Lefschetz properties of Artinian algebras and Hilbert series

Martina Kubitzke

Fachbereich Mathematik und Informatik Institut für Mathematik

September 5, 2012

・ロット (雪) (日) (日)

Background

Lefschetz properties

Application to barycentric subdivisions

Application to Veronese algebras and edgewise subdivisions

Background

Lefschetz properties

Application to barycentric subdivisions

Application to Veronese algebras and edgewise subdivisions

・ ロ ト ・ 雪 ト ・ 目 ト ・

Standard graded algebras

k field

- $A = \bigoplus_{i>0} A_i$ standard graded k-algebra \Leftrightarrow
 - $A_0 = k$
 - A generated in degree 1
 - $A_i A_j \subseteq A_{i+j}$ for all $i, j \ge 0$
 - $\dim_k(A_i) < \infty$ for all i

A Artinian $\Leftrightarrow \dim_k(A) < \infty \quad \Leftrightarrow \quad A = \bigoplus_{i=0}^s A_i$

Example:

- $A = k[x_1, \dots, x_n]$ standard graded \checkmark , not Artinian **X**
- $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ standard graded \checkmark , Artinian \checkmark

・ ロ ト ・ 雪 ト ・ 目 ト ・

Standard graded algebras

k field

- $A = \bigoplus_{i>0} A_i$ standard graded k-algebra \Leftrightarrow
 - $A_0 = k$
 - A generated in degree 1
 - $A_i A_j \subseteq A_{i+j}$ for all $i, j \ge 0$
 - $\dim_k(A_i) < \infty$ for all i

A Artinian $\Leftrightarrow \dim_k(A) < \infty \quad \Leftrightarrow \quad A = \bigoplus_{i=0}^s A_i$

Example:

- $A = k[x_1, \dots, x_n]$ standard graded \checkmark , not Artinian X
- $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ standard graded \checkmark , Artinian \checkmark

く ロ ト く 厚 ト く ヨ ト く ヨ ト

Standard graded algebras

k field

- $A = \bigoplus_{i>0} A_i$ standard graded k-algebra \Leftrightarrow
 - $A_0 = k$
 - A generated in degree 1
 - $A_i A_j \subseteq A_{i+j}$ for all $i, j \ge 0$
 - $\dim_k(A_i) < \infty$ for all i

A Artinian $\Leftrightarrow \dim_k(A) < \infty \quad \Leftrightarrow \quad A = \bigoplus_{i=0}^s A_i$

Example:

- $A = k[x_1, \ldots, x_n]$ standard graded \checkmark , not Artinian \checkmark
- $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ standard graded \checkmark , Artinian \checkmark

Hilbert series

k field, $A = \bigoplus_{i \geq 0} A_i$ standard graded k-algebra

$$\operatorname{Hilb}(A,t) = \sum_{i \ge 0} \dim_k(A_i) t^i = \frac{h_0 + h_1 t + \dots + h_s t^s}{(1-t)^d} \quad \text{Hilbert series}$$

Notation:

- $h_A(t)$ • $h(A) = (h_0, h_1, \dots, h_s)$ • $h(A) = (h_0, h_1, \dots, h_s)$
- $g(A) = (1, h_1 h_0, \dots, h_{\lfloor \frac{s}{2} \rfloor} h_{\lfloor \frac{s}{2} \rfloor 1})$

h-polynomial of *A h*-vector of *A g*-vector of *A*

Example:

- $A = k[x_1, \dots, x_n]$ Hilb $(A, t) = \sum_{i=0}^{\infty} {n+i-1 \choose i} t^i = \frac{1}{(1-t)^n}, h(A) = (1), g(A) = (1).$
- $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ Hilb $(A, t) = 1 + 3t + 3t^2 = h_A(t), h(A) = (1, 3, 3), g(A) = (1, 2)$

Goal: Study *h*-polynomials/vectors. \Rightarrow How?

of A

Hilbert series

k field, $A = \bigoplus_{i \geq 0} A_i$ standard graded k-algebra

$$\operatorname{Hilb}(A,t) = \sum_{i \ge 0} \dim_k(A_i) t^i = \frac{h_0 + h_1 t + \dots + h_s t^s}{(1-t)^d} \quad \text{Hilbert series}$$

Notation:

- $h_A(t)$ • $h(A) = (h_0, h_1, \dots, h_s)$ h-vector of A
- $g(A) = (1, h_1 h_0, \dots, h_{\lfloor \frac{s}{2} \rfloor} h_{\lfloor \frac{s}{2} \rfloor 1})$ g-vector of A

Example:

- $A = k[x_1, \dots, x_n]$ Hilb $(A, t) = \sum_{i=0}^{\infty} {n+i-1 \choose i} t^i = \frac{1}{(1-t)^n}, h(A) = (1), g(A) = (1).$
- $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ Hilb $(A, t) = 1 + 3t + 3t^2 = h_A(t), h(A) = (1, 3, 3), g(A) = (1, 2)$

Goal: Study *h*-polynomials/vectors. \Rightarrow How?

of A

Hilbert series

k field, $A = \bigoplus_{i \geq 0} A_i$ standard graded k-algebra

$$\operatorname{Hilb}(A,t) = \sum_{i \ge 0} \dim_k(A_i) t^i = \frac{h_0 + h_1 t + \dots + h_s t^s}{(1-t)^d} \quad \text{Hilbert series of A}$$

Notation:

 $h_A(t)$ $h_A(t) = (h_0, h_1, \dots, h_s)$ $g(A) = (1, h_1 - h_0, \dots, h_{\lfloor \frac{s}{2} \rfloor} - h_{\lfloor \frac{s}{2} \rfloor - 1})$ g-vector of A

Example:

• $A = k[x_1, \dots, x_n]$ Hilb $(A, t) = \sum_{i=0}^{\infty} {n+i-1 \choose i} t^i = \frac{1}{(1-t)^n}, h(A) = (1), g(A) = (1).$ • $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ Hilb $(A, t) = 1 + 3t + 3t^2 = h_A(t), h(A) = (1, 3, 3), g(A) = (1, 2).$ oal: Study *h*-polynomials/vectors. \Rightarrow How?

Hilbert series

k field, $A = \bigoplus_{i \geq 0} A_i$ standard graded k-algebra

$$\operatorname{Hilb}(A,t) = \sum_{i \ge 0} \dim_k(A_i) t^i = \frac{h_0 + h_1 t + \dots + h_s t^s}{(1-t)^d} \quad \text{Hilbert series of A}$$

Notation:

 $h_A(t)$ $h_A(t) = (h_0, h_1, \dots, h_s)$ $g(A) = (1, h_1 - h_0, \dots, h_{\lfloor \frac{s}{2} \rfloor} - h_{\lfloor \frac{s}{2} \rfloor - 1})$ $h_{-\text{vector of } A}$ $g_{-\text{vector of } A}$

Example:

• $A = k[x_1, \dots, x_n]$ Hilb $(A, t) = \sum_{i=0}^{\infty} {n+i-1 \choose i} t^i = \frac{1}{(1-t)^n}, h(A) = (1), g(A) = (1).$ • $A = k[x_1, x_2, x_3]/(x_1x_2, x_1x_3, x_2x_3, x_1^3, x_2^3, x_3^3)$ Hilb $(A, t) = 1 + 3t + 3t^2 = h_A(t), h(A) = (1, 3, 3), g(A) = (1, 2).$ Goal: Study *h*-polynomials/vectors. \Rightarrow How?

Background

Lefschetz properties

Application to barycentric subdivisions

Application to Veronese algebras and edgewise subdivisions

Our Tool: Lefschetz properties

$A = \bigoplus_{i=0}^{s} A_i$ standard graded Artinian *k*-algebra

A is called

• *m*-Lefschetz if there exists $\omega \in A_1$ such that the multiplication map

$$\omega^{m-2i}: A_i \to A_{m-i}: p \mapsto \omega^{m-2i}p$$

- strong Lefschetz if *A* is *s*-Lefschetz.
- almost strong Lefschetz if A is (s-1)-Lefschetz.

Our Tool: Lefschetz properties

 $A = \bigoplus_{i=0}^{s} A_i$ standard graded Artinian *k*-algebra

A is called

• *m*-Lefschetz if there exists $\omega \in A_1$ such that the multiplication map

$$\omega^{m-2i}: A_i \to A_{m-i}: p \mapsto \omega^{m-2i}p$$

- strong Lefschetz if A is s-Lefschetz.
- almost strong Lefschetz if A is (s-1)-Lefschetz.

Our Tool: Lefschetz properties

 $A = \bigoplus_{i=0}^{s} A_i$ standard graded Artinian *k*-algebra

A is called

• *m*-Lefschetz if there exists $\omega \in A_1$ such that the multiplication map

$$\omega^{m-2i}: A_i \to A_{m-i}: p \mapsto \omega^{m-2i}p$$

- strong Lefschetz if A is s-Lefschetz.
- almost strong Lefschetz if A is (s 1)-Lefschetz.

・ 日マ ・ 雪マ ・ 日マ ・ 日マ

Our Tool: Lefschetz properties

 $A = \bigoplus_{i=0}^{s} A_i$ standard graded Artinian *k*-algebra

A is called

• *m*-Lefschetz if there exists $\omega \in A_1$ such that the multiplication map

$$\omega^{m-2i}: A_i \to A_{m-i}: p \mapsto \omega^{m-2i}p$$

- strong Lefschetz if A is s-Lefschetz.
- almost strong Lefschetz if A is (s-1)-Lefschetz.

・ 日 ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Our Tool: Lefschetz properties (cont'd)

A is called

• weak Lefschetz if there exists $\omega \in A_1$ and $1 \le g \le s$ such that the multiplication map

$$\omega: A_i \to A_{i+1}: p \mapsto \omega p$$

is injective for $0 \le i \le g - 1$ and surjective for all $i \ge g$.

• quasi weak Lefschetz if there exists $\omega \in A_1$ and $1 \le g \le s$ such that the multiplication map

$$\omega: A_i \to A_{i+1}: p \mapsto \omega p$$

is injective for $0 \le i \le g-1$ and surjective for all $i \ge g+1$.

 ω is called (m- / (almost) strong / (quasi) weak) Lefschetz element.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Our Tool: Lefschetz properties (cont'd)

A is called

• weak Lefschetz if there exists $\omega \in A_1$ and $1 \le g \le s$ such that the multiplication map

$$\omega: A_i \to A_{i+1}: p \mapsto \omega p$$

is injective for $0 \le i \le g - 1$ and surjective for all $i \ge g$.

• quasi weak Lefschetz if there exists $\omega \in A_1$ and $1 \le g \le s$ such that the multiplication map

$$\omega: A_i \to A_{i+1}: p \mapsto \omega p$$

is injective for $0 \le i \le g - 1$ and surjective for all $i \ge g + 1$.

 ω is called (m- / (almost) strong / (quasi) weak) Lefschetz element.

A D > A P > A D > A D >

Our Tool: Lefschetz properties (cont'd)

A is called

• weak Lefschetz if there exists $\omega \in A_1$ and $1 \le g \le s$ such that the multiplication map

$$\omega: A_i \to A_{i+1}: p \mapsto \omega p$$

is injective for $0 \le i \le g - 1$ and surjective for all $i \ge g$.

• quasi weak Lefschetz if there exists $\omega \in A_1$ and $1 \le g \le s$ such that the multiplication map

$$\omega: A_i \to A_{i+1}: p \mapsto \omega p$$

is injective for $0 \le i \le g-1$ and surjective for all $i \ge g+1$.

 ω is called (m- / (almost) strong / (quasi) weak) Lefschetz element.

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega : A_i \to A_{i+1} : p \mapsto \omega p \text{ injective for } 0 \le i \le \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$ Moreover: $h_i \leq h_{m-1}$ for $0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor$.

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \leq h_1 \leq \ldots \leq h_p \quad h_{p+1} \geq \ldots \geq h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

・ 日マ ・ 雪マ ・ 日マ ・ 日マ

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega: A_i \to A_{i+1}: \ p \mapsto \omega p \text{ injective for } 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$ Moreover: $h_i \leq h_{m-i} \text{ for } 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor.$

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \leq h_1 \leq \ldots \leq h_p \quad h_{p+1} \geq \ldots \geq h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

・ 日マ ・ 雪マ ・ 日マ ・ 日マ

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega: A_i \to A_{i+1}: \ p \mapsto \omega p \text{ injective for } 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$ Moreover: $h_i \leq h_{m-i} \text{ for } 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor.$

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \le h_1 \le \ldots \le h_p \quad h_{p+1} \ge \ldots \ge h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega: A_i \to A_{i+1}: \ p \mapsto \omega p \text{ injective for } 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$

Moreover: $h_i \leq h_{m-i}$ for $0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor$.

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \le h_1 \le \ldots \le h_p \quad h_{p+1} \ge \ldots \ge h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

・ロット 御 とう ひょう く

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega : A_i \to A_{i+1} : p \mapsto \omega p \text{ injective for } 0 \le i \le \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$

Moreover: $h_i \leq h_{m-i}$ for $0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor$.

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \le h_1 \le \ldots \le h_p \quad h_{p+1} \ge \ldots \ge h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega: A_i \to A_{i+1}: \ p \mapsto \omega p \text{ injective for } 0 \le i \le \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$

Moreover: $h_i \leq h_{m-i}$ for $0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor$.

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \leq h_1 \leq \ldots \leq h_p \quad h_{p+1} \geq \ldots \geq h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

A B > A B > A B >

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega : A_i \to A_{i+1} : p \mapsto \omega p \text{ injective for } 0 \le i \le \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$

Moreover: $h_i \leq h_{m-i}$ for $0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor$.

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \leq h_1 \leq \ldots \leq h_p \quad h_{p+1} \geq \ldots \geq h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

く ロ ト く 厚 ト く ヨ ト く ヨ ト

Why can Lefschetz elements serve our purposes?

Example 1: A *m*-Lefschetz with Lefschetz element ω .

 $\Rightarrow \omega : A_i \to A_{i+1} : p \mapsto \omega p \text{ injective for } 0 \le i \le \lfloor \frac{m-1}{2} \rfloor.$

 $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is the Hilbert function of } A/(\omega A + \mathfrak{m}^{\lfloor \frac{m+1}{2} \rfloor + 1}).$ $\Rightarrow (g_0, g_1, \dots, g_{\lfloor \frac{m+1}{2} \rfloor}) \text{ is an } M\text{-sequence.}$

Moreover: $h_i \leq h_{m-i}$ for $0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor$.

Example 2: A quasi weak Lefschetz.

 $\Rightarrow h_0 \leq h_1 \leq \ldots \leq h_p \quad h_{p+1} \geq \ldots \geq h_s$ (unimodality).

What to remember: Lefschetz properties are a tool to prove properties of the Hilbert series of Artinian algebras.

A standard graded k-algebra, not Artinian \mathbf{X}

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\operatorname{Hilb}(A,t) = \frac{\operatorname{Hilb}(A/\Theta A,t)}{(1-t)^d}$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

A standard graded k-algebra, not Artinian \mathbf{X}

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\mathrm{Hilb}(A,t) = \frac{\mathrm{Hilb}(A/\Theta A,t)}{(1-t)^d}$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

A standard graded k-algebra, not Artinian X

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\operatorname{Hilb}(A,t) = \frac{\operatorname{Hilb}(A/\Theta A,t)}{(1-t)^d}$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

A standard graded k-algebra, not Artinian X

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\operatorname{Hilb}(A,t) = \frac{\operatorname{Hilb}(A/\Theta A,t)}{(1-t)^d}.$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

A standard graded k-algebra, not Artinian X

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\operatorname{Hilb}(A,t) = \frac{\operatorname{Hilb}(A/\Theta A,t)}{(1-t)^d}$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

What to do for non-Artinian algebras?

A standard graded k-algebra, not Artinian X

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\operatorname{Hilb}(A, t) = \frac{\operatorname{Hilb}(A/\Theta A, t)}{(1-t)^d}$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

A standard graded k-algebra, not Artinian X

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters $\Theta = \{\theta, \dots, \theta_d\}$ for *A*.

Comparing the Hilbert series of A and $A/\Theta A$ one gets

$$\operatorname{Hilb}(A, t) = \frac{\operatorname{Hilb}(A/\Theta A, t)}{(1-t)^d}$$

This means $h_A(t) = h_{A/\Theta A}(t)$ (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find Lefschetz elements for $A/\Theta A$.

・ロット語・トリー

Lefschetz elements in Combinatorics

A simplicial complex Δ is called $\mbox{Lefschetz}$ if its Stanley-Reisner ring has this property.

- Stanley: necessity part of the *g*-theorem for simplicial polytopes (uses Hard Lefschetz theorem for toric variety)
- Babson/Nevo: Preservation of Lefschetz properties under taking joins, connected sums, stellar subdivisions, unions of simplicial complexes.
- Murai: strongly edge decomposable complexes are strong Lefschetz.
- Swartz: matroid complexes and simplicial complexes having a convex ear decomposition are strong Lefschetz.
- K./Nevo: barycentric subdivisions of shellable complexes are almost strong Lefschetz.

・ 日マ ・ 雪マ ・ 日マ ・ 日マ

Lefschetz elements in Combinatorics

A simplicial complex Δ is called Lefschetz if its Stanley-Reisner ring has this property.

- Stanley: necessity part of the *g*-theorem for simplicial polytopes (uses Hard Lefschetz theorem for toric variety)
- Babson/Nevo: Preservation of Lefschetz properties under taking joins, connected sums, stellar subdivisions, unions of simplicial complexes.
- Murai: strongly edge decomposable complexes are strong Lefschetz.
- Swartz: matroid complexes and simplicial complexes having a convex ear decomposition are strong Lefschetz.
- K./Nevo: barycentric subdivisions of shellable complexes are almost strong Lefschetz.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Lefschetz elements in Combinatorics

A simplicial complex Δ is called Lefschetz if its Stanley-Reisner ring has this property.

- Stanley: necessity part of the *g*-theorem for simplicial polytopes (uses Hard Lefschetz theorem for toric variety)
- Babson/Nevo: Preservation of Lefschetz properties under taking joins, connected sums, stellar subdivisions, unions of simplicial complexes.
- Murai: strongly edge decomposable complexes are strong Lefschetz.
- Swartz: matroid complexes and simplicial complexes having a convex ear decomposition are strong Lefschetz.
- K./Nevo: barycentric subdivisions of shellable complexes are almost strong Lefschetz.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Lefschetz elements in Combinatorics

A simplicial complex Δ is called Lefschetz if its Stanley-Reisner ring has this property.

- Stanley: necessity part of the *g*-theorem for simplicial polytopes (uses Hard Lefschetz theorem for toric variety)
- Babson/Nevo: Preservation of Lefschetz properties under taking joins, connected sums, stellar subdivisions, unions of simplicial complexes.
- Murai: strongly edge decomposable complexes are strong Lefschetz.
- Swartz: matroid complexes and simplicial complexes having a convex ear decomposition are strong Lefschetz.
- K./Nevo: barycentric subdivisions of shellable complexes are almost strong Lefschetz.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Lefschetz elements in Combinatorics

A simplicial complex Δ is called Lefschetz if its Stanley-Reisner ring has this property.

- Stanley: necessity part of the *g*-theorem for simplicial polytopes (uses Hard Lefschetz theorem for toric variety)
- Babson/Nevo: Preservation of Lefschetz properties under taking joins, connected sums, stellar subdivisions, unions of simplicial complexes.
- Murai: strongly edge decomposable complexes are strong Lefschetz.
- Swartz: matroid complexes and simplicial complexes having a convex ear decomposition are strong Lefschetz.
- K./Nevo: barycentric subdivisions of shellable complexes are almost strong Lefschetz.

Lefschetz elements in Commutative Algebra

Theorem

k field of characteristic 0, $S = k[x_1, ..., x_n]$, $I = \langle x_1^{a_1}, ..., x_n^{a_n} \rangle$ Artinian monomial complete intersection, ω general linear form. Then for any positive integers *d*, *i* the multiplication

$$\omega^d:\ (S/I)_i\to (S/I)_{i+d}:\ p\mapsto \omega^d\cdot p$$

has maximal rank.

- Starting point of the whole story
- Proofs by
 - Stanley (1980, algebraic topology),
 - Watanabe (1987, representation theory),
 - Reid/Roberts/Roitman (1991, algebraic methods),
 - Ikeda (1996, combinatorial methods),
 - Herzog/Popescu (unpublished, 2005, linear algebra).

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Lefschetz elements in Commutative Algebra

Theorem

k field of characteristic 0, $S = k[x_1, ..., x_n]$, $I = \langle x_1^{a_1}, ..., x_n^{a_n} \rangle$ Artinian monomial complete intersection, ω general linear form. Then for any positive integers *d*, *i* the multiplication

$$\omega^d:\ (S/I)_i\to (S/I)_{i+d}:\ p\mapsto \omega^d\cdot p$$

has maximal rank.

- Starting point of the whole story
- Proofs by
 - Stanley (1980, algebraic topology),
 - Watanabe (1987, representation theory),
 - Reid/Roberts/Roitman (1991, algebraic methods),
 - Ikeda (1996, combinatorial methods),
 - Herzog/Popescu (unpublished, 2005, linear algebra).

- Wiebe: k[x₁,...,x_n]/in_≺(I) strong Lefschetz ⇒ k[x₁,...,x_n]/I strong Lefschetz for a homogeneous ideal I. The converse is true for the generic initial ideal.
- Harima/Wachi: $k[x_1, \ldots, x_n]/I$ strong Lefschetz if I is almost reverse lexicographic.
- Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if char(k) = 0 and I homogeneous ideal.
- Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and I is generated by powers of linear forms.
- Migliore/Miró-Roig/Nagel: For $n \ge 2$ and generic linear forms L_i $k[x_1, \ldots, x_{2n}]/\langle L_1^t, \ldots, L_{2n+1}^t \rangle$ fails the WLP if and only if t > 1. (For an uneven number of variables: partial results.)
- K./Murai: Lefschetz properties for Veronese algebras

- Wiebe: k[x₁,...,x_n]/in_≺(I) strong Lefschetz ⇒ k[x₁,...,x_n]/I strong Lefschetz for a homogeneous ideal I. The converse is true for the generic initial ideal.
- Harima/Wachi: $k[x_1, \ldots, x_n]/I$ strong Lefschetz if I is almost reverse lexicographic.
- Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if char(k) = 0 and I homogeneous ideal.
- Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and I is generated by powers of linear forms.
- Migliore/Miró-Roig/Nagel: For $n \ge 2$ and generic linear forms $L_i k[x_1, \ldots, x_{2n}]/\langle L_1^t, \ldots, L_{2n+1}^t \rangle$ fails the WLP if and only if t > 1. (For an uneven number of variables: partial results.)
- K./Murai: Lefschetz properties for Veronese algebras

- Wiebe: k[x₁,...,x_n]/in_≺(I) strong Lefschetz ⇒ k[x₁,...,x_n]/I strong Lefschetz for a homogeneous ideal I. The converse is true for the generic initial ideal.
- Harima/Wachi: $k[x_1, ..., x_n]/I$ strong Lefschetz if I is almost reverse lexicographic.
- Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if char(k) = 0 and I homogeneous ideal.
- Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and I is generated by powers of linear forms.
- Migliore/Miró-Roig/Nagel: For $n \ge 2$ and generic linear forms L_i $k[x_1, \ldots, x_{2n}]/\langle L_1^t, \ldots, L_{2n+1}^t \rangle$ fails the WLP if and only if t > 1. (For an uneven number of variables: partial results.)
- K./Murai: Lefschetz properties for Veronese algebras

A D > A D > A D > A D >

- Wiebe: k[x₁,...,x_n]/in_≺(I) strong Lefschetz ⇒ k[x₁,...,x_n]/I strong Lefschetz for a homogeneous ideal I. The converse is true for the generic initial ideal.
- Harima/Wachi: $k[x_1, ..., x_n]/I$ strong Lefschetz if I is almost reverse lexicographic.
- Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if char(k) = 0 and I homogeneous ideal.
- Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and I is generated by powers of linear forms.
- Migliore/Miró-Roig/Nagel: For $n \ge 2$ and generic linear forms L_i $k[x_1, \ldots, x_{2n}]/\langle L_1^t, \ldots, L_{2n+1}^t \rangle$ fails the WLP if and only if t > 1. (For an uneven number of variables: partial results.)
- K./Murai: Lefschetz properties for Veronese algebras

- Wiebe: k[x₁,...,x_n]/in_≺(I) strong Lefschetz ⇒ k[x₁,...,x_n]/I strong Lefschetz for a homogeneous ideal I. The converse is true for the generic initial ideal.
- Harima/Wachi: $k[x_1, ..., x_n]/I$ strong Lefschetz if I is almost reverse lexicographic.
- Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if char(k) = 0 and I homogeneous ideal.
- Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and I is generated by powers of linear forms.
- Migliore/Miró-Roig/Nagel: For $n \ge 2$ and generic linear forms $L_i k[x_1, \ldots, x_{2n}]/\langle L_1^t, \ldots, L_{2n+1}^t \rangle$ fails the WLP if and only if t > 1. (For an uneven number of variables: partial results.)
- K./Murai: Lefschetz properties for Veronese algebras

- Wiebe: k[x₁,...,x_n]/in_≺(I) strong Lefschetz ⇒ k[x₁,...,x_n]/I strong Lefschetz for a homogeneous ideal I. The converse is true for the generic initial ideal.
- Harima/Wachi: $k[x_1, \ldots, x_n]/I$ strong Lefschetz if I is almost reverse lexicographic.
- Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if char(k) = 0 and I homogeneous ideal.
- Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and I is generated by powers of linear forms.
- Migliore/Miró-Roig/Nagel: For $n \geq 2$ and generic linear forms $L_i k[x_1, \ldots, x_{2n}]/\langle L_1^t, \ldots, L_{2n+1}^t \rangle$ fails the WLP if and only if t > 1. (For an uneven number of variables: partial results.)
- K./Murai: Lefschetz properties for Veronese algebras

Background

Lefschetz properties

Application to barycentric subdivisions

Application to Veronese algebras and edgewise subdivisions

Δ simplicial complex on vertex set $[n] = \{1, \ldots, n\}$

- $I_{\Delta} = (\prod_{i \in F} x_i \mid F \notin \Delta)$ $k[\Delta] = k[x_1, \dots, x_n] / I_{\Delta}$
- $h(\Delta) = h(k[\Delta])$

Stanley-Reisner ideal of Δ Stanley-Reisner ring of Δ *h*-vector of Δ

Example:

• Δ (d-1)-simplex \Rightarrow $k[\Delta] = k[x_1, \dots, x_d], h(\Delta) = (1, 0, \dots, 0)$

• $k[\Delta]=k[x_1,x_2,x_3,x_4,x_5]/(x_1x_4,x_1x_5,x_2x_5,x_4x_5)$ and $h(\Delta)=(1,2,-1,0)$

 Δ simplicial complex on vertex set $[n] = \{1, \dots, n\}$

$$\begin{split} I_{\Delta} &= (\prod_{i \in F} x_i \mid F \notin \Delta) & \text{Stanley-Reisner ideal of } \Delta \\ k[\Delta] &= k[x_1, \dots, x_n] / I_{\Delta} & \text{Stanley-Reisner ring of } \Delta \\ h(\Delta) &= h(k[\Delta]) & h\text{-vector of } \Delta \end{split}$$

Example:

• Δ (d-1)-simplex \Rightarrow $k[\Delta] = k[x_1, \dots, x_d], h(\Delta) = (1, 0, \dots, 0)$

• $k[\Delta]=k[x_1,x_2,x_3,x_4,x_5]/(x_1x_4,x_1x_5,x_2x_5,x_4x_5)$ and $h(\Delta)=(1,2,-1,0)$

 Δ simplicial complex on vertex set $[n] = \{1, \dots, n\}$

$$\begin{split} I_{\Delta} &= (\prod_{i \in F} x_i \mid F \notin \Delta) \\ k[\Delta] &= k[x_1, \dots, x_n] / I_{\Delta} \\ h(\Delta) &= h(k[\Delta]) \end{split} \qquad \begin{array}{ll} \text{Stanley-Reisner ideal of } \Delta \\ \text{stanley-Reisner ring of } \Delta \\ h\text{-vector of } \Delta \end{split}$$

Example:

• Δ (d-1)-simplex \Rightarrow $k[\Delta] = k[x_1, \dots, x_d], h(\Delta) = (1, 0, \dots, 0)$

• $k[\Delta]=k[x_1,x_2,x_3,x_4,x_5]/(x_1x_4,x_1x_5,x_2x_5,x_4x_5)$ and $h(\Delta)=(1,2,-1,0)$

 Δ simplicial complex on vertex set $[n] = \{1, \dots, n\}$

$$\begin{split} I_{\Delta} &= (\prod_{i \in F} x_i \mid F \notin \Delta) & \text{Stanley-Reisner ideal of } \Delta \\ k[\Delta] &= k[x_1, \dots, x_n] / I_{\Delta} & \text{Stanley-Reisner ring of } \Delta \\ h(\Delta) &= h(k[\Delta]) & h\text{-vector of } \Delta \end{split}$$

Example:

• Δ (d-1)-simplex \Rightarrow $k[\Delta] = k[x_1, \dots, x_d], h(\Delta) = (1, 0, \dots, 0)$

• $k[\Delta] = k[x_1, x_2, x_3, x_4, x_5]/(x_1x_4, x_1x_5, x_2x_5, x_4x_5)$ and $h(\Delta) = (1, 2, -1, 0)$

 Δ simplicial complex on vertex set $[n] = \{1, \dots, n\}$

$$\begin{split} I_{\Delta} &= (\prod_{i \in F} x_i \mid F \notin \Delta) & \text{Stanley-Reisner ideal of } \Delta \\ k[\Delta] &= k[x_1, \dots, x_n]/I_{\Delta} & \text{Stanley-Reisner ring of } \Delta \\ h(\Delta) &= h(k[\Delta]) & h\text{-vector of } \Delta \end{split}$$

Example:

• Δ (d-1)-simplex $\Rightarrow k[\Delta] = k[x_1, \dots, x_d], h(\Delta) = (1, 0, \dots, 0)$

• $k[\Delta] = k[x_1, x_2, x_3, x_4, x_5]/(x_1x_4, x_1x_5, x_2x_5, x_4x_5)$ and $h(\Delta) = (1, 2, -1, 0)$

(日)

Stanley-Reisner rings and h-vectors

 Δ simplicial complex on vertex set $[n]=\{1,\ldots,n\}$

$$\begin{split} I_{\Delta} &= (\prod_{i \in F} x_i \mid F \notin \Delta) & \text{Stanley-Reisner ideal of } \Delta \\ k[\Delta] &= k[x_1, \dots, x_n]/I_{\Delta} & \text{Stanley-Reisner ring of } \Delta \\ h(\Delta) &= h(k[\Delta]) & h\text{-vector of } \Delta \end{split}$$

Example:

•
$$\Delta$$
 $(d-1)$ -simplex \Rightarrow $k[\Delta] = k[x_1, \dots, x_d], h(\Delta) = (1, 0, \dots, 0)$

•
$$k[\Delta] = k[x_1, x_2, x_3, x_4, x_5]/(x_1x_4, x_1x_5, x_2x_5, x_4x_5)$$
 and $h(\Delta) = (1, 2, -1, 0)$

Barycentric subdivisions

Δ simplicial complex

The barycentric subdivision of Δ is the simplicial complex $sd(\Delta)$ on vertex set $\Delta \setminus \{\emptyset\}$, whose faces are chains

 $\emptyset \neq A_0 \subsetneq A_1 \subsetneq \ldots \subsetneq A_r$

with $A_i \in \Delta \setminus \{\emptyset\}$ for $0 \le i \le r$.

Barycentric subdivisions

Δ simplicial complex

The barycentric subdivision of Δ is the simplicial complex $sd(\Delta)$ on vertex set $\Delta \setminus \{\emptyset\}$, whose faces are chains

$$\emptyset \neq A_0 \subsetneq A_1 \subsetneq \ldots \subsetneq A_r$$

with $A_i \in \Delta \setminus \{\emptyset\}$ for $0 \le i \le r$.

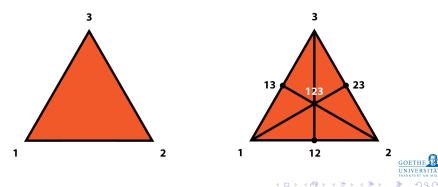
Barycentric subdivisions

Δ simplicial complex

The barycentric subdivision of Δ is the simplicial complex $sd(\Delta)$ on vertex set $\Delta \setminus \{\emptyset\}$, whose faces are chains

$$\emptyset \neq A_0 \subsetneq A_1 \subsetneq \ldots \subsetneq A_r$$

with $A_i \in \Delta \setminus \{\emptyset\}$ for $0 \le i \le r$.



・ロット 御マ キョマ キョン

Shellability

Δ pure simplicial complex on vertex set [n].

 Δ shellable $\Leftrightarrow \exists$ linear ordering F_1, \ldots, F_t of the facets of Δ such that for $2 \leq i \leq t$ the set

$$\langle F_1,\ldots,F_i\rangle\setminus\langle F_1,\ldots,F_{i-1}\rangle$$

has exactly one minimal element, the so-called restriction face. Facts:

- Δ shellable $\Rightarrow k[\Delta]$ Cohen-Macaulay.
- $h_i(\Delta)$ counts number of restriction faces of cardinality *i*.
- Δ shellable \Rightarrow sd(Δ) shellable.

Shellability

 Δ pure simplicial complex on vertex set [n].

 Δ shellable $\Leftrightarrow \exists$ linear ordering F_1, \ldots, F_t of the facets of Δ such that for $2 \le i \le t$ the set

$$\langle F_1,\ldots,F_i\rangle\setminus\langle F_1,\ldots,F_{i-1}\rangle$$

has exactly one minimal element, the so-called restriction face.

- Δ shellable $\Rightarrow k[\Delta]$ Cohen-Macaulay.
- $h_i(\Delta)$ counts number of restriction faces of cardinality *i*.
- Δ shellable \Rightarrow sd(Δ) shellable.

Shellability

 Δ pure simplicial complex on vertex set [n].

 Δ shellable $\Leftrightarrow \exists$ linear ordering F_1, \ldots, F_t of the facets of Δ such that for $2 \le i \le t$ the set

$$\langle F_1,\ldots,F_i\rangle\setminus\langle F_1,\ldots,F_{i-1}\rangle$$

has exactly one minimal element, the so-called restriction face. Facts:

- Δ shellable $\Rightarrow k[\Delta]$ Cohen-Macaulay.
- $h_i(\Delta)$ counts number of restriction faces of cardinality *i*.
- Δ shellable \Rightarrow sd(Δ) shellable.

Shellability

 Δ pure simplicial complex on vertex set [n].

 Δ shellable $\Leftrightarrow \exists$ linear ordering F_1, \ldots, F_t of the facets of Δ such that for $2 \le i \le t$ the set

$$\langle F_1,\ldots,F_i\rangle\setminus\langle F_1,\ldots,F_{i-1}\rangle$$

has exactly one minimal element, the so-called restriction face. Facts:

- Δ shellable $\Rightarrow k[\Delta]$ Cohen-Macaulay.
- h_i(Δ) counts number of restriction faces of cardinality i.
- Δ shellable \Rightarrow sd(Δ) shellable.

Shellability

 Δ pure simplicial complex on vertex set [n].

 Δ shellable $\Leftrightarrow \exists$ linear ordering F_1, \ldots, F_t of the facets of Δ such that for $2 \le i \le t$ the set

$$\langle F_1,\ldots,F_i\rangle\setminus\langle F_1,\ldots,F_{i-1}\rangle$$

has exactly one minimal element, the so-called restriction face. Facts:

- Δ shellable $\Rightarrow k[\Delta]$ Cohen-Macaulay.
- h_i(Δ) counts number of restriction faces of cardinality i.
- Δ shellable \Rightarrow sd(Δ) shellable.

Shellability

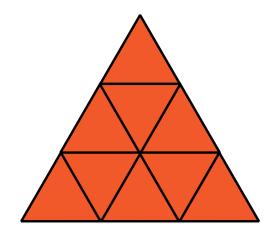
 Δ pure simplicial complex on vertex set [n].

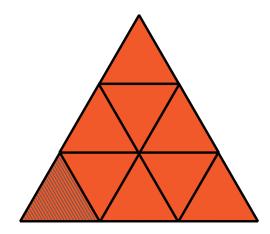
 Δ shellable $\Leftrightarrow \exists$ linear ordering F_1, \ldots, F_t of the facets of Δ such that for $2 \le i \le t$ the set

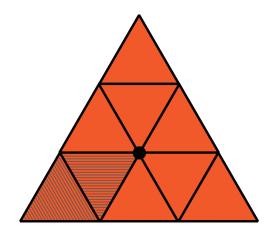
$$\langle F_1,\ldots,F_i\rangle\setminus\langle F_1,\ldots,F_{i-1}\rangle$$

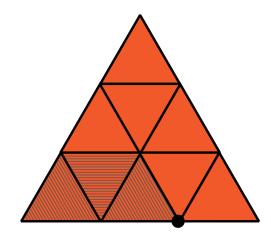
has exactly one minimal element, the so-called restriction face. Facts:

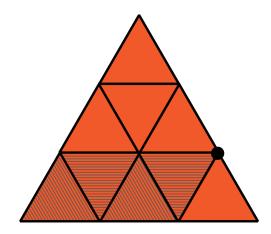
- Δ shellable $\Rightarrow k[\Delta]$ Cohen-Macaulay.
- h_i(Δ) counts number of restriction faces of cardinality i.
- Δ shellable \Rightarrow sd(Δ) shellable.

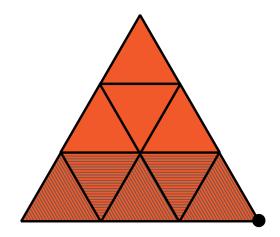


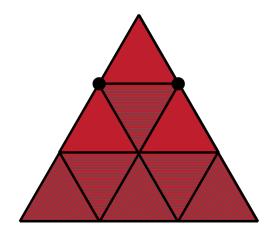


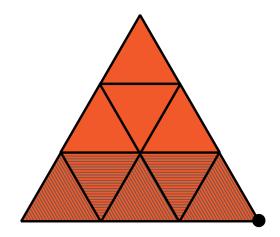


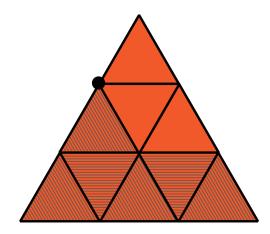


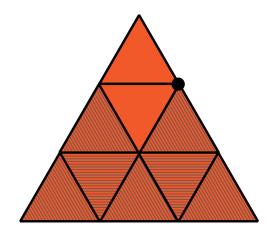






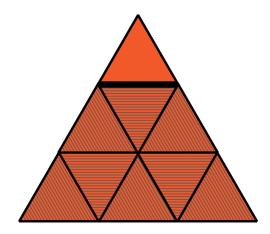






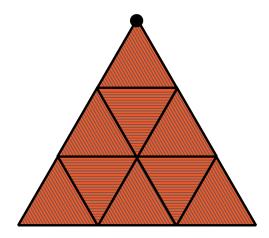
ヘロト ヘロト ヘビト ヘビト

Shellability (example)



ヘロト ヘロト ヘビト ヘビト

Shellability (example)



Brenti/Welker studied the *h*-vector transformation of barycentric subdivisions. They showed:

- h(sd(Δ)) can be obtained from h(Δ) by a linear transformation with positive integral coefficients.
- Δ Cohen-Macaulay $\Rightarrow h(sd(\Delta))$ is unimodal.

Conjecture

 Δ Cohen-Macaulay $\Rightarrow k[\Delta]$ has some type of Lefschetz property.

- $\Rightarrow g(\mathrm{sd}(\Delta))$ is an *M*-sequence.
- $\Rightarrow h(\mathrm{sd}(\Delta))$ is unimodal.

Brenti/Welker studied the *h*-vector transformation of barycentric subdivisions. They showed:

- $h(sd(\Delta))$ can be obtained from $h(\Delta)$ by a linear transformation with positive integral coefficients.
- Δ Cohen-Macaulay $\Rightarrow h(sd(\Delta))$ is unimodal.

Conjecture

 Δ Cohen-Macaulay $\Rightarrow k[\Delta]$ has some type of Lefschetz property.

 $\Rightarrow g(\mathrm{sd}(\Delta))$ is an *M*-sequence.

Brenti/Welker studied the *h*-vector transformation of barycentric subdivisions. They showed:

- $h(sd(\Delta))$ can be obtained from $h(\Delta)$ by a linear transformation with positive integral coefficients.
- Δ Cohen-Macaulay $\Rightarrow h(sd(\Delta))$ is unimodal.

Conjecture

 Δ Cohen-Macaulay $\Rightarrow k[\Delta]$ has some type of Lefschetz property.

 $\Rightarrow g(\mathrm{sd}(\Delta))$ is an *M*-sequence.

Brenti/Welker studied the *h*-vector transformation of barycentric subdivisions. They showed:

- $h(sd(\Delta))$ can be obtained from $h(\Delta)$ by a linear transformation with positive integral coefficients.
- Δ Cohen-Macaulay $\Rightarrow h(sd(\Delta))$ is unimodal.

Conjecture

 Δ Cohen-Macaulay $\Rightarrow k[\Delta]$ has some type of Lefschetz property.

 $\Rightarrow g(\mathrm{sd}(\Delta))$ is an *M*-sequence.

Brenti/Welker studied the *h*-vector transformation of barycentric subdivisions. They showed:

- $h(sd(\Delta))$ can be obtained from $h(\Delta)$ by a linear transformation with positive integral coefficients.
- Δ Cohen-Macaulay $\Rightarrow h(sd(\Delta))$ is unimodal.

Conjecture

 Δ Cohen-Macaulay $\Rightarrow k[\Delta]$ has some type of Lefschetz property.

 $\Rightarrow g(\mathrm{sd}(\Delta))$ is an *M*-sequence.

Brenti/Welker studied the *h*-vector transformation of barycentric subdivisions. They showed:

- $h(sd(\Delta))$ can be obtained from $h(\Delta)$ by a linear transformation with positive integral coefficients.
- Δ Cohen-Macaulay $\Rightarrow h(sd(\Delta))$ is unimodal.

Conjecture

 Δ Cohen-Macaulay $\Rightarrow k[\Delta]$ has some type of Lefschetz property.

 $\Rightarrow g(\mathrm{sd}(\Delta))$ is an *M*-sequence.

Theorem (K., Nevo)

(i) k infinite field, Δ shellable (d − 1)-dimensional simplicial complex. Then: sd(Δ) is (d − 1)-Lefschetz over k.

(ii) Δ Cohen-Macaulay $\Rightarrow g(sd(\Delta))$ *M*-sequence.

- (iii) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h_i(\mathrm{sd}(\Delta)) \leq h_{d-1-i}(\mathrm{sd}(\Delta))$ for $0 \leq i \leq \lfloor \frac{d-1}{2} \rfloor$.
- (iv) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h(sd(\Delta))$ is unimodal.

Theorem (K., Nevo)

- (i) k infinite field, Δ shellable (d − 1)-dimensional simplicial complex. Then: sd(Δ) is (d − 1)-Lefschetz over k.
- (ii) Δ Cohen-Macaulay $\Rightarrow g(sd(\Delta))$ *M*-sequence.
- (iii) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h_i(\mathrm{sd}(\Delta)) \leq h_{d-1-i}(\mathrm{sd}(\Delta))$ for $0 \leq i \leq \lfloor \frac{d-1}{2} \rfloor$.
- (iv) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h(sd(\Delta))$ is unimodal.

Theorem (K., Nevo)

- (i) k infinite field, Δ shellable (d − 1)-dimensional simplicial complex. Then: sd(Δ) is (d − 1)-Lefschetz over k.
- (ii) Δ Cohen-Macaulay $\Rightarrow g(sd(\Delta))$ *M*-sequence.
- (iii) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h_i(\mathrm{sd}(\Delta)) \leq h_{d-1-i}(\mathrm{sd}(\Delta))$ for $0 \leq i \leq \lfloor \frac{d-1}{2} \rfloor$.
- (iv) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h(sd(\Delta))$ is unimodal.

Theorem (K., Nevo)

- (i) k infinite field, Δ shellable (d − 1)-dimensional simplicial complex. Then: sd(Δ) is (d − 1)-Lefschetz over k.
- (ii) Δ Cohen-Macaulay $\Rightarrow g(sd(\Delta))$ *M*-sequence.
- (iii) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h_i(\mathrm{sd}(\Delta)) \leq h_{d-1-i}(\mathrm{sd}(\Delta))$ for $0 \leq i \leq \lfloor \frac{d-1}{2} \rfloor$.
- (iv) $\Delta (d-1)$ -dimensional Cohen-Macaulay complex $\Rightarrow h(sd(\Delta))$ is unimodal.

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Sketch of the proof

Double induction over the number of facets and the dimension of Δ .

Base of the induction: \checkmark

Induction step: Take a shelling F_1, \ldots, F_t of Δ . Set

$$\widetilde{\Delta} = \langle F_1, \dots, F_{t-1} \rangle$$
 and $\sigma = \widetilde{\Delta} \cap F_t$

This yields for the barycentric subdivision:

 $\operatorname{sd}(\Delta) = \operatorname{sd}(\widetilde{\Delta}) \cup \operatorname{sd}(F_t)$ and $\operatorname{sd}(\sigma) = \operatorname{sd}(\widetilde{\Delta}) \cap \operatorname{sd}(F_t)$

We will use the following exact sequence:

 $0 \to k[\mathrm{sd}(\Delta)] \to k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)] \to k[\mathrm{sd}(\sigma)] \to 0.$

Choose $\Theta = \{\theta_1, \dots, \theta_d\}$ l.s.o.p. for $k[sd(\Delta)], k[sd(\overline{\Delta})], k[sd(F_t)]$ such that $\{\theta_1, \dots, \theta_{d-1}\}$ is l.s.o.p. for $k[\sigma]$.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of the proof

Double induction over the number of facets and the dimension of Δ .

Base of the induction: \checkmark

Induction step: Take a shelling F_1, \ldots, F_t of Δ . Set

$$\widetilde{\Delta} = \langle F_1, \dots, F_{t-1} \rangle \qquad \text{and} \qquad \sigma = \widetilde{\Delta} \cap F_t$$

This yields for the barycentric subdivision:

 $\operatorname{sd}(\Delta) = \operatorname{sd}(\widetilde{\Delta}) \cup \operatorname{sd}(F_t)$ and $\operatorname{sd}(\sigma) = \operatorname{sd}(\widetilde{\Delta}) \cap \operatorname{sd}(F_t)$

We will use the following exact sequence:

 $0 \to k[\mathrm{sd}(\Delta)] \to k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)] \to k[\mathrm{sd}(\sigma)] \to 0.$

Choose $\Theta = \{\theta_1, \dots, \theta_d\}$ l.s.o.p. for $k[sd(\Delta)], k[sd(\tilde{\Delta})], k[sd(F_t)]$ such that $\{\theta_1, \dots, \theta_{d-1}\}$ is l.s.o.p. for $k[\sigma]$.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Sketch of the proof

Double induction over the number of facets and the dimension of Δ .

Base of the induction: \checkmark

Induction step: Take a shelling F_1, \ldots, F_t of Δ . Set

$$\widetilde{\Delta} = \langle F_1, \dots, F_{t-1} \rangle$$
 and $\sigma = \widetilde{\Delta} \cap F_t$

This yields for the barycentric subdivision:

 $\operatorname{sd}(\Delta) = \operatorname{sd}(\widetilde{\Delta}) \cup \operatorname{sd}(F_t)$ and $\operatorname{sd}(\sigma) = \operatorname{sd}(\widetilde{\Delta}) \cap \operatorname{sd}(F_t)$

We will use the following exact sequence:

 $0 \to k[\mathrm{sd}(\Delta)] \to k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)] \to k[\mathrm{sd}(\sigma)] \to 0.$

Choose $\Theta = \{\theta_1, \dots, \theta_d\}$ l.s.o.p. for $k[sd(\Delta)], k[sd(\widetilde{\Delta})], k[sd(F_t)]$ such that $\{\theta_1, \dots, \theta_{d-1}\}$ is l.s.o.p. for $k[\sigma]$.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sketch of the proof

Double induction over the number of facets and the dimension of Δ .

Base of the induction: \checkmark

Induction step: Take a shelling F_1, \ldots, F_t of Δ . Set

$$\widetilde{\Delta} = \langle F_1, \dots, F_{t-1} \rangle$$
 and $\sigma = \widetilde{\Delta} \cap F_t$

This yields for the barycentric subdivision:

 $\operatorname{sd}(\Delta) = \operatorname{sd}(\widetilde{\Delta}) \cup \operatorname{sd}(F_t)$ and $\operatorname{sd}(\sigma) = \operatorname{sd}(\widetilde{\Delta}) \cap \operatorname{sd}(F_t)$

We will use the following exact sequence:

 $0 \to k[\mathrm{sd}(\Delta)] \to k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)] \to k[\mathrm{sd}(\sigma)] \to 0.$

Choose $\Theta = \{\theta_1, \dots, \theta_d\}$ l.s.o.p. for $k[sd(\Delta)], k[sd(\overline{\Delta})], k[sd(F_t)]$ such that $\{\theta_1, \dots, \theta_{d-1}\}$ is l.s.o.p. for $k[\sigma]$.

Sketch of the proof

Double induction over the number of facets and the dimension of Δ .

Base of the induction: \checkmark

Induction step: Take a shelling F_1, \ldots, F_t of Δ . Set

$$\widetilde{\Delta} = \langle F_1, \dots, F_{t-1} \rangle$$
 and $\sigma = \widetilde{\Delta} \cap F_t$

This yields for the barycentric subdivision:

 $\operatorname{sd}(\Delta) = \operatorname{sd}(\widetilde{\Delta}) \cup \operatorname{sd}(F_t)$ and $\operatorname{sd}(\sigma) = \operatorname{sd}(\widetilde{\Delta}) \cap \operatorname{sd}(F_t)$

We will use the following exact sequence:

$$0 \to k[\mathrm{sd}(\Delta)] \to k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)] \to k[\mathrm{sd}(\sigma)] \to 0.$$

Choose $\Theta = \{\theta_1, \ldots, \theta_d\}$ l.s.o.p. for $k[sd(\Delta)], k[sd(\widetilde{\Delta})], k[sd(F_t)]$ such that $\{\theta_1, \ldots, \theta_{d-1}\}$ is l.s.o.p. for $k[\sigma]$.

Remember the exact sequence:

 $0 \to k[\mathrm{sd}(\Delta)] \to k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)] \to k[\mathrm{sd}(\sigma)] \to 0.$

Dividing out by Θ yields the following long exact sequence of $\operatorname{Tor-modules}$:

- $\dots \to \operatorname{Tor}_1(k[\operatorname{sd}(\Delta)], S/\Theta) \to \operatorname{Tor}_1(k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)], S/\Theta)$
- $\to \operatorname{Tor}_1(k[\mathrm{sd}(\sigma)], S/\Theta) \xrightarrow{\delta} \operatorname{Tor}_0(k[\mathrm{sd}(\Delta)], S/\Theta)$
- $\to \quad \operatorname{Tor}_0(k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)], S/\Theta) \to \operatorname{Tor}_0(k[\operatorname{sd}(\sigma)], S/\Theta) \to 0,$

where δ is the connecting homomorphism.

Use: $\operatorname{Tor}_0(M, R/I) = M \otimes_R R/I = M/IM$ for an *R*-module *M* and an ideal $I \subseteq R$.

Remember the exact sequence:

$$0 \to k[\operatorname{sd}(\Delta)] \to k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)] \to k[\operatorname{sd}(\sigma)] \to 0.$$

Dividing out by Θ yields the following long exact sequence of $\operatorname{Tor-modules}$:

- $\dots \to \operatorname{Tor}_1(k[\operatorname{sd}(\Delta)], S/\Theta) \to \operatorname{Tor}_1(k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)], S/\Theta)$
- $\rightarrow \quad \operatorname{Tor}_1(k[\operatorname{sd}(\sigma)], S/\Theta) \stackrel{\delta}{\rightarrow} \operatorname{Tor}_0(k[\operatorname{sd}(\Delta)], S/\Theta)$
- $\to \quad \operatorname{Tor}_0(k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)], S/\Theta) \to \operatorname{Tor}_0(k[\operatorname{sd}(\sigma)], S/\Theta) \to 0,$

where δ is the connecting homomorphism.

Use: $\operatorname{Tor}_0(M, R/I) = M \otimes_R R/I = M/IM$ for an *R*-module *M* and an ideal $I \subseteq R$.

Remember the exact sequence:

$$0 \to k[\operatorname{sd}(\Delta)] \to k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)] \to k[\operatorname{sd}(\sigma)] \to 0.$$

Dividing out by Θ yields the following long exact sequence of $\operatorname{Tor-modules:}$

$$\dots \to \operatorname{Tor}_1(k[\operatorname{sd}(\Delta)], S/\Theta) \to \operatorname{Tor}_1(k[\operatorname{sd}(\widetilde{\Delta})] \oplus k[\operatorname{sd}(F_t)], S/\Theta)$$

$$\to \quad \operatorname{Tor}_1(k[\operatorname{sd}(\sigma)], S/\Theta) \stackrel{\delta}{\to} \operatorname{Tor}_0(k[\operatorname{sd}(\Delta)], S/\Theta)$$

 $\to \quad \mathrm{Tor}_0(k[\mathrm{sd}(\widetilde{\Delta})] \oplus k[\mathrm{sd}(F_t)], S/\Theta) \to \mathrm{Tor}_0(k[\mathrm{sd}(\sigma)], S/\Theta) \to 0,$

where δ is the connecting homomorphism.

Use: $\operatorname{Tor}_0(M, R/I) = M \otimes_R R/I = M/IM$ for an R-module M and an ideal $I \subseteq R$.

The exact Tor-sequence simplifies:

$$\begin{split} \mathrm{Tor}_1(k[\mathrm{sd}(\sigma)],S/\Theta) & \stackrel{\delta}{\to} \quad k[\mathrm{sd}(\Delta)]/\Theta \\ & \to \quad k[\mathrm{sd}(\widetilde{\Delta})]/\Theta \oplus k[\mathrm{sd}(F_t)]/\Theta \to k[\mathrm{sd}(\sigma)]/\Theta \to 0. \end{split}$$

Induction hypothesis: ω Lefschetz element for $k[sd(\Delta)]$ and $k[sd(F_t)]$.

 $\operatorname{Tor}_{1}(k[\operatorname{sd}(\sigma)], S/\Theta)_{i} \xrightarrow{\delta} k(\operatorname{sd}(\Delta))_{i} \longrightarrow k(\operatorname{sd}(\widetilde{\Delta}))_{i} \oplus k(\operatorname{sd}(\langle F_{m} \rangle))_{i}$ $\downarrow \omega^{d-2i-1} \qquad \downarrow (\omega^{d-2i-1}, \omega^{d-2i-1})$

 $k(\mathrm{sd}(\Delta))_{d-1-i} \to k(\mathrm{sd}(\widetilde{\Delta}))_{d-1-i} \oplus k(\mathrm{sd}(\langle F_m \rangle))_{d-1-i}$

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Remains to show: $\operatorname{Tor}_1(k[\operatorname{sd}(\sigma)], S/\Theta)_i = 0$ for $0 \le i \le \lfloor \frac{d-2}{2} \rfloor$ (uses that θ_i can be used as a Lefschetz element for $k[\operatorname{sd}(\sigma)]$)

The exact Tor-sequence simplifies:

$$\begin{split} \mathrm{Tor}_1(k[\mathrm{sd}(\sigma)],S/\Theta) & \stackrel{\delta}{\to} \quad k[\mathrm{sd}(\Delta)]/\Theta \\ & \to \quad k[\mathrm{sd}(\widetilde{\Delta})]/\Theta \oplus k[\mathrm{sd}(F_t)]/\Theta \to k[\mathrm{sd}(\sigma)]/\Theta \to 0. \end{split}$$

Induction hypothesis: ω Lefschetz element for $k[\operatorname{sd}(\widetilde{\Delta})]$ and $k[\operatorname{sd}(F_t)]$.

 $\operatorname{Tor}_{1}(k[\operatorname{sd}(\sigma)], S/\Theta)_{i} \xrightarrow{\delta} k(\operatorname{sd}(\Delta))_{i} \longrightarrow k(\operatorname{sd}(\widetilde{\Delta}))_{i} \oplus k(\operatorname{sd}(\langle F_{m} \rangle))_{i}$ $\downarrow \omega^{d-2i-1} \qquad \downarrow (\omega^{d-2i-1}, \omega^{d-2i-1})$

 $k(\mathrm{sd}(\Delta))_{d-1-i} \rightarrow k(\mathrm{sd}(\widetilde{\Delta}))_{d-1-i} \oplus k(\mathrm{sd}(\langle F_m \rangle))_{d-1-i}$

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Remains to show: $\operatorname{Tor}_1(k[\operatorname{sd}(\sigma)], S/\Theta)_i = 0$ for $0 \le i \le \lfloor \frac{d-2}{2} \rfloor$ (uses

The exact Tor-sequence simplifies:

$$\begin{split} \mathrm{Tor}_1(k[\mathrm{sd}(\sigma)],S/\Theta) & \stackrel{\delta}{\to} \quad k[\mathrm{sd}(\Delta)]/\Theta \\ & \to \quad k[\mathrm{sd}(\widetilde{\Delta})]/\Theta \oplus k[\mathrm{sd}(F_t)]/\Theta \to k[\mathrm{sd}(\sigma)]/\Theta \to 0. \end{split}$$

Induction hypothesis: ω Lefschetz element for $k[sd(\widetilde{\Delta})]$ and $k[sd(F_t)]$.

$$\operatorname{Tor}_{1}(k[\operatorname{sd}(\sigma)], S/\Theta)_{i} \xrightarrow{\delta} k(\operatorname{sd}(\Delta))_{i} \longrightarrow k(\operatorname{sd}(\widetilde{\Delta}))_{i} \oplus k(\operatorname{sd}(\langle F_{m} \rangle))_{i}$$
$$\downarrow \omega^{d-2i-1} \qquad \qquad \downarrow (\omega^{d-2i-1}, \omega^{d-2i-1})$$

 $k(\mathrm{sd}(\Delta))_{d-1-i} \rightarrow k(\mathrm{sd}(\widetilde{\Delta}))_{d-1-i} \oplus k(\mathrm{sd}(\langle F_m \rangle))_{d-1-i}$

・ ロ ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Remains to show: $\operatorname{Tor}_1(k[\operatorname{sd}(\sigma)], S/\Theta)_i = 0$ for $0 \le i \le \lfloor \frac{d-2}{2} \rfloor$ (uses that θ_d can be used as a Lefschetz element for $k[\operatorname{sd}(\sigma)]$).

The exact Tor-sequence simplifies:

$$\begin{split} \mathrm{Tor}_1(k[\mathrm{sd}(\sigma)],S/\Theta) & \stackrel{\delta}{\to} \quad k[\mathrm{sd}(\Delta)]/\Theta \\ & \to \quad k[\mathrm{sd}(\widetilde{\Delta})]/\Theta \oplus k[\mathrm{sd}(F_t)]/\Theta \to k[\mathrm{sd}(\sigma)]/\Theta \to 0. \end{split}$$

Induction hypothesis: ω Lefschetz element for $k[sd(\widetilde{\Delta})]$ and $k[sd(F_t)]$.

 $\operatorname{Tor}_{1}(k[\operatorname{sd}(\sigma)], S/\Theta)_{i} \xrightarrow{\delta} k(\operatorname{sd}(\Delta))_{i} \longrightarrow k(\operatorname{sd}(\widetilde{\Delta}))_{i} \oplus k(\operatorname{sd}(\langle F_{m} \rangle))_{i}$ $\downarrow \omega^{d-2i-1} \qquad \qquad \downarrow (\omega^{d-2i-1}, \omega^{d-2i-1})$

 $k(\mathrm{sd}(\Delta))_{d-1-i} \rightarrow k(\mathrm{sd}(\widetilde{\Delta}))_{d-1-i} \oplus k(\mathrm{sd}(\langle F_m \rangle))_{d-1-i}$

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Remains to show: $\operatorname{Tor}_1(k[\operatorname{sd}(\sigma)], S/\Theta)_i = 0$ for $0 \le i \le \lfloor \frac{d-2}{2} \rfloor$ (uses that θ_d can be used as a Lefschetz element for $k[\operatorname{sd}(\sigma)]$).

Background

Lefschetz properties

Application to barycentric subdivisions

Application to Veronese algebras and edgewise subdivisions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Veronese algebras

$$A = \bigoplus_{i>0} A_i$$
 standard graded k-algebra

For $r \geq 1$: $A^{\langle r \rangle} = \bigoplus_{i \geq 0} A_{ir} r^{\text{th}}$ Veronese algebra of A

 $A^{\langle r \rangle}$ is standard graded and $(A^{\langle r \rangle})_i = A_{ir}$

Example:

 $A = k[x_1, x_2, x_3]$

 $\begin{aligned} A^{\langle 2 \rangle} &= \langle 1 \rangle \oplus \langle x_1 x_2, x_1 x_3, x_2 x_3, x_1^2, x_2^2, x_3^2 \rangle \\ &\oplus \langle \text{ monomials of degree 4 } \rangle \\ &\oplus \langle \text{ monomials of degree 6 } \rangle \oplus \end{aligned}$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Veronese algebras

$$A = \bigoplus_{i>0} A_i$$
 standard graded k-algebra

For $r \geq 1$: $A^{\langle r \rangle} = \bigoplus_{i \geq 0} A_{ir} r^{\text{th}}$ Veronese algebra of A

 $A^{\langle r\rangle}$ is standard graded and $(A^{\langle r\rangle})_i = A_{ir}$

Example:

 $A = k[x_1, x_2, x_3]$

$$\begin{aligned} A^{\langle 2 \rangle} &= \langle 1 \rangle \oplus \langle x_1 x_2, x_1 x_3, x_2 x_3, x_1^2, x_2^2, x_3^2 \rangle \\ &\oplus \langle \text{ monomials of degree 4 } \rangle \\ &\oplus \langle \text{ monomials of degree 6 } \rangle \oplus \end{aligned}$$

Veronese algebras

$$A = \bigoplus_{i>0} A_i$$
 standard graded k-algebra

For $r \geq 1$: $A^{\langle r \rangle} = \bigoplus_{i \geq 0} A_{ir} r^{\text{th}}$ Veronese algebra of A

 $A^{\langle r \rangle}$ is standard graded and $(A^{\langle r \rangle})_i = A_{ir}$

Example:

$$\begin{split} A &= k[x_1, x_2, x_3] \\ A^{\langle 2 \rangle} &= \langle 1 \rangle \oplus \langle x_1 x_2, x_1 x_3, x_2 x_3, x_1^2, x_2^2, x_3^2 \rangle \\ &\oplus \langle \text{ monomials of degree 4 } \rangle \\ &\oplus \langle \text{ monomials of degree 6 } \rangle \oplus . \,. \end{split}$$

・ ロ ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Motivation

- Brenti/Welker (2007):
 - give linear transformation $h(A) \xrightarrow{C^{r,d}} h(A^{\langle r \rangle}) = C^{r,d}h(A)$, where $C^{r,d} \in \mathbb{Z}^{(d+1) \times (d+1)}$.
 - $h_{A^{\langle r \rangle}}(t)$ is real-rooted for r sufficiently large.
 - $\Rightarrow h(A^{(r)})$ is log-concave and unimodal.
- Similar results concerning the asymptotics of h_{A(r)}(t) were subsequently obtained by Beck/Stapledon and Diaconis/Fulman.
- K./Welker (2011): h_i(A) ≥ 0, r ≥ max(d, deg h_A(t)) ⇒ g(A^{⟨r⟩}) is an M-sequence.

- Brenti/Welker (2007):
 - give linear transformation $h(A) \xrightarrow{C^{r,d}} h(A^{\langle r \rangle}) = C^{r,d}h(A)$, where $C^{r,d} \in \mathbb{Z}^{(d+1) \times (d+1)}$.
 - $h_{A^{\langle r \rangle}}(t)$ is real-rooted for r sufficiently large.
 - $\Rightarrow h(A^{\langle r \rangle})$ is log-concave and unimodal.
- Similar results concerning the asymptotics of $h_{A^{(r)}}(t)$ were subsequently obtained by Beck/Stapledon and Diaconis/Fulman.
- K./Welker (2011): $h_i(A) \ge 0, r \ge \max(d, \deg h_A(t)) \Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.

- Brenti/Welker (2007):
 - give linear transformation $h(A) \xrightarrow{C^{r,d}} h(A^{\langle r \rangle}) = C^{r,d}h(A)$, where $C^{r,d} \in \mathbb{Z}^{(d+1) \times (d+1)}$.
 - $h_{A^{\langle r \rangle}}(t)$ is real-rooted for r sufficiently large.
 - $\Rightarrow h(A^{\langle r \rangle})$ is log-concave and unimodal.
- Similar results concerning the asymptotics of h_{A(r)}(t) were subsequently obtained by Beck/Stapledon and Diaconis/Fulman.
- K./Welker (2011): $h_i(A) \ge 0, r \ge \max(d, \deg h_A(t)) \Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.

- Brenti/Welker (2007):
 - give linear transformation $h(A) \xrightarrow{C^{r,d}} h(A^{\langle r \rangle}) = C^{r,d}h(A)$, where $C^{r,d} \in \mathbb{Z}^{(d+1) \times (d+1)}$.
 - $h_{A^{\langle r \rangle}}(t)$ is real-rooted for r sufficiently large.
 - $\Rightarrow h(A^{\langle r \rangle})$ is log-concave and unimodal.
- Similar results concerning the asymptotics of $h_{A^{(r)}}(t)$ were subsequently obtained by Beck/Stapledon and Diaconis/Fulman.
- K./Welker (2011): $h_i(A) \ge 0, r \ge \max(d, \deg h_A(t)) \Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.

・ ロ ト ・ 雪 ト ・ 目 ト ・

э.

Motivation

- Brenti/Welker (2007):
 - give linear transformation $h(A) \xrightarrow{C^{r,d}} h(A^{\langle r \rangle}) = C^{r,d}h(A)$, where $C^{r,d} \in \mathbb{Z}^{(d+1) \times (d+1)}$.
 - $h_{A^{\langle r \rangle}}(t)$ is real-rooted for r sufficiently large.
 - $\Rightarrow h(A^{\langle r \rangle})$ is log-concave and unimodal.
- Similar results concerning the asymptotics of $h_{A^{(r)}}(t)$ were subsequently obtained by Beck/Stapledon and Diaconis/Fulman.
- K./Welker (2011): $h_i(A) \ge 0, r \ge \max(d, \deg h_A(t)) \Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.

Motivation (cont'd)

Conjecture

A Cohen-Macaulay standard graded k-algebra.

Then: For r sufficiently large $A^{\langle r \rangle}$ has a certain type of Lefschetz property.

- $\Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.
- $\Rightarrow h(A^{\langle r \rangle})$ is unimodal.

Motivation (cont'd)

Conjecture

A Cohen-Macaulay standard graded k-algebra.

Then: For r sufficiently large $A^{\langle r \rangle}$ has a certain type of Lefschetz property.

- $\Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.
- $\Rightarrow h(A^{\langle r \rangle})$ is unimodal.

Motivation (cont'd)

Conjecture

A Cohen-Macaulay standard graded k-algebra.

Then: For r sufficiently large $A^{\langle r \rangle}$ has a certain type of Lefschetz property.

- $\Rightarrow g(A^{\langle r \rangle})$ is an *M*-sequence.
- $\Rightarrow h(A^{\langle r\rangle}) \text{ is unimodal.}$

Theorem (K., Murai)

k field of characteristic 0,

A Cohen-Macaulay standard graded k-algebra of dimension d,

 $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for A.

 $\Theta^{\langle r \rangle} := \{\theta_1^r, \dots, \theta_d^r\}$

Let $r \ge 1$ be an integer and $s = \lfloor \frac{(r-1)d}{r} \rfloor$. Then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the *s*-Lefschetz property. Moreover, if $r \ge \deg h_A(t)$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ is almost strong Lefschetz.

Theorem (K., Murai)

k field of characteristic 0,

A Cohen-Macaulay standard graded k-algebra of dimension d,

 $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for A.

 $\Theta^{\langle r \rangle} := \{\theta_1^r, \dots, \theta_d^r\}$

Let $r \ge 1$ be an integer and $s = \lfloor \frac{(r-1)d}{r} \rfloor$. Then $A^{(r)} / \Theta^{(r)} A^{(r)}$ has the *s*-Lefschetz property. Moreover, if $r \ge \deg h_A(t)$, then $A^{(r)} / \Theta^{(r)} A^{(r)}$ is almost strong Lefschetz.

Theorem (K., Murai)

k field of characteristic 0,

A Cohen-Macaulay standard graded k-algebra of dimension d,

 $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for A.

 $\Theta^{\langle r \rangle} := \{\theta_1^r, \dots, \theta_d^r\}$

Let $r \ge 1$ be an integer and $s = \lfloor \frac{(r-1)d}{r} \rfloor$. Then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the *s*-Lefschetz property.

Moreover, if $r \ge \deg h_A(t)$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ is almost strong Lefschetz.

Theorem (K., Murai)

k field of characteristic 0,

A Cohen-Macaulay standard graded k-algebra of dimension d,

$$\begin{split} \Theta &= \theta_1, \dots, \theta_d \text{ I.s.o.p. for } A. \\ \Theta^{\langle r \rangle} &:= \{\theta_1^r, \dots, \theta_d^r\} \\ \text{Let } r &\geq 1 \text{ be an integer and } s = \lfloor \frac{(r-1)d}{r} \rfloor. \\ \text{Then } A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle} \text{ has the } s\text{-Lefschetz property.} \\ \text{Moreover, if } r &\geq \deg h_A(t), \text{ then } A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle} \text{ is almost strong Lefschetz.} \end{split}$$

Veronese algebras: (Quasi) WLP

Theorem (K., Murai)

k field of characteristic 0, *A* Cohen-Macaulay standard graded *k*-algebra of dimension *d*, $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for *A*, $\Theta^{\langle r \rangle} = \{\theta_1^r, \ldots, \theta_d^r\}.$

- (ii) If *d* is even and $r \ge \max\{d, 2 \deg h_A(t) d\}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.
- (iii) If *d* is odd, $r \ge \frac{d}{2}$ and $\deg h_A(t) \le \frac{d}{2}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.

Veronese algebras: (Quasi) WLP

Theorem (K., Murai)

k field of characteristic 0, *A* Cohen-Macaulay standard graded *k*-algebra of dimension *d*, $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for *A*, $\Theta^{\langle r \rangle} = \{\theta_1^r, \ldots, \theta_d^r\}.$

- (ii) If *d* is even and $r \ge \max\{d, 2 \deg h_A(t) d\}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.
- (iii) If *d* is odd, $r \ge \frac{d}{2}$ and $\deg h_A(t) \le \frac{d}{2}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.

Veronese algebras: (Quasi) WLP

Theorem (K., Murai)

k field of characteristic 0, *A* Cohen-Macaulay standard graded *k*-algebra of dimension *d*, $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for *A*, $\Theta^{\langle r \rangle} = \{\theta_1^r, \ldots, \theta_d^r\}.$

- (ii) If *d* is even and $r \ge \max\{d, 2 \deg h_A(t) d\}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.
- (iii) If *d* is odd, $r \ge \frac{d}{2}$ and $\deg h_A(t) \le \frac{d}{2}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Veronese algebras: (Quasi) WLP

Theorem (K., Murai)

k field of characteristic 0, *A* Cohen-Macaulay standard graded *k*-algebra of dimension *d*, $\Theta = \theta_1, \ldots, \theta_d$ l.s.o.p. for *A*, $\Theta^{\langle r \rangle} = \{\theta_1^r, \ldots, \theta_d^r\}.$

- (ii) If *d* is even and $r \ge \max\{d, 2 \deg h_A(t) d\}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.
- (iii) If *d* is odd, $r \ge \frac{d}{2}$ and $\deg h_A(t) \le \frac{d}{2}$, then $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$ has the weak Lefschetz property.

Sketch of the proof

$\Theta = \{\theta_1, \dots, \theta_d\}, \qquad \Theta^{\langle r \rangle} = \{\theta_1^r, \dots, \theta_d^r\}$

Step 1: Decomposition of A

A Cohen-Macaulay $\Rightarrow \Theta$ regular sequence for A, i.e., A finitely generated $k[\theta_1, \dots, \theta_d]$ -module. Hence:

$$A = \bigoplus_{j=1}^{m} u_j \cdot k[\theta_1, \dots, \theta_d]$$

for homogeneous elements u_1, \ldots, u_m of A.

Step 2: $\Theta^{(r)}$ is a l.s.o.p. for $A^{(r)}$.

Sketch of the proof

$$\Theta = \{\theta_1, \dots, \theta_d\}, \qquad \Theta^{\langle r \rangle} = \{\theta_1^r, \dots, \theta_d^r\}$$

Step 1: Decomposition of A

A Cohen-Macaulay $\Rightarrow \Theta$ regular sequence for *A*, i.e., *A* finitely generated $k[\theta_1, \ldots, \theta_d]$ -module. Hence:

$$A = \bigoplus_{j=1}^{m} u_j \cdot k[\theta_1, \dots, \theta_d]$$

for homogeneous elements u_1, \ldots, u_m of A.

Step 2: $\Theta^{(r)}$ is a l.s.o.p. for $A^{(r)}$.

Sketch of the proof

$$\Theta = \{\theta_1, \dots, \theta_d\}, \qquad \Theta^{\langle r \rangle} = \{\theta_1^r, \dots, \theta_d^r\}$$

Step 1: Decomposition of A

A Cohen-Macaulay $\Rightarrow \Theta$ regular sequence for *A*, i.e., *A* finitely generated $k[\theta_1, \ldots, \theta_d]$ -module. Hence:

$$A = \bigoplus_{j=1}^{m} u_j \cdot k[\theta_1, \dots, \theta_d]$$

for homogeneous elements u_1, \ldots, u_m of A.

Step 2: $\Theta^{\langle r \rangle}$ is a l.s.o.p. for $A^{\langle r \rangle}$.

・ロット 御マ キョマ キョン

Sketch of the proof (cont'd)

Step 3: Decomposition of $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$

$$A^{\langle r \rangle} = \bigoplus_{j=1}^{m} u_j \cdot \left(\bigoplus_{i \ge 0} k[\theta_1, \dots, \theta_d]_{ir - \deg u_j} \right)$$

We obtain the following decomposition for $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$

$$A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle} = \bigoplus_{j=1}^{m} u_j \cdot \left(\bigoplus_{i \ge 0} \left(k[\theta_1, \dots, \theta_d] / (\theta_1^r, \dots, \theta_d^r) \right)_{ir - \deg u_j} \right)$$

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Sketch of the proof (cont'd)

Step 3: Decomposition of $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$

$$A^{\langle r \rangle} = \bigoplus_{j=1}^{m} u_j \cdot \left(\bigoplus_{i \ge 0} k[\theta_1, \dots, \theta_d]_{ir - \deg u_j} \right)$$

We obtain the following decomposition for $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$

$$A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle} = \bigoplus_{j=1}^{m} u_j \cdot \left(\bigoplus_{i \ge 0} \left(k[\theta_1, \dots, \theta_d] / (\theta_1^r, \dots, \theta_d^r) \right)_{ir - \deg u_j} \right)$$

Sketch of proof (cont'd)

Lemma (Stanley, Watanabe)

k field of characteristic 0, $r \ge 1$. For $0 \le i < j$, the multiplication map

$$(K[x_1,\ldots,x_d]/(x_1^r,\ldots,x_d^r))_i \xrightarrow{\times (x_1+\cdots+x_d)^{j-i}} (K[x_1,\ldots,x_d]/(x_1^r,\ldots,x_d^r))_j$$

$$p \mapsto (x_1+\cdots+x_d)^{j-i} \cdot p$$

is injective if $i + j \le (r - 1)d$ and is surjective if $i + j \ge (r - 1)d$.

Sketch of the proof (cont'd)

Step 4: Use this lemma to show that $\theta_1 + \cdots + \theta_d$ is a Lefschetz element for $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$.

Remark

- The proof for the result on the (quasi) weak Lefschetz property follows a similar strategy.
- The condition $\deg h_A(t) \leq \frac{d}{2}$ cannot be dropped in (iii).

Sketch of the proof (cont'd)

Step 4: Use this lemma to show that $\theta_1 + \cdots + \theta_d$ is a Lefschetz element for $A^{\langle r \rangle} / \Theta^{\langle r \rangle} A^{\langle r \rangle}$.

Remark

- The proof for the result on the (quasi) weak Lefschetz property follows a similar strategy.
- The condition $\deg h_A(t) \leq \frac{d}{2}$ cannot be dropped in (iii).

$r^{\rm th}$ edgewise subdivisions

- special subdivision of a simplicial complex
- Basic Idea: Edges are sudivided into *r* pieces.
- gives a regular triangulation of a simplicial complex Δ
- Shellability is preserved.

r^{th} edgewise subdivisions

- special subdivision of a simplicial complex
- Basic Idea: Edges are sudivided into *r* pieces.
- gives a regular triangulation of a simplicial complex Δ
- Shellability is preserved.

$r^{\rm th}$ edgewise subdivisions

- special subdivision of a simplicial complex
- Basic Idea: Edges are sudivided into *r* pieces.
- gives a regular triangulation of a simplicial complex Δ
- Shellability is preserved.

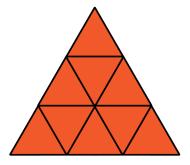
r^{th} edgewise subdivisions

- special subdivision of a simplicial complex
- Basic Idea: Edges are sudivided into r pieces.
- gives a regular triangulation of a simplicial complex Δ
- Shellability is preserved.

・ロット (雪) (日) (日)

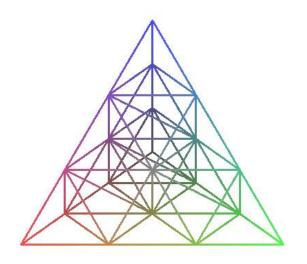
r^{th} edgewise subdivisions

- special subdivision of a simplicial complex
- Basic Idea: Edges are sudivided into r pieces.
- gives a regular triangulation of a simplicial complex Δ
- Shellability is preserved.



ヘロト ヘ回ト ヘヨト ヘヨト

Example: The 3rd edgewise subdivision of the 3-simplex



・ ロ ト ・ 雪 ト ・ ヨ ト ・

Edgewise subdivisions and Veronese algebras

Key fact:

Proposition (Brun, Römer)

 Δ simplicial complex on ground set [n], $r \geq 1$.

Set $S(r) := k[y_{i_1,\ldots,i_n} | (i_1,\ldots,i_n) \in \mathbb{N}^n$ and $i_1 + \cdots + i_n = r]$ and let I(r) be such that $k[\Delta]^{\langle r \rangle} = S(r)/I(r)$.

Then there is a term order \leq for which $I_{\Delta(r)}$ is the initial ideal of I(r).

Consequence:

$$\operatorname{Hilb}(k[\Delta(r)], t) = \operatorname{Hilb}(k[\Delta]^{\langle r \rangle}, t).$$

・ 日マ ・ 雪マ ・ 日マ ・ 日マ

Edgewise subdivisions and Veronese algebras

Key fact:

Proposition (Brun, Römer)

 Δ simplicial complex on ground set [n], $r \geq 1$.

Set
$$S(r) := k[y_{i_1,...,i_n} | (i_1,...,i_n) \in \mathbb{N}^n$$
 and $i_1 + \cdots + i_n = r]$
and let $I(r)$ be such that $k[\Delta]^{\langle r \rangle} = S(r)/I(r)$.

Then there is a term order \leq for which $I_{\Delta(r)}$ is the initial ideal of I(r).

Consequence:

$$\operatorname{Hilb}(k[\Delta(r)], t) = \operatorname{Hilb}(k[\Delta]^{\langle r \rangle}, t).$$

Being the Hilbert series equal, the numerical results for the Hilbert series of Veronese algebras carry over to edgewise subdivisions.

- Δ Cohen-Macaulay simplicial complex. Then for r large enough:
 - $g(\Delta(r))$ is an *M*-sequence.
 - $h(\Delta(r))$ is unimodal.
 - $h(\Delta(r))_i \le h(\Delta(r))_{d-1-i}$ for $0 \le i \le \lfloor \frac{d-1}{2} \rfloor$.

Being the Hilbert series equal, the numerical results for the Hilbert series of Veronese algebras carry over to edgewise subdivisions.

- $g(\Delta(r))$ is an *M*-sequence.
- $h(\Delta(r))$ is unimodal.
- $h(\Delta(r))_i \le h(\Delta(r))_{d-1-i}$ for $0 \le i \le \lfloor \frac{d-1}{2} \rfloor$.

Being the Hilbert series equal, the numerical results for the Hilbert series of Veronese algebras carry over to edgewise subdivisions.

- $g(\Delta(r))$ is an *M*-sequence.
- $h(\Delta(r))$ is unimodal.
- $h(\Delta(r))_i \le h(\Delta(r))_{d-1-i}$ for $0 \le i \le \lfloor \frac{d-1}{2} \rfloor$.

Being the Hilbert series equal, the numerical results for the Hilbert series of Veronese algebras carry over to edgewise subdivisions.

- $g(\Delta(r))$ is an *M*-sequence.
- $h(\Delta(r))$ is unimodal.
- $h(\Delta(r))_i \le h(\Delta(r))_{d-1-i}$ for $0 \le i \le \lfloor \frac{d-1}{2} \rfloor$.

Being the Hilbert series equal, the numerical results for the Hilbert series of Veronese algebras carry over to edgewise subdivisions.

- $g(\Delta(r))$ is an *M*-sequence.
- $h(\Delta(r))$ is unimodal.
- $h(\Delta(r))_i \le h(\Delta(r))_{d-1-i}$ for $0 \le i \le \lfloor \frac{d-1}{2} \rfloor$.

Thank you for your attention!

Any questions or remarks?

