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Standard graded algebras

k field

A =
⊕

i≥0Ai standard graded k-algebra⇔
• A0 = k

• A generated in degree 1

• AiAj ⊆ Ai+j for all i, j ≥ 0

• dimk(Ai) <∞ for all i

A Artinian ⇔ dimk(A) <∞ ⇔ A =
⊕s

i=0Ai

Example:

• A = k[x1, . . . , xn] standard graded X, not Artinian 7

• A = k[x1, x2, x3]/(x1x2, x1x3, x2x3, x
3
1, x

3
2, x

3
3) standard graded X,

Artinian X
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Hilbert series
k field, A =

⊕
i≥0Ai standard graded k-algebra

Hilb(A, t) =
∑
i≥0

dimk(Ai)t
i =

h0 + h1t+ · · ·+ hst
s

(1− t)d
Hilbert series of A

Notation:

• hA(t) h-polynomial of A
• h(A) = (h0, h1, . . . , hs) h-vector of A
• g(A) = (1, h1 − h0, . . . , hb s2 c − hb s2 c−1) g-vector of A

Example:

• A = k[x1, . . . , xn]
Hilb(A, t) =

∑∞
i=0

(
n+i−1

i

)
ti = 1

(1−t)n , h(A) = (1), g(A) = (1).

• A = k[x1, x2, x3]/(x1x2, x1x3, x2x3, x
3
1, x

3
2, x

3
3)

Hilb(A, t) = 1 + 3t+ 3t2 = hA(t), h(A) = (1, 3, 3), g(A) = (1, 2).

Goal: Study h-polynomials/vectors. ⇒ How?
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Our Tool: Lefschetz properties

A =
⊕s

i=0Ai standard graded Artinian k-algebra

A is called

• m-Lefschetz if there exists ω ∈ A1 such that the multiplication
map

ωm−2i : Ai → Am−i : p 7→ ωm−2ip

is injective for 0 ≤ i ≤ bm−1
2 c.

• strong Lefschetz if A is s-Lefschetz.

• almost strong Lefschetz if A is (s− 1)-Lefschetz.
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Our Tool: Lefschetz properties (cont’d)

A is called

• weak Lefschetz if there exists ω ∈ A1 and 1 ≤ g ≤ s such that the
multiplication map

ω : Ai → Ai+1 : p 7→ ωp

is injective for 0 ≤ i ≤ g − 1 and surjective for all i ≥ g.

• quasi weak Lefschetz if there exists ω ∈ A1 and 1 ≤ g ≤ s such
that the multiplication map

ω : Ai → Ai+1 : p 7→ ωp

is injective for 0 ≤ i ≤ g − 1 and surjective for all i ≥ g + 1.

ω is called (m− / (almost) strong / (quasi) weak) Lefschetz element.
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Why can Lefschetz elements serve our purposes?

Example 1: A m-Lefschetz with Lefschetz element ω.

⇒ ω : Ai → Ai+1 : p 7→ ωp injective for 0 ≤ i ≤ bm−1
2 c.

⇒ (g0, g1, . . . , gbm+1
2 c

) is the Hilbert function of A/(ωA+ mb
m+1

2 c+1).

⇒ (g0, g1, . . . , gbm+1
2 c

) is an M -sequence.

Moreover: hi ≤ hm−i for 0 ≤ i ≤ bm−1
2 c.

Example 2: A quasi weak Lefschetz.

⇒ h0 ≤ h1 ≤ . . . ≤ hp hp+1 ≥ . . . ≥ hs (unimodality).

What to remember: Lefschetz properties are a tool to prove
properties of the Hilbert series of Artinian algebras.

Question: What about non-Artinian algebras?
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What to do for non-Artinian algebras?

A standard graded k-algebra, not Artinian 7

Assume: A Cohen-Macaulay, d-dimensional

Then: Exists linear system of parameters Θ = {θ, . . . , θd} for A.

Comparing the Hilbert series of A and A/ΘA one gets

Hilb(A, t) =
Hilb(A/ΘA, t)

(1− t)d
.

This means hA(t) = hA/ΘA(t) (independent of Θ).

Consequence: Can reduce to the Artinian case, i.e., try to find
Lefschetz elements for A/ΘA.

Remark: If there exists a l.s.o.p. Θ such that A/ΘA is Lefschetz, then
this will be true for generic l.s.o.p. and a generic linear form ω.
(Call A Lefschetz in this case.)
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Lefschetz elements in Combinatorics
A simplicial complex ∆ is called Lefschetz if its Stanley-Reisner ring
has this property.
• Stanley: necessity part of the g-theorem for simplicial polytopes

(uses Hard Lefschetz theorem for toric variety)

• Babson/Nevo: Preservation of Lefschetz properties under taking
joins, connected sums, stellar subdivisions, unions of simplicial
complexes.

• Murai: strongly edge decomposable complexes are strong
Lefschetz.

• Swartz: matroid complexes and simplicial complexes having a
convex ear decomposition are strong Lefschetz.

• K./Nevo: barycentric subdivisions of shellable complexes are
almost strong Lefschetz.

• . . .
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Lefschetz elements in Commutative Algebra

Theorem
k field of characteristic 0, S = k[x1, . . . , xn], I = 〈xa11 , . . . , xann 〉
Artinian monomial complete intersection, ω general linear form. Then
for any positive integers d, i the multiplication

ωd : (S/I)i → (S/I)i+d : p 7→ ωd · p

has maximal rank.

• Starting point of the whole story
• Proofs by

• Stanley (1980, algebraic topology),
• Watanabe (1987, representation theory),
• Reid/Roberts/Roitman (1991, algebraic methods),
• Ikeda (1996, combinatorial methods),
• Herzog/Popescu (unpublished, 2005, linear algebra).
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Lefschetz elements in Commutative Algebra (cont’d)

• Wiebe: k[x1, . . . , xn]/in≺(I) strong Lefschetz⇒ k[x1, . . . , xn]/I
strong Lefschetz for a homogeneous ideal I. The converse is
true for the generic initial ideal.

• Harima/Wachi: k[x1, . . . , xn]/I strong Lefschetz if I is almost
reverse lexicographic.

• Harima/Migliore/Nagel/Watanabe: k[x, y]/I is strong Lefschetz if
char(k) = 0 and I homogeneous ideal.

• Seo/Srinivasan: k[x, y, z]/I is weak Lefschetz if char(k) = 0 and
I is generated by powers of linear forms.

• Migliore/Miró-Roig/Nagel: For n ≥ 2 and generic linear forms Li
k[x1, . . . , x2n]/〈Lt1, . . . , Lt2n+1〉 fails the WLP if and only if t > 1.
(For an uneven number of variables: partial results.)

• K./Murai: Lefschetz properties for Veronese algebras
• . . .
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Stanley-Reisner rings and h-vectors

∆ simplicial complex on vertex set [n] = {1, . . . , n}

I∆ = (
∏
i∈F xi | F /∈ ∆) Stanley-Reisner ideal of ∆

k[∆] = k[x1, . . . , xn]/I∆ Stanley-Reisner ring of ∆

h(∆) = h(k[∆]) h-vector of ∆

Example:
• ∆ (d− 1)-simplex⇒ k[∆] = k[x1, . . . , xd], h(∆) = (1, 0, . . . , 0)

• k[∆] = k[x1, x2, x3, x4, x5]/(x1x4, x1x5, x2x5, x4x5) and
h(∆) = (1, 2,−1, 0)
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Barycentric subdivisions
∆ simplicial complex

The barycentric subdivision of ∆ is the simplicial complex sd(∆) on
vertex set ∆ \ {∅}, whose faces are chains

∅ 6= A0 ( A1 ( . . . ( Ar

with Ai ∈ ∆ \ {∅} for 0 ≤ i ≤ r.
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Shellability

∆ pure simplicial complex on vertex set [n].

∆ shellable⇔ ∃ linear ordering F1, . . . , Ft of the facets of ∆ such that
for 2 ≤ i ≤ t the set

〈F1, . . . , Fi〉 \ 〈F1, . . . , Fi−1〉

has exactly one minimal element, the so-called restriction face.

Facts:
• ∆ shellable⇒ k[∆] Cohen-Macaulay.

• hi(∆) counts number of restriction faces of cardinality i.

• ∆ shellable⇒ sd(∆) shellable.

Shellable simplicial complexes are nice to work with since they allow
to use induction. (Any subcomplex arising by successively building a
shelling of ∆ is again shellable.)
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Motivation

Brenti/Welker studied the h-vector transformation of barycentric
subdivisions. They showed:

• h(sd(∆)) can be obtained from h(∆) by a linear transformation
with positive integral coefficients.

• ∆ Cohen-Macaulay⇒ h(sd(∆)) is unimodal.

Conjecture
∆ Cohen-Macaulay⇒ k[∆] has some type of Lefschetz property.

⇒ g(sd(∆)) is an M -sequence.

⇒ h(sd(∆)) is unimodal.
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Sketch of the proof
Double induction over the number of facets and the dimension of ∆.

Base of the induction: X

Induction step: Take a shelling F1, . . . , Ft of ∆. Set

∆̃ = 〈F1, . . . , Ft−1〉 and σ = ∆̃ ∩ Ft

This yields for the barycentric subdivision:

sd(∆) = sd(∆̃) ∪ sd(Ft) and sd(σ) = sd(∆̃) ∩ sd(Ft)

We will use the following exact sequence:

0→ k[sd(∆)]→ k[sd(∆̃)]⊕ k[sd(Ft)]→ k[sd(σ)]→ 0.

Choose Θ = {θ1, . . . , θd} l.s.o.p. for k[sd(∆)], k[sd(∆̃)], k[sd(Ft)] such
that {θ1, . . . , θd−1} is l.s.o.p. for k[σ].
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Sketch of the proof (cont’d)

Remember the exact sequence:

0→ k[sd(∆)]→ k[sd(∆̃)]⊕ k[sd(Ft)]→ k[sd(σ)]→ 0.

Dividing out by Θ yields the following long exact sequence of
Tor-modules:

. . . → Tor1(k[sd(∆)], S/Θ)→ Tor1(k[sd(∆̃)]⊕ k[sd(Ft)], S/Θ)

→ Tor1(k[sd(σ)], S/Θ)
δ→ Tor0(k[sd(∆)], S/Θ)

→ Tor0(k[sd(∆̃)]⊕ k[sd(Ft)], S/Θ)→ Tor0(k[sd(σ)], S/Θ)→ 0,

where δ is the connecting homomorphism.

Use: Tor0(M,R/I) = M ⊗R R/I = M/IM for an R-module M and
an ideal I ⊆ R.
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Sketch of the proof (cont’d)

The exact Tor-sequence simplifies:

Tor1(k[sd(σ)], S/Θ)
δ→ k[sd(∆)]/Θ

→ k[sd(∆̃)]/Θ⊕ k[sd(Ft)]/Θ→ k[sd(σ)]/Θ→ 0.

Induction hypothesis: ω Lefschetz element for k[sd(∆̃)] and k[sd(Ft)].

Tor1(k[sd(σ)], S/Θ)i
δ→ k(sd(∆))i → k(sd(∆̃))i ⊕ k(sd(〈Fm〉))i

↓ ωd−2i−1 ↓ (ωd−2i−1, ωd−2i−1)

k(sd(∆))d−1−i → k(sd(∆̃))d−1−i ⊕ k(sd(〈Fm〉))d−1−i

Remains to show: Tor1(k[sd(σ)], S/Θ)i = 0 for 0 ≤ i ≤ bd−2
2 c (uses

that θd can be used as a Lefschetz element for k[sd(σ)]).
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Veronese algebras

A =
⊕

i≥0Ai standard graded k-algebra

For r ≥ 1: A〈r〉 =
⊕

i≥0Air r
th Veronese algebra of A

A〈r〉 is standard graded and (A〈r〉)i = Air

Example:

A = k[x1, x2, x3]

A〈2〉 = 〈1〉 ⊕ 〈x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3〉

⊕ 〈 monomials of degree 4 〉
⊕ 〈 monomials of degree 6 〉 ⊕ . . .
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Motivation

• Brenti/Welker (2007):

• give linear transformation h(A)
Cr,d

7→ h(A〈r〉) = Cr,dh(A), where
Cr,d ∈ Z(d+1)×(d+1).

• hA〈r〉(t) is real-rooted for r sufficiently large.

⇒ h(A〈r〉) is log-concave and unimodal.

• Similar results concerning the asymptotics of hA〈r〉(t) were
subsequently obtained by Beck/Stapledon and Diaconis/Fulman.

• K./Welker (2011): hi(A) ≥ 0, r ≥ max(d,deg hA(t))⇒ g(A〈r〉) is
an M -sequence.

Question: Is there a nicer proof?
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Motivation (cont’d)

Conjecture
A Cohen-Macaulay standard graded k-algebra.

Then: For r sufficiently large A〈r〉 has a certain type of Lefschetz
property.

⇒ g(A〈r〉) is an M -sequence.

⇒ h(A〈r〉) is unimodal.
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Veronese algebras: Almost SLP

Theorem (K., Murai)
k field of characteristic 0,
A Cohen-Macaulay standard graded k-algebra of dimension d,
Θ = θ1, . . . , θd l.s.o.p. for A.
Θ〈r〉 := {θr1, . . . , θrd}
Let r ≥ 1 be an integer and s = b (r−1)d

r c.
Then A〈r〉/Θ〈r〉A〈r〉 has the s-Lefschetz property.
Moreover, if r ≥ deg hA(t), then A〈r〉/Θ〈r〉A〈r〉 is almost strong
Lefschetz.
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A Cohen-Macaulay standard graded k-algebra of dimension d,
Θ = θ1, . . . , θd l.s.o.p. for A.
Θ〈r〉 := {θr1, . . . , θrd}
Let r ≥ 1 be an integer and s = b (r−1)d

r c.
Then A〈r〉/Θ〈r〉A〈r〉 has the s-Lefschetz property.
Moreover, if r ≥ deg hA(t), then A〈r〉/Θ〈r〉A〈r〉 is almost strong
Lefschetz.
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Veronese algebras: (Quasi) WLP

Theorem (K., Murai)
k field of characteristic 0, A Cohen-Macaulay standard graded
k-algebra of dimension d, Θ = θ1, . . . , θd l.s.o.p. for A,
Θ〈r〉 = {θr1, . . . , θrd}.

(i) If r ≥ deg hA(t), then A〈r〉/Θ〈r〉A〈r〉 is quasi weak Lefschetz.

(ii) If d is even and r ≥ max{d, 2 deg hA(t)− d}, then A〈r〉/Θ〈r〉A〈r〉

has the weak Lefschetz property.

(iii) If d is odd, r ≥ d
2 and deg hA(t) ≤ d

2 , then A〈r〉/Θ〈r〉A〈r〉 has the
weak Lefschetz property.
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Sketch of the proof

Θ = {θ1, . . . , θd}, Θ〈r〉 = {θr1, . . . , θrd}

Step 1: Decomposition of A
A Cohen-Macaulay⇒ Θ regular sequence for A, i.e., A finitely
generated k[θ1, . . . , θd]-module. Hence:

A =

m⊕
j=1

uj · k[θ1, . . . , θd]

for homogeneous elements u1, . . . , um of A.

Step 2: Θ〈r〉 is a l.s.o.p. for A〈r〉.



Background Lefschetz properties Application to barycentric subdivisions Application to Veronese algebras and edgewise subdivisions

Sketch of the proof

Θ = {θ1, . . . , θd}, Θ〈r〉 = {θr1, . . . , θrd}

Step 1: Decomposition of A
A Cohen-Macaulay⇒ Θ regular sequence for A, i.e., A finitely
generated k[θ1, . . . , θd]-module. Hence:

A =

m⊕
j=1

uj · k[θ1, . . . , θd]

for homogeneous elements u1, . . . , um of A.

Step 2: Θ〈r〉 is a l.s.o.p. for A〈r〉.



Background Lefschetz properties Application to barycentric subdivisions Application to Veronese algebras and edgewise subdivisions

Sketch of the proof

Θ = {θ1, . . . , θd}, Θ〈r〉 = {θr1, . . . , θrd}

Step 1: Decomposition of A
A Cohen-Macaulay⇒ Θ regular sequence for A, i.e., A finitely
generated k[θ1, . . . , θd]-module. Hence:

A =

m⊕
j=1

uj · k[θ1, . . . , θd]

for homogeneous elements u1, . . . , um of A.

Step 2: Θ〈r〉 is a l.s.o.p. for A〈r〉.



Background Lefschetz properties Application to barycentric subdivisions Application to Veronese algebras and edgewise subdivisions

Sketch of the proof (cont’d)

Step 3: Decomposition of A〈r〉/Θ〈r〉A〈r〉

A〈r〉 =

m⊕
j=1

uj ·

⊕
i≥0

k[θ1, . . . , θd]ir−deg uj

 .

We obtain the following decomposition for A〈r〉/Θ〈r〉A〈r〉

A〈r〉/Θ〈r〉A〈r〉 =

m⊕
j=1

uj ·

⊕
i≥0

(
k[θ1, . . . , θd]/(θ

r
1, . . . , θ

r
d)
)
ir−deg uj


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Sketch of proof (cont’d)

Lemma (Stanley, Watanabe)
k field of characteristic 0, r ≥ 1. For 0 ≤ i < j, the multiplication map

(K[x1, . . . , xd]/(x
r
1, . . . , x

r
d))i

×(x1+···+xd)j−i

→ (K[x1, . . . , xd]/(x
r
1, . . . , x

r
d))j

p 7→ (x1 + · · ·+ xd)
j−i · p

is injective if i+ j ≤ (r − 1)d and is surjective if i+ j ≥ (r − 1)d.
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Sketch of the proof (cont’d)

Step 4: Use this lemma to show that θ1 + · · ·+ θd is a Lefschetz
element for A〈r〉/Θ〈r〉A〈r〉.

Remark
• The proof for the result on the (quasi) weak Lefschetz property

follows a similar strategy.
• The condition deg hA(t) ≤ d

2 cannot be dropped in (iii).
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Sketch of the proof (cont’d)

Step 4: Use this lemma to show that θ1 + · · ·+ θd is a Lefschetz
element for A〈r〉/Θ〈r〉A〈r〉.

Remark
• The proof for the result on the (quasi) weak Lefschetz property

follows a similar strategy.
• The condition deg hA(t) ≤ d

2 cannot be dropped in (iii).
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rth edgewise subdivisions
• special subdivision of a simplicial complex

• Basic Idea: Edges are sudivided into r pieces.

• gives a regular triangulation of a simplicial complex ∆

• Shellability is preserved.
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rth edgewise subdivisions
• special subdivision of a simplicial complex

• Basic Idea: Edges are sudivided into r pieces.

• gives a regular triangulation of a simplicial complex ∆

• Shellability is preserved.
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Example: The 3rd edgewise subdivision of the
3-simplex
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Edgewise subdivisions and Veronese algebras

Key fact:

Proposition (Brun, Römer)
∆ simplicial complex on ground set [n], r ≥ 1.

Set S(r) := k[yi1,...,in | (i1, . . . , in) ∈ Nn and i1 + · · ·+ in = r]
and let I(r) be such that k[∆]〈r〉 = S(r)/I(r).

Then there is a term order � for which I∆(r) is the initial ideal of I(r).

Consequence:

Hilb(k[∆(r)], t) = Hilb(k[∆]〈r〉, t).
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Results for edgewise subdivisions

Being the Hilbert series equal, the numerical results for the Hilbert
series of Veronese algebras carry over to edgewise subdivisions.

∆ Cohen-Macaulay simplicial complex. Then for r large enough:
• g(∆(r)) is an M -sequence.

• h(∆(r)) is unimodal.

• h(∆(r))i ≤ h(∆(r))d−1−i for 0 ≤ i ≤ bd−1
2 c.
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Thank you for your attention!

Any questions or remarks?
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