DISCRETE INVARIANTS IN COMMUTATIVE ALGEBRA AND IN ALGEBRAIC GEOMETRY 20th National School on Algebra Mangalia, Romania 2 - 8 September 2012

Toric Ideals and Minimal systems of generators

Hara Charalambous

Department of Mathematics University of Thessaloniki, Greece

Introduction Generating I_A

Circuits, Universal Grobner bases and Primitive polynomials

Let
$$A = {a_1, ..., a_m} \subset \mathbb{Z}^n$$
 and I_A the corresponding toric ideal in $K[x_1, ..., x_m]$.

•
$$\deg_A(x_1^{u_1}\cdots x_m^{u_m}):=u_1\mathbf{a}_1+\cdots+u_m\mathbf{a}_m\in\mathbb{N}A$$

•
$$I_A = \langle \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} : \deg_A(\mathbf{x}^{\mathbf{u}}) = \deg_A(\mathbf{x}^{\mathbf{v}}\rangle).$$

Theorem

(Sturmfels) For any toric ideal I_A the following containments hold:

 $\mathit{Circuits}_A \subset \mathit{UGB}_A \subset \mathit{Graver}_A$

Definition

An irreducible binomial $B \in I_A$ is called a circuit if there is no binomial $B' \in I_A$ such that $supp(B') \subsetneq supp(B)$.

where if

$$B = \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}}$$
 then $supp(B) = supp(x^{\mathbf{u}}) \cup supp(x^{\mathbf{v}})$

and

$$supp(x^{\mathbf{u}}) = \{i \mid x_i \text{ divides } x^{\mathbf{u}}\}$$

Definition

An irreducible binomial $x^{\mathbf{u}^+} - x^{\mathbf{u}^-} \in I_A$ is called primitive if there exists no other binomial $x^{\mathbf{v}^+} - x^{\mathbf{v}^-} \in I_A$ such that $x^{\mathbf{v}^+}$ divides $x^{\mathbf{u}^+}$ and $x^{\mathbf{v}^-}$ divides $x^{\mathbf{u}^-}$.

Example

Let
$$A = \{1, 2, 4\}$$
.
Then $I_A = \langle x_1^2 - x_2, x_1^4 - x_3, x_2^2 - x_3 \rangle$.
• $x_1^2 - x_2, x_1^4 - x_3, x_2^2 - x_3$ are circuits.
• $x_1^2 x_2 - x_3$ is primitive, but not a circuit.
• $x_1^2 x_2 - x_3$ is primitive, but not in the Universal Grobner basis of I_A .
Proof: Let $x_1^2 x_2 - x_3$ be in the reduced Grobner basis G .
Fact: $x_1^2 - x_2 \in I_A$. Thus there is $g \in G$ such that $in_{<}(g)$ divides $in_{<}(x_1^2 - x_2)$.
Case 1: $in_{<}(x_1^2 - x_2) = x_1^2$. Then $in_{<}(g)$ divides $x_1^2 x_2$, a contradiction.
Case 2: $in_{<}(x_1^2 - x_2) = x_2$. Again we derive a contradiction.

What is a minimal generating set of I_A ? Is it unique?

Question

When is a primitive binomial not in the Universal Grobner basis? When is $UGB_A = Graver_A$?

Pointed semigroups

Definition

The affine semigroup $\mathbb{N}A := \{l_1\mathbf{a}_1 + \dots + l_m\mathbf{a}_m \mid l_i \in \mathbb{N}\}$ is pointed if

$$\{x: x \in \mathbb{N}A \text{ and } -x \in \mathbb{N}A\} = \{\mathbf{0}\}.$$

Example

- $A = \{1, -1\}$. $\mathbb{N}A$ is not pointed.
- $A = \{1, 2, 3\}$. $\mathbb{N}A$ is pointed.
- $A \subset \mathbb{N}^n$ then $\mathbb{N}A$ is pointed.
- The semigroups of toric ideals of graphs are pointed.

Example where $\mathbb{N}A$ is pointed

Example

Let $A = \{(2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2)\}.$ • $I_A = \langle x_1x_6 - x_2x_4, x_1x_6 - x_3x_5, x_2^2x_3 - x_1^2x_5, x_2x_3^2 - x_1^2x_4, x_1x_5^2 - x_2^2x_6, x_1x_4^2 - x_3^2x_6, x_4^2x_5 - x_3x_6^2, x_1x_4x_5 - x_2x_3x_6, x_4x_5^2 - x_2x_6^2 \rangle.$ • $I_A = \langle x_1x_6 - x_2x_4, x_2x_4 - x_3x_5, x_2^2x_3 - x_1^2x_5, x_2x_3^2 - x_1^2x_4, x_1x_5^2 - x_2^2x_6, x_1x_4^2 - x_3^2x_6, x_4^2x_5 - x_3x_6^2, x_1x_4x_5 - x_2x_3x_6, x_4x_5^2 - x_2x_6^2 \rangle.$ • $I_A = \langle x_3x_5 - x_2x_4, x_2x_4 - x_3x_5, x_2^2x_3 - x_1^2x_5, x_2x_3^2 - x_1^2x_4, x_1x_5^2 - x_2^2x_6, x_1x_4^2 - x_3^2x_6, x_4^2x_5 - x_3x_6^2, x_1x_4x_5 - x_2x_3x_6, x_4x_5^2 - x_2x_6^2 \rangle.$

Are there other generating sets of I_A ? What do these minimal generating sets of I_A have in common?

The A-degrees of the binomials are:

(2,2,2) , $(2,2,2),\,(2,2,5),\,(1,4,4),\,(4,1,4),(2,5,2),\,(4,4,1),\,(5,2,2),\,(3,3,3).$

Example where $\mathbb{N}A$ is not pointed

Example

- Let $A = \{1, -1\}$. In $k[x_1, x_2]$, $\deg_A(x_1) = 1$, $\deg_A(x_2) = -1$.
 - $I_A = (x_1 x_2 1).$
 - Claim: $I_A = (x_1^2 x_2^2 1, x_1^3 x_2^3 1).$ <u>Proof</u> $x_1 x_2 - 1 = x_1 x_2 (x_1^2 x_2^2 - 1) - (x_1^3 x_2^3 - 1).$
 - $I_A = (x_1^6 x_2^6 1, x_1^{10} x_2^{10} 1, x_1^{15} x_2^{15} 1).$
 - Is it true that for every *n* there is a minimal generating set of *I_A* of cardinality *n*?

Characteristics of Toric ideals

Definition

Let $\mu(I_A)$ be the least cardinality of a minimal system of binomial generators of I_A .

Definition

Let $\nu(I_A)$ be the number of different minimal systems of binomial generators of I_A of least cardinality, where for counting B is the same as -B.

Question

Are these numbers: $\mu(I_A)$ and $\nu(I_A)$ computable? Are they finite?

A recent problem, arising from Algebraic Statistics asks what conditions are needed for $\nu({\it I}_{\rm A})=1.$

To study this problem Ohsugi and Hibi introduced the notion of indispensable binomials while Aoki, Takemura and Yoshida introduced the notion of indispensable monomials.

Minimal and Indispensable binomials

Definition

A binomial $B = \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_A$ is indispensable binomial if every system of binomial generators of I_A contains B or -B.

Definition

A monomial $\mathbf{x}^{\mathbf{u}}$ is indispensable monomial if every system of binomial generators of I_A contains a binomial B such that the $\mathbf{x}^{\mathbf{u}}$ is a monomial of B.

Markov binomials

Definition

A binomial $B = \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_A$ is a minimal binomial if there exists a minimal system of binomial generators of I_A which contains B.

A binomial $B \in I_A$ is Markov if there exists a minimal system of binomial generators of I_A of least cardinality which contains B.

The Universal Markov Basis of I_A is the union of all minimal generating sets of I_A of least cardinality.

Is the Markov basis of I_A finite? What is the relation of the Markov basis with the Universal Grobner basis?

Example (Pointed case)

Example

Let $A = \{(2,1,0), (1,2,0), (2,0,1), (1,0,2), (0,2,1), (0,1,2)\}.$

- $I_A = \langle x_1 x_6 x_2 x_4, x_1 x_6 x_3 x_5, x_2^2 x_3 x_1^2 x_5, x_2 x_3^2 x_1^2 x_4, x_1 x_5^2 x_2^2 x_6, x_1 x_4^2 x_3^2 x_6, x_4^2 x_5 x_3 x_6^2, x_1 x_4 x_5 x_2 x_3 x_6, x_4 x_5^2 x_2 x_6^2 \rangle.$ • $I_A = \langle x_1 x_6 - x_2 x_4, x_2 x_4 - x_3 x_5, x_2^2 x_3 - x_1^2 x_5, x_2 x_3^2 - x_1^2 x_4, x_1 x_5^2 - x_2^2 x_6, x_1 x_4 x_5 - x_2 x_3 x_6, x_1 x_5 - x_2 x_6 \rangle.$
- $x_1x_4^2 x_3^2x_6, x_4^2x_5 x_3x_6^2, x_1x_4x_5 x_2x_3x_6, x_4x_5^2 x_2x_6^2 \rangle.$
- $I_A = \langle x_3 x_5 x_2 x_4, x_1 x_6 x_3 x_5, x_2^2 x_3 x_1^2 x_5, x_2 x_3^2 x_1^2 x_4, x_1 x_5^2 x_2^2 x_6, x_1 x_4^2 x_3^2 x_6, x_4^2 x_5 x_3 x_6^2, x_1 x_4 x_5 x_2 x_3 x_6, x_4 x_5^2 x_2 x_6^2 \rangle.$

The last 7 generators are common in all generating sets. Are they indispensable? Which of the monomial terms of the binomials that appear in these generating sets are indispensable?

Example (non-Pointed case)

Example

Let $A = \{1, -1\}.$

• $I_A = (x_1 x_2 - 1).$

•
$$I_A = (x_1^2 x_2^2 - 1, x_1^3 x_2^3 - 1).$$

 $x_1x_2 - 1$ is Markov. There are no indispensable binomials. $x_1^0x_2^0 = 1$ is the only indispensable monomial. What about the degrees of the elements in minimal generating sets of I_A ?

An A-degree **b** is called *Betti* A-degree if there exists a minimal binomial generator B of I_A with deg_A(B) = **b**.

The number of times that a Betti *A*-degree **b** appears as an *A*-degree of a binomial in a given minimal generating set is called *Betti number*.

Theorem

Let $\mathbb{N}A$ be pointed. The Betti A-degrees of I_A and their corresponding Betti numbers are independent of the choice of a minimal generating set of I_A , (graded Nakayama Lemma).

When $\mathbb{N}A$ is pointed the notions of minimal and Markov are the same.

Example

Example

Let $A = \{(2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2)\}.$ $I_A = \langle x_1 x_6 - x_2 x_4, x_1 x_6 - x_3 x_5, x_2^2 x_3 - x_1^2 x_5, x_2 x_3^2 - x_1^2 x_4, x_1 x_5^2 - x_2^2 x_6, x_1 x_4^2 - x_3^2 x_6, x_4^2 x_5 - x_3 x_6^2, x_1 x_4 x_5 - x_2 x_3 x_6, x_4 x_5^2 - x_2 x_6^2 \rangle.$ The Betti A-degrees are: (2, 2, 2), (2, 2, 5), (1, 4, 4), (4, 1, 4), (2, 5, 2), (4, 4, 1), (5, 2, 2), (3, 3, 3).The Betti number for (2, 2, 2) is 2 while the other A graded Batti

The Betti number for (2, 2, 2) is 2 while the other A-graded Betti numbers are 1.

Questions on generating Toric ideals

- How is *I_A* generated?
- What are the Betti degrees of I_A ?
- What are the Betti numbers of I_A ?
- How do we find minimal binomials for I_A ?
- How do we find the Markov binomials of I_A ?
- Why are there indispensable binomials of I_A ?
- What are the values of $\mu(I_A)$ and of $\nu(I_A)$?

Order in $\mathbb{N}A$

Definition

When $\mathbb{N}A$ is pointed we can partially order it with the relation

$$\mathbf{c} \geq \mathbf{d} \iff$$
 there is $\mathbf{e} \in \mathbb{N}A$ such that $\mathbf{c} = \mathbf{d} + \mathbf{e}$.

Example

When $\mathbb{N}A$ is not pointed the above relation is not an order.

Consider $A = \{-1, 1\}$. Then 1 = 0 + 1 and 0 = 1 + (-1). So we would get to situations where 1 > 0 and 0 > 1.

Fibers of $\mathbb{N}A$

Definition

Let $b \in \mathbb{N}A$. The fiber at b is the following set of monomials:

$$\mathsf{deg}_{\mathcal{A}}^{-1}(\mathbf{b}) = \{\mathbf{x}^{\mathbf{u}} \mid \mathsf{deg}_{\mathcal{A}}(\mathbf{x}^{\mathbf{u}}) = \mathbf{b}\}$$

Example

Let $A = \{(2,1,0), (1,2,0), (2,0,1), (1,0,2), (0,2,1), (0,1,2)\}.$

$$\deg_{\mathcal{A}}^{-1}(2,2,2) = \{x_1x_6, x_2x_4, x_3x_5\}$$

$$\deg_{A}^{-1}(1,4,4) = \{x_{2}^{2}x_{3}, x_{1}^{2}x_{5}\}$$

Example

Let $A = \{1, -1\}.$

$$\deg_{\mathcal{A}}^{-1}(0) = \{1, x_1 x_2, x_1^2 x_2^2, \ldots\}$$

Toric ideals

Cardinality of Fibers

Remark

When $\mathbb{N}A$ is pointed the fiber $\deg_A^{-1}(\mathbf{b})$ is finite for every $b \in \mathbb{N}A$.

When $\mathbb{N}A$ is not pointed then there is a $b \in \mathbb{N}A$ such that the fiber $\deg_A^{-1}(\mathbf{b})$ is not finite.

Introduction Generating I_A

Subideals of I_A in degrees less than $b \in \mathbb{N}A$

For what follows $\mathbb{N}A$ will be pointed.

Definition

For any $\mathbf{b} \in \mathbb{N}A$ we let

$$I_{\mathcal{A},\mathbf{b}} = (\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \mid \deg_{\mathcal{A}}(\mathbf{x}^{\mathbf{u}}) = \deg_{\mathcal{A}}(\mathbf{x}^{\mathbf{v}}) \lneq \mathbf{b}) \subset I_{\mathcal{A}}.$$

Example

Example

Let $A = \{(2, 2, 2, 0, 0), (2, -2, -2, 0, 0), (2, 2, -2, 0, 0), (2, -2, 2, 0, 0), (3, 0, 0, 3, 3), (3, 0, 0, -3, -3), (3, 0, 0, 3, -3)(3, 0, 0, -3, 3)\}.$

$$I_{\mathcal{A}} = (x_1 x_2 - x_3 x_4, x_5 x_6 - x_7 x_8, x_1^3 x_2^3 - x_5^2 x_6^2)$$

The Betti A-degrees are $\mathbf{b}_1 = (4, 0, 0, 0, 0)$, $\mathbf{b}_2 = (6, 0, 0, 0, 0)$ and $\mathbf{b}_3 = (12, 0, 0, 0, 0)$. Note that

$$b_1, b_2 < b_3$$
.

*I*_{A,b1} = *I*_{A,b2} = 0 (why?):
 b1 and b2 are minimal binomial A-degrees

•
$$I_{A,\mathbf{b}_3} = (x_1x_2 - x_3x_4, x_5x_6 - x_7x_8).$$

The graph of a $b \in \mathbb{N}A$

Definition

Let $G(\mathbf{b})$ be the graph with vertices the elements of the fiber deg⁻¹_A(\mathbf{b}) and edges all the sets $\{\mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}\}$ whenever $\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_{A,\mathbf{b}}$.

Example

Let
$$A = \{(2, 2, 2, 0, 0), (2, -2, -2, 0, 0), (2, 2, -2, 0, 0), (2, -2, 2, 0, 0), (3, 0, 0, 3, 3), (3, 0, 0, -3, -3), (3, 0, 0, 3, -3)(3, 0, 0, -3, 3)\}.$$

$$I_{A} = (x_{1}x_{2} - x_{3}x_{4}, x_{5}x_{6} - x_{7}x_{8}, x_{1}^{3}x_{2}^{3} - x_{5}^{2}x_{6}^{2})$$

 ${\bf b}_1=(4,0,0,0,0),~{\bf b}_2=(6,0,0,0,0)$, ${\bf b}_3=(12,0,0,0,0),$ and $b_1,b_2< b_3.$

- $G(\mathbf{b}_1)$ and $G(\mathbf{b}_2)$ consist of two points each.
- Connected components of $G(\mathbf{b}_1)$: $\{x_1x_2\}$ and $\{x_3x_4\}$,
- Connected components of $G(\mathbf{b}_2)$: $\{x_5x_6\}$ and $\{x_7x_8\}$

Example (continued)

Example

$$I_{A} = (x_{1}x_{2} - x_{3}x_{4}, x_{5}x_{6} - x_{7}x_{8}, x_{1}^{3}x_{2}^{3} - x_{5}^{2}x_{6}^{2})$$

$$\mathbf{b}_3 = \mathsf{deg}_{\mathcal{A}}(x_1^3 x_2^3 - x_5^2 x_6^2) = (12, 0, 0, 0, 0)$$

It is clear that $x_1^3 x_2^3, x_5^2 x_6^2$ belong to two different components of $G(\mathbf{b}_3)$.

$$\mathsf{deg}_{\mathsf{A}}^{-1}(\mathbf{b}_3) = \{x_1^3 x_2^3, x_1^2 x_2^2 x_3 x_4, x_1 x_2 x_3^2 x_4^2, x_3^3 x_4^3, x_5^2 x_6^2, x_5 x_6 x_7 x_8, x_7^2 x_8^2\}$$

 $G(\mathbf{b}_3)$ has two connected components: $\{x_1^3x_2^3, x_1^2x_2^2x_3x_4, x_1x_2x_3^2x_4^2, x_3^3x_4^3\}$ and $\{x_5^2x_6^2, x_5x_6x_7x_8, x_7^2x_8^2\}$. For example

$$x_1^3 x_2^3 - x_1^2 x_2^2 x_3 x_4 = x_1^2 x_2^2 (x_1 x_2 - x_3 x_4) \in I_{\mathcal{A}, (\mathbf{b_3})}$$

and indeed $x_1^3 x_2^3, x_1^2 x_2^2 x_3 x_4$ are in the same component of $G(\mathbf{b}_3)$. How many components does $G(\mathbf{b})$ for all other $b \in \mathbb{N}A$?

Remarks on $G(\mathbf{b})$

Suppose that $G(\mathbf{b})$ has $n_{\mathbf{b}}$ connected components $G(\mathbf{b})_i$, i.e.

$$G(\mathbf{b}) = \bigcup_{i=1}^{n_{\mathbf{b}}} G(\mathbf{b})_i,$$

and let $t_i(\mathbf{b})$ be the number of vertices of the *i*-component. Every connected component of $G(\mathbf{b})$ is a complete subgraph. If **b** is not a Betti *A*-degree, then $G(\mathbf{b})$ is connected.

Theorem

 $\mathbf{b} \in \mathbb{N}A$ is a minimal binomial A-degree if and only if every connected component of $G(\mathbf{b})$ is a singleton.

Introduction Generating I_A

The graph on the components of $G(\mathbf{b})$

We consider the complete graph with vertices the connected components $G(\mathbf{b})_i$ of $G(\mathbf{b})$,

Spanning trees and generators

Let $T_{\mathbf{b}}$ be a spanning tree of this graph.

Introduction Generating I_A

Spanning trees and generators

For every edge of $T_{\mathbf{b}}$ joining two components $G(\mathbf{b})_i$, $G(\mathbf{b})_j$ of $G(\mathbf{b})$ we choose a binomial $\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}}$ with $\mathbf{x}^{\mathbf{u}} \in G(\mathbf{b})_i$ and $\mathbf{x}^{\mathbf{v}} \in G(\mathbf{b})_i$.

Introduction Generating I_A

Markov basis for I_A

We call $\mathcal{F}_{\mathcal{T}_{\mathbf{b}}}$ the collection of these binomials. Note that if \mathbf{b} is not a Betti A-degree, then $\mathcal{F}_{\mathcal{T}_{\mathbf{b}}} = \emptyset$.

Theorem

The set $\mathcal{F} = \bigcup_{\mathbf{b} \in \mathbb{N}A} \mathcal{F}_{T_{\mathbf{b}}}$ is a minimal generating set of I_A .

Cardinality of minimal generating sets of I_A

Theorem

For a toric ideal I_A we have that

$$\mu(I_A) = \sum_{\mathbf{b} \in \mathbb{N}A} (n_{\mathbf{b}} - 1)$$

where $n_{\mathbf{b}}$ is the number of connected components of $G(\mathbf{b})$.

Number of minimal generating sets of I_A

Theorem

$$\nu(I_{\mathcal{A}}) = \prod_{\mathbf{b}\in\mathbb{N}\mathcal{A}} t_1(\mathbf{b})\cdots t_{n_{\mathbf{b}}}(\mathbf{b})(t_1(\mathbf{b})+\cdots+t_{n_{\mathbf{b}}}(\mathbf{b}))^{n_{\mathbf{b}}-2}$$

where $n_{\mathbf{b}}$ is the number of connected components of $G(\mathbf{b})$ and $t_i(\mathbf{b})$ is the number of vertices of the $G(\mathbf{b})_i$.

Indispensable binomials

Theorem

Let $B = \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_A$ with A-degree **b**. Then B is indispensable if and only if the graph $G(\mathbf{b})$ has only two connected components: $\{\mathbf{x}^{\mathbf{u}}\}\$ and $\{\mathbf{x}^{\mathbf{v}}\}$.

Theorem

Let $\mathbf{b}_1, \ldots, \mathbf{b}_q$ be the degrees of a minimal generating set of I_A . The ideal I_A is generated by indispensable binomials if and only if for $i = 1, \ldots, q$ the connected components of $G(b_i)$ are two one element sets.

If I_A is generated by indispensable binomials then the degrees of a minimal generating set of I_A are minimal binomial A-degrees

Example

Example

Let $A = \{3, 1, 1\}$.

$$I_{A} = (x_{1} - x_{2}^{3}, x_{2} - x_{3})$$

The Betti A-degrees are $\mathbf{b}_1 = 1$ and $\mathbf{b}_2 = 3$. The A-graded Betti numbers are: $\beta_{0,1} = 1$ and $\beta_{0,3} = 1$. G(1) consists of 2 vertices and has two connected components. G(3) has two connected component: the singleton $\{x_1\}$ and $\{x_2^3, x_2^2x_3, x_2x_3^2, x_3^3\}$.

$$\nu(I_A) = 4.$$

Exercise

Let $A = \{a_0 = k, a_1 = 1, \dots, a_n = 1\} \subset \mathbb{N}$ be a set of n + 1 natural numbers with k > 1. Find $\nu(I_A)$.

Generic binomial ideals

Connection to Integer Programming.

Theorem

(Peeva, Sturmfels) If I_A is generated by binomials of full support then $\nu(I_A) = 1$.

Example

Let $A = \{20, 24, 25, 31\}.$

$$\begin{split} I_{A} &= (x_{3}^{3} - x_{1}x_{2}x_{4}, x_{1}^{4} - x_{2}x_{3}x_{4}, x_{4}^{3} - x_{1}x_{2}^{2}x_{3}, x_{2}^{4} - x_{1}^{2}x_{3}x_{4}, \\ & x_{1}^{3}x_{3}^{2} - x_{2}^{2}x_{4}^{2}, x_{1}^{2}x_{2}^{3} - x_{3}^{2}x_{4}^{2}, x_{1}^{3}x_{4}^{2} - x_{2}^{3}x_{3}^{2}) \\ & \nu(I_{A}) &= 1 \end{split}$$

Recognizing indispensable binomials and monomials

- Ohsugi and Hibi proved that a binomial B is indispensable if and only if either B or -B belongs to the reduced Gröbner base of I_A for all lexicographic term orders.
- Aoki, Takemura and Yoshida have shown that a monomial x^u is indispensable if the reduced Gröbner base of I_A , with respect to any lexicographic term order, contains a binomial that has x^u as one of its terms.

There are quite few lexicographic term orders for large m!

Indispensable monomials

We let \mathcal{M}_A be the monomial ideal generated by all $\mathbf{x}^{\mathbf{u}}$ for which there exists a nonzero $\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_A$. Let $T_A := \{M_1, \ldots, M_k\}$ be the unique minimal monomial generating set of \mathcal{M}_A .

Theorem

The indispensable monomials of I_A are precisely the elements of T_A .

Remark

To compute T_A it is enough to find **one** generating set of I_A .

Indispensable binomials and indispensable monomials

Theorem

A binomial $B = \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_A$ is indispensable if and only if $\deg_A(B)$ is a minimal binomial A-degree and $\{\mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}\}$ is the maximal (with respect to inclusion) subset of T_A whose elements have degree $\deg_A(B)$.

Algorithm

- Let {B₁ = x^{u₁₁} − x<sup>u₁₂,..., B_s = x^{u_{s1}} − x<sup>u_{s2}} a system of binomial generators or a Gröbner base of I_A with respect to any term order on K[x₁,..., x_m].
 </sup></sup>
- $\mathcal{M}_{\mathcal{A}} = (\mathbf{x}^{\mathbf{u}_{11}}, \mathbf{x}^{\mathbf{u}_{12}}, \dots, \mathbf{x}^{\mathbf{u}_{s1}}, \mathbf{x}^{\mathbf{u}_{s2}})$
- compute the elements of T_A and their A-degrees
- Check how many monomials of T_A have the same A-degree.
- Check minimality of degrees whenever you find exactly two such monomials.

Example

Example

Let $A = \{(2,1,0), (1,2,0), (2,0,1), (1,0,2), (0,2,1), (0,1,2)\}.$

$$\begin{split} I_{A} &= (x_{1}x_{6} - x_{2}x_{4}, x_{1}x_{6} - x_{3}x_{5}, x_{2}^{2}x_{3} - x_{1}^{2}x_{5}, x_{2}x_{3}^{2} - x_{1}^{2}x_{4}, \\ x_{1}x_{5}^{2} - x_{2}^{2}x_{6}, x_{1}x_{4}^{2} - x_{3}^{2}x_{6}, x_{4}^{2}x_{5} - x_{3}x_{6}^{2}, x_{1}x_{4}x_{5} - x_{2}x_{3}x_{6}, x_{4}x_{5}^{2} - x_{2}x_{6}^{2}) \ . \\ \mathcal{T}_{A} &= \{x_{1}x_{6}, x_{2}x_{4}, x_{3}x_{5}, \ x_{3}x_{6}^{2}, x_{4}^{2}x_{5}, x_{2}x_{6}^{2}x_{4}x_{5}^{2}, \ x_{3}^{2}x_{6}, \\ x_{1}x_{4}^{2}, x_{2}^{2}x_{6}, x_{1}x_{5}^{2}, \ x_{1}^{2}x_{5}, x_{2}^{2}x_{3}, x_{1}^{2}x_{4}, \ x_{2}x_{3}^{2}, x_{2}x_{3}x_{6}, x_{1}x_{4}x_{5}\} \ . \end{split}$$

The A-degrees of the elements of T_A are (2,2,2), (2,2,5), (1,4,4), (4,1,4), (2,5,2), (4,4,1), (5,2,2), (3,3,3). All are minimal .

 I_A has 7 indispensable binomials.

Introduction Generating I_A

- H. Charalambous, A. Katsabekis, A. Thoma, "Minimal systems of binomial generators and the indispensable complex of a toric ideal", Proceedings of the American Mathematical Society, 135 (2007) 3443-3451.
- H. Charalambous, A. Sinefakopoulos, A. Thoma, "Markov Bases of Binomial ideals", work in progress
- H. Charalambous, A. Thoma, M. Vladoiu "On the Universal Markov basis and the generalized Lawrence Liftings", work in progress
- D. Eisenbud, B. Sturmfels, "Binomial Idealsl", Duke Math. J. No 84 (1) (1996) 1-45.
- I. Peeva, B. Sturmfels, "Generic Lattice Idealsl", J. Amer.Math.Soc. No. 11 (1998) 363-373.