertible in k .
They are of the form k [X ,Y ,Z ]/(f) with

An: f = Xn+1 + YZ , ω = (2, n + 1, n + 1)

Dn: f = X2 + Yn−1 + YZ2, ω = (n − 1, 2, n − 2), n ≥ 4

E6: f = X2 + Y3 + Z4, ω = (6, 4, 3)

E7: f = X2 + Y3 + YZ3, ω = (9, 6, 4)

E8: f = X2 + Y3 + Z5, ω = (15, 10, 6)

By Watanabe & Yoshida these rings have Hilbert-Kunz multiplicity
2 − 1/|G|.

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

Reduction to a standard-graded case I

Let R be a surface of type ADE. The map

k [X ,Y ,Z ] −→ k [U,V ,W ],

X 7→ Udeg(X), Y 7→ Vdeg(Y), Z 7→ Wdeg(Z)

induces a map from R to SR := k [U,V ,W ]/(F), where F is the
image of f under this map.
The induced map R → SR is local and flat.
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Reduction to a standard-graded case II

Theorem

Let (R ,m)→ S be a flat, local morphism and M an R-module.
Assume k ⊂ R, S.
Then

dimk (M) · dimk (S/mS) = dimk (M ⊗R S).

In our situation we get

dimk (M) =
dimk (M ⊗R SR)

deg(X) · deg(Y) · deg(Z)
.

This reduces our computation to a standard-graded case.
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Some notation

Let R be a normal, standard-graded domain and Y its Proj.

Let k ⊂ R an algebraically closed field with char(k )= p,

f1, . . . , fn ∈ R homogeneous elements of degree di , generating
an R+-primary ideal

We have the short exact sequence

(∗) 0→ SyzY (f1, . . . , fn)→
n⊕

i=1

OY (−di)→ OY → 0.
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Frobenius pullbacks

Let F : Y → Y be the absolute Frobenius morphism (induced
by the ordinary Frobenius on section rings).

Taking the e-th iterated pullback of (∗) and tensoring it with
OY (m) yields

0→ F∗e(SyzY (f1, . . . , fn))(m)→
n⊕

i=1

OY (m−qdi)→ OY (m)→ 0.

Note that we have F∗e(SyzY (f1, . . . , fn)) = SyzY (fq
1 , . . . , f

q
n ).
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The connection to Hilbert-Kunz functions

Taking global sections yields

0 → H0(SyzY (fq
1 , . . . , f

q
n )(m))→ ⊕n

i=1H0(OY (m − qdi))

→ H0(OY (m))→

(R/I[q])m → 0.

Summing up the dimensions, we get

dim(R/(I[q])m) = h0(OY (m)) −
∑n

i=1 h0(OY (m − qdi))
+h0(SyzY (fq

1 , . . . , f
q
n )(m)).
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How does this help?

We have to control h0(SyzY (fq
1 , . . . , f

q
n )(m)).

The easiest case would be a splitting into free sheaves.

The idea is to look for a finite list of ”easier” sheafs of OY -modules
such that SyzY (fq

1 , . . . , f
q
n )(m) is one of those (up to twist).

Idea: Hypersurfaces of type ADE are Cohen-Macaulay finite (=
there are up to isomorphism only finitely many indecomposable,
maximal CM modules).
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The idea is to look for a finite list of ”easier” sheafs of OY -modules
such that SyzY (fq

1 , . . . , f
q
n )(m) is one of those (up to twist).

Idea: Hypersurfaces of type ADE are Cohen-Macaulay finite (=
there are up to isomorphism only finitely many indecomposable,
maximal CM modules).
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MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Basic definitions
The geometric approach of Brenner/ Trivedi

Syzygies are MCM

Let K be the kernel of the map M1 → M2 between reflexive
R-modules and U := Spec(R) \ {m}.

The commutative diagram

0 // K // M1 //

�
��

M2

�
��

0 // Γ(U, K̃) // Γ(U, M̃1) // Γ(U, M̃2)

induces an isomorphism K � (K∨)∨.

Since we are in a two-dimensional situation, maximal
Cohen-Macaulay and reflexive are equivalent.
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MCMs over hypersurfaces
Matrix factorizations

MCM modules over hypersurfaces I

Let (S, n) be a regular, local, Noetherian ring, f ∈ n2 non-zero and
R := S/(f).

For a MCM R-module M the Auslander-Buchsbaum formula
(pdS(M)+depthS(M) = depthS(S)) says that M as an S-module
has a free resolution of length one:

0→ Sn ϕ
−→ Sn → M → 0.

Since M is an R-module, we have f ·M = 0. We get

f · Sn ⊆ ϕ(Sn).
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Matrix factorizations

MCM modules over hypersurfaces II

Because ϕ is injective, we get for a given x ∈ Sn an unique y ∈ Sn

with fx = ϕ(y).

Let ψ be the map x 7→ y. Then ψ is linear and ϕψ = f · id.

Moreover, ϕψϕ = f · ϕ = ϕ(f · id) gives ψϕ = f · id, because ϕ is
injective.

Let Γ be the ”map” that attaches to M the tuple (ϕ, ψ).
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Matrix factorizations

The category of matrix factorizations I

A pair (ϕ, ψ) ∈ Matn×n(S) with ϕψ = ψϕ = f · id is called
matrix factorization of f .

A pair of matrices (α, β) is called a morphism of matrix
factorizations (ϕ1, ψ1) and (ϕ2, ψ2) if the following diagram
commutes:

Sn ψ1 //

α

��

Sn ϕ1 //

β

��

Sn

α

��
Sm ψ2 // Sm ϕ2 // Sm

We call (ϕ1, ψ1) and (ϕ2, ψ2) equivalent if α and β are
isomorphisms.
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Matrix factorizations

The category of matrix factorizations II

Given a matrix factorization (ϕ, ψ), we get a short exact sequence

0→ Sn ϕ
−→ Sn → coker(ϕ)→ 0.

Since f · Sn = ϕ(ψ(Sn)) ⊂ ϕ(Sn) we have f · coker(ϕ) = 0, hence
coker(ϕ) ∈ R−mod.
The sequence of maps and modules

· · · → Sn ϕ
−→ Sn ψ

−→ Sn ϕ
−→ Sn → coker(ϕ)→ 0

reduces modulo f to an 2-periodic R-free of coker(ϕ).
Because Syzi(M) is either 0 or MCM for all M ∈ R−mod and every
i ≥ dimR, coker(ϕ) is MCM over R.
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Matrix factorizations

The equivalence of categories

Theorem (Eisenbud 1980)

The functors coker and Γ induce an equivalence of categories

reduced, indecomposable matrix factorizations of f

up to equivalence
�
−→ non-free, indecomposable, maximal Cohen-Macaulay

R −modules up to isomorphism.
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MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Representations of MCMs as syzygies
How to control the Frobenius pullbacks?

An observation

In 2006 Kajura, Saito and Takahashi computed the matrix
factorizations of surfaces of type ADE.
In the E6 case (X2 + Y3 + Z4 = 0) there are three that give a MCM
module of rank 2.

One of these is

ϕ = ψ =


−X 0 Y2 Z3

0 − X Z −Y
Y Z3 X 0
Z − Y2 0 X

 .
Deleting the second column, the rows of the remaining 4 × 3 matrix
generate

SyzR(−X ,Y ,Z)
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Representations of MCMs as syzygies
How to control the Frobenius pullbacks?

Representation I

We now show that coker(ϕ) and SyzR(−X ,Y ,Z) become
isomorphic as sheafs on the punctured spectrum
U := Spec(R) \ {m}.

Because ϕ = ψ we get a 1-periodic free R-resolution

· · ·
ϕ
−→ R4 ϕ

−→ R4 ϕ
−→ R4 → coker(ϕ)→ 0.

This gives coker(ϕ) = im(ϕ), which is generated by the
columns of ϕ.

Show that on D(Y) ∪ D(Z) the second column belongs to Ñ,
where N is the module generated by the columns 1,3,4.

Daniel Brinkmann Universität Osnabrück The Hilbert-Kunz Functions of Surfaces of Type ADE



Introduction
Matrix factorizations

MCMs as syzygies
The Hilbert-Kunz functions of surfaces of type ADE

Representations of MCMs as syzygies
How to control the Frobenius pullbacks?

Representation I

We now show that coker(ϕ) and SyzR(−X ,Y ,Z) become
isomorphic as sheafs on the punctured spectrum
U := Spec(R) \ {m}.

Because ϕ = ψ we get a 1-periodic free R-resolution

· · ·
ϕ
−→ R4 ϕ

−→ R4 ϕ
−→ R4 → coker(ϕ)→ 0.

This gives coker(ϕ) = im(ϕ), which is generated by the
columns of ϕ.

Show that on D(Y) ∪ D(Z) the second column belongs to Ñ,
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How to control the Frobenius pullbacks?

Representation II

The commutative diagram

0 // OU

�

��

(−X ,Y ,Z)// O3
U

�

��

ϕ(2) // Ñ // 0

0 // OU
(−X ,Y ,Z)// O3

U
// SyzU(−X ,Y ,Z)∨ // 0

induces an isomorphism Ñ � SyzU(−X ,Y ,Z)∨.

Since M and SyzR(−X ,Y ,Z) are reflexive, the above
isomorphism lifts to R.

Show SyzR(−X ,Y ,Z)∨ � SyzR(−X ,Y ,Z) by the theory of
matrix factorizations.
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Representation II

The commutative diagram

0 // OU

�

��

(−X ,Y ,Z)// O3
U

�

��

ϕ(2) // Ñ // 0

0 // OU
(−X ,Y ,Z)// O3

U
// SyzU(−X ,Y ,Z)∨ // 0

induces an isomorphism Ñ � SyzU(−X ,Y ,Z)∨.

Since M and SyzR(−X ,Y ,Z) are reflexive, the above
isomorphism lifts to R.

Show SyzR(−X ,Y ,Z)∨ � SyzR(−X ,Y ,Z) by the theory of
matrix factorizations.
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A short exact Sequence

We need a criterium to distinguish the different MCM of rank 2 and
to compute the isomorphism class of the Frobenius pullbacks of
Syz(X ,Y ,Z).

This can be done by the ordinary Hilbert series.

Theorem (Brenner, Kaid 2007, )

Let R := k [x, y, z]/(x2 − f(y, z)) with weights ω = (α, β, γ) where f
is homogeneous of degree 2 · α. For a = 2 · l + 1, with l ∈ N and b,
c ∈ N we have a short exact sequence:

0 → SyzR(xa , yb , zc)(−α)
→ SyzR(f l , yb , zc)(−α) ⊕ SyzR(f l+1, yb , zc)
→ SyzR(xa , yb , zc)→ 0.

Note that this Theorem holds also in much bigger generality.
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To control the Frobenius-pullbacks of Syz(X ,Y ,Z) we have to do
the following:

Represent all MCM of rank 2 as syzygy modules

Compute their Hilbert series (and recognize that they are
different)

Show that all Syz(Xq,Yq,Zq) are indecomposable.

Compute the Hilbert series of Syz(Xq,Yq,Zq).

This will be of the form tn times the Hilbert series of a rank 2
MCM M = Syz(f1, f2, f3).

One gets
Syz(Xq,Yq,Zq) � M(−n/2).
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Theorem ( )

The Hilbert-Kunz function of Dn is the map

e 7→
(
2 −

1
4n − 8

)
(pe)2 +

m2

4n − 8
−

m + 1
2

,

where m ≡ pe (2n − 4).

Theorem ( )

The Hilbert-Kunz function of E6 is the map

e 7→
(
2 −

1
24

)
(pe)2 −

23
24
.
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Theorem ( )

The Hilbert-Kunz function of E7 is the map

e 7→


(
2 − 1

48

)
(pe)2 − 71

48 , if pe (24) ∈ {±5,±11}(
2 − 1

48

)
(pe)2 − 47

48 , else

Theorem ( )

The Hilbert-Kunz function of E8 is the map

e 7→


(
2 − 1

120

)
(pe)2 − 191

120 , if pe (30) ∈ {±7,±13}(
2 − 1

120

)
(pe)2 − 119

120 , else
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