Hilbert depth and numerical semigroups

Julio José Moyano Fernández Universität Osnabrück

20th National School on Algebra Mangalia (Romania), September 3rd 2012

[Join work with Jan Uliczka]

(1) On Hilbert series

Let \mathbb{F} be an arbitrary field. We consider the ring $R = \mathbb{F}[X_1, \ldots, X_n]$, equipped with a positive \mathbb{Z} -grading, i. e., $\deg(X_i) = e_i \ge 1$ for $i = 1, \ldots, n$.

(1) On Hilbert series

Let \mathbb{F} be an arbitrary field. We consider the ring $R = \mathbb{F}[X_1, \ldots, X_n]$, equipped with a positive \mathbb{Z} -grading, i. e., $\deg(X_i) = e_i \ge 1$ for $i = 1, \ldots, n$.

Furthermore let $M \neq 0$ be a f.g. \mathbb{Z} -graded *R*-module.

(1) On Hilbert series

Let \mathbb{F} be an arbitrary field. We consider the ring $R = \mathbb{F}[X_1, \ldots, X_n]$, equipped with a positive \mathbb{Z} -grading, i. e., $\deg(X_i) = e_i \ge 1$ for $i = 1, \ldots, n$.

Furthermore let $M \neq 0$ be a f.g. \mathbb{Z} -graded *R*-module.

Every homogenous component of *M* is a finite-dimensional \mathbb{F} -vector space, and since *R* is positively graded, $M_k = 0$ for $k \ll 0$. Hence the

Hilbert series

$$H_M(t) = \sum_{k \in \mathbb{Z}} (\dim_{\mathbb{F}} M_k) t^k$$

is a well-defined element of $\mathbb{Z}\llbracket t \rrbracket [t^{-1}]$.

No negative coefficients: nonnegative series.

By a classical result of Hilbert, in the case $e_i = 1$ for all *i* (*standard graded case*) this series may be written as a rational function of the form

$$H_M(t) = \frac{Q_M(t)}{(1-t)^d}$$

where $Q_M \in Z[t, t^{-1}]$ is a Laurent polynomial with $Q_M(1) \neq 0$, and d equals the Krull dimension of M.

By a classical result of Hilbert, in the case $e_i = 1$ for all *i* (*standard graded case*) this series may be written as a rational function of the form

$$H_M(t) = \frac{Q_M(t)}{(1-t)^d}$$

where $Q_M \in Z[t, t^{-1}]$ is a Laurent polynomial with $Q_M(1) \neq 0$, and d equals the Krull dimension of M.

In the general case (*positively graded case*) the Hilbert-Serre theorem says

$$H_M(t)=\frac{Q_M(t)}{\prod(1-t^{e_i})}.$$

(2) On numerical semigroups

- Let S be a submonoid of $(\mathbb{N}_0, +)$.
- Let A be a nonempty subset of S.
- The subsemigroup generated by A is

$$\langle \boldsymbol{A} \rangle := \{\lambda_1 \boldsymbol{a}_1 + \ldots + \lambda_n \boldsymbol{a}_n \mid \boldsymbol{n}, \lambda_i \in \mathbb{N}, \boldsymbol{a}_i \in \boldsymbol{A}\}.$$

- If $S = \langle A \rangle$, then we say: A is a system of generators of S.
- A finite \implies S finitely generated.
- If you can't delete generators of A ⇒ S minimally generated.

Definition

A submonoid Γ of \mathbb{N}_0 such that $\mathbb{N}_0 \setminus \Gamma$ is a finite set is called a *numerical semigroup*.

The smallest element $c \in \Gamma$ such that $n \in \Gamma$ for all $n \in \mathbb{N}$ with $n \ge c$ is called the *conductor* of Γ .

Lemma

Let *A* be a nonempty subset of \mathbb{N}_0 . Then $\langle A \rangle$ is a numerical semigroup if and only if gcd(A) = 1.

Example: The following semigroup is numerical:

Let \mathbb{F} be an arbitrary field. We consider the ring $R = \mathbb{F}[X_1, \ldots, X_n]$, equipped with a positive \mathbb{Z} -grading, i. e., $\deg(X_i) = e_i \ge 1$ for $i = 1, \ldots, n$.

Let \mathbb{F} be an arbitrary field. We consider the ring $R = \mathbb{F}[X_1, \ldots, X_n]$, equipped with a positive \mathbb{Z} -grading, i. e., $\deg(X_i) = e_i \ge 1$ for $i = 1, \ldots, n$.

Furthermore let $M \neq 0$ be a f.g. \mathbb{Z} -graded *R*-module.

Let \mathbb{F} be an arbitrary field. We consider the ring $R = \mathbb{F}[X_1, \ldots, X_n]$, equipped with a positive \mathbb{Z} -grading, i. e., $\deg(X_i) = e_i \ge 1$ for $i = 1, \ldots, n$.

Furthermore let $M \neq 0$ be a f.g. \mathbb{Z} -graded *R*-module.

Every homogenous component M_k of M is a finite-dimensional \mathbb{F} -vector space, and take the Hilbert series

$$H_M(t) = \sum_{k \in \mathbb{Z}} (\dim_{\mathbb{F}} M_k) t^k \in \mathbb{Z}\llbracket t \rrbracket [t^{-1}].$$

Obviously it has no negative coefficients: Remember that we will call such a series nonnegative.

The depth of a graded module cannot be read off its Hilbert series in general; there may be modules with the same Hilbert series, but different depths. So it makes sense to introduce the

Hilbert depth of M

$$\operatorname{Hdep}(M) := \max \left\{ r \in \mathbb{N} \mid \operatorname{There is a f. g. gr.} R-\operatorname{module} N \\ \operatorname{with} H_N = H_M \operatorname{and depth}(N) = r. \right\}$$

A priori the Hilbert depth is an opaque quantity, since a vast amount of modules has to be taken into account. In the standard graded case, i. e. $deg(X_i) = 1$ for all *i*, the Hilbert depth turns out to be equal to a simple arithmetic invariant of H_M , the

Positivity of *M*

$$p(M) = \max\{r \in \mathbb{N} : (1 - t)^r H_M(t) \text{ is nonnegative}\}\$$

In the standard graded case, i. e. $deg(X_i) = 1$ for all *i*, the Hilbert depth turns out to be equal to a simple arithmetic invariant of H_M , the

Positivity of *M*

$$p(M) = \max\{r \in \mathbb{N} : (1-t)^r H_M(t) \text{ is nonnegative}\}.$$

The inequality $Hdep(M) \le p(M)$ is easy: We may assume \mathbb{F} to be infinite. Then a maximal *M*-regular sequence $\underline{a} = a_1, \ldots, a_r$ can be composed of elements of degree 1. We have

$$H_{M/\underline{a}M}(t) = (1-t)^r H_M(t),$$

and, being a Hilbert series, this has to be nonnegative.

The problem

The reverse inequality $Hdep(M) \ge p(M)$ can be deduced from the existence of a decomposition (Uliczka's theorem)

$$H_M(t) = \sum_{j=0}^{\dim(M)} \frac{Q_j(t)}{(1-t)^j}$$

with nonnegative $Q_j \in \mathbb{Z}[t, t^{-1}]$.

The reverse inequality $Hdep(M) \ge p(M)$ can be deduced from the existence of a decomposition (Uliczka's theorem)

$$H_M(t) = \sum_{j=0}^{\dim(M)} \frac{Q_j(t)}{(1-t)^j}$$

with nonnegative $Q_j \in \mathbb{Z}[t, t^{-1}]$.

It seems natural to ask whether one could obtain a description of the Hilbert depth by an arithmetic condition also in the general case.

This talk will provide at least some partial answers.

Before that: Let us consider an example still in the standard grading.

Example

Let $R = \mathbb{F}[X, Y, Z]$ with deg(X) = deg(Y) = deg(Z) = 1. Let $M = R/(XZ, YZ, Z^2)$. Then

 $\operatorname{depth}(M) = 0 < \operatorname{Hdepth}(M) = 1 = \rho(M) < 2 = \dim(M).$

Example

Let $R = \mathbb{F}[X, Y, Z]$ with deg(X) = deg(Y) = deg(Z) = 1. Let $M = R/(XZ, YZ, Z^2)$. Then

 $\operatorname{depth}(M) = 0 < \operatorname{Hdepth}(M) = 1 = \rho(M) < 2 = \dim(M).$

Proof: Obviously we have depth(M) = 0, and the computation

$$H_M = t + H_{\mathbb{F}[X,Y]}(t) = t + \frac{1}{(1-t)^2} = \frac{t^3 - 2t^2 + t + 1}{(1-t)^2},$$

shows $p(M) \le 1 < \dim(M)$, since the numerator of H_M is not positive.

On the other hand $Hdep(M) \ge 1$, because an *R*-module with $H_N = H_M$ and depth(N) = 1 is easily constructed;

On the other hand $Hdep(M) \ge 1$, because an *R*-module with $H_N = H_M$ and depth(N) = 1 is easily constructed; since $H_M(t)$ equals

$$\frac{t^3 - 2t^2 + t + 1}{(1-t)^2} = \frac{t^3}{(1-t)^2} + \frac{-2t^2 + t + 1}{(1-t)^2} = \frac{t^3}{(1-t)^2} + \frac{2t+1}{1-t}$$

On the other hand $Hdep(M) \ge 1$, because an *R*-module with $H_N = H_M$ and depth(N) = 1 is easily constructed; since $H_M(t)$ equals

$$\frac{t^3 - 2t^2 + t + 1}{(1-t)^2} = \frac{t^3}{(1-t)^2} + \frac{-2t^2 + t + 1}{(1-t)^2} = \frac{t^3}{(1-t)^2} + \frac{2t + 1}{1-t}$$

we have just to choose

$$N := \left((R/(Z))(-3) \right) \oplus \left((R/(Y,Z))(-1) \right)^2 \oplus R/(Y,Z),$$

thus $\operatorname{Hdepth}(M) = p(M) = 1$.

In the non-standard graded case, *R* might not contain any homogeneous elements of degree 1 at all, and a fortiori there are no regular sequences consisting of such elements.

In the non-standard graded case, *R* might not contain any homogeneous elements of degree 1 at all, and a fortiori there are no regular sequences consisting of such elements. Therefore the notion of positivity has to be modified: Let $e := lcm(e_1, ..., e_n)$. We define the

e-positivity

 $p_e(M) = \max\{r \in \mathbb{N} : (1 - t^e)^r H_M(t) \text{ is nonnegative}\}$

In the non-standard graded case, *R* might not contain any homogeneous elements of degree 1 at all, and a fortiori there are no regular sequences consisting of such elements. Therefore the notion of positivity has to be modified: Let $e := lcm(e_1, ..., e_n)$. We define the

e-positivity

$$p_e(M) = \max\{r \in \mathbb{N} : (1 - t^e)^r H_M(t) \text{ is nonnegative}\}$$

Since an *M*-regular sequence can always be composed of elements of degree *e*, the inequality $Hdep(M) \le p_e(M)$ follows exactly as in the standard graded case.

The decomposition theorem used in the standard graded case can also be generalized:

Theorem (M.–Uliczka)

The Hilbert series of *M* admits a decomposition of the form

$$\sum_{\subseteq \{1,\dots,n\}} \frac{Q_l(t)}{\prod_{j \in I} (1 - t^{e_j})}$$

with nonnegative $Q_I \in \mathbb{Z}$.

For instance: If *M* is a $\mathbb{F}[X_1, X_2]$ -module, we reach

$$H_M(t) = Q_0(t) + rac{Q_{X_1}(t)}{1-t^{e_1}} + rac{Q_{X_2}(t)}{1-t^{e_2}} + rac{Q_2(t)}{(1-t^{e_1})(1-t^{e_2})}.$$

Any decomposition of H_M in that form yields another *R*-module with the same Hilbert series: Let

$$H_{M}(t) = \sum_{I \subseteq \{1,...,n\}} \frac{\sum_{k=p_{I}}^{q_{I}} h_{k,I} t^{k}}{\prod_{j \in I} (1 - t^{e_{j}})}$$

and write J_i for the ideal generated by the X_i with $i \notin I$, then the *R*-module

$$N := \bigoplus_{I \subseteq \{1, \dots, n\}} \left(\bigoplus_{k=p_I}^{q_I} \left(\left(R/J_I \right) \left(-k \right) \right)^{h_{I,k}} \right)$$

has Hilbert series H_M .

Since the module constructed above has

$$\operatorname{depth}(N) = \min\{|I|: Q_I \neq 0\},\$$

the Hilbert depth of *M* is bounded below by

 $\nu(H) := \max \left\{ r \in \mathbb{N} \ \left| \begin{array}{c} H \text{ admits a decomp. of the given form} \\ \text{with } Q_I = 0 \text{ for all } I \text{ with } |I| < r. \end{array} \right\}.$

Since the module constructed above has

$$depth(N) = min\{|I| : Q_I \neq 0\},\$$

the Hilbert depth of *M* is bounded below by

 $\nu(H) := \max \left\{ r \in \mathbb{N} \mid H \text{ admits a decomp. of the given form} \\ \text{with } Q_I = 0 \text{ for all } I \text{ with } |I| < r. \right\}$

Hence we have an inequality

 $\nu(M) \leq \operatorname{Hdep}(M) \leq \rho_e(M).$

Since the module constructed above has

$$depth(N) = min\{|I| : Q_I \neq 0\},\$$

the Hilbert depth of *M* is bounded below by

 $\nu(H) := \max \left\{ r \in \mathbb{N} \mid H \text{ admits a decomp. of the given form} \\ \text{with } Q_I = 0 \text{ for all } I \text{ with } |I| < r. \right\}$

Hence we have an inequality

 $\nu(M) \leq \operatorname{Hdep}(M) \leq \rho_{\theta}(M).$

It is not hard to show $p(M) \le \nu(M)$ in the standard graded case. But the argument used there does not work for p_e , since the factors $1 - t^{e_i}$ appearing in the decomposition are different from the factor $1 - t^e$ that is used in the definition of p(M).

For $R = \mathbb{F}[X, Y]$ we know

$$\nu(M) = \operatorname{Hdep}(M) = \rho_e(M)$$

Aim: Arithmetical characterization of $\nu(M) > 0$ for $\mathbb{F}[X, Y]$ with

$$\alpha := \deg(X), \, \beta := \deg(Y)$$

and

$$gcd(\alpha,\beta) = 1.$$

This will provide a criterion for Hdep(M).

The condition

$$p_e(M) = p_{lphaeta}(M) > 0$$

is necessary but not sufficient.

If $H_M(t) = \sum_n h_n t^n$, this condition means

$$h_{n+0} \leq h_{n+\alpha\beta}$$

for all $n \in \mathbb{Z}$.

The condition

$$p_e(M) = p_{lphaeta}(M) > 0$$

is necessary but not sufficient.

If $H_M(t) = \sum_n h_n t^n$, this condition means

$$h_{n+0} \leq h_{n+\alpha\beta}$$

for all $n \in \mathbb{Z}$.

What to do?

The condition

$$p_e(M) = p_{lphaeta}(M) > 0$$

is necessary but not sufficient.

If $H_M(t) = \sum_n h_n t^n$, this condition means

$$h_{n+0} \leq h_{n+\alpha\beta}$$

for all $n \in \mathbb{Z}$.

What to do? \longrightarrow Examples!

Take $\alpha = 3$ and $\beta = 5$

Necessary conditions:

 $h_{n+0} \leq h_{n+15}$

Take $\alpha = 3$ and $\beta = 5$

Necessary conditions:

$$h_{n+0} \leq h_{n+15}$$

and also (after some computations):

But 1, 2, 4, 7 are exactly the gaps of $\langle 3, 5 \rangle$!!!

	U U	•	U U	10
(3)	0	1	0	1
(5)	0	1	0 1	0
	0	4	9	10
(3)	0	1	0	1
(5)	0	4	9 0 4	0
(3) (5)	0	7	12	10
(3)	0	1	0	1
(5)	0	2	2	0
. ,	I			

0 1 6 10

More computations convinced us that

$$\begin{array}{rcl} h_{n+0}+h_{n+1}+h_{n+2} & \leq & h_{n+4}+h_{n+5}+h_{n+6}, \\ h_{n+0}+h_{n+2}+h_{n+4} & \leq & h_{n+5}+h_{n+7}+h_{n+9} \end{array}$$

are also sufficient!

Look also that:

4 < 7 and 4 < 9

Let *L* be the set of gaps of $\langle \alpha, \beta \rangle$.

An (α, β) -fundamental couple [I, J] consists of two integer sequences $I = (i_k)_{k=0}^m$ and $J = (j_k)_{k=0}^m$, such that (0) $i_0 = 0$. (1) $i_1, \ldots, i_m, j_1, \ldots, j_{m-1} \in L$ and $j_0, j_m \leq \alpha\beta$.

(2)

$i_k \equiv j_k$	$\mod \alpha$	and	$i_k < j_k$	for $k = 0,, m$;
$j_k \equiv i_{k+1}$	mod β	and	$j_k > i_{k+1}$	for $k = 0,, m - 1$;
$j_m \equiv i_0$	mod β	and	$j_m \geq i_0$.	

(3) $|i_k - i_\ell| \in L$ for $1 \le k < \ell \le m$.

The set of (α, β) -fundamental couples will be denoted by $\mathcal{F}_{\alpha,\beta}$.

The number of (α, β) -fundamental couples grows surprisingly with increasing α and β .

We give some examples:

$\boldsymbol{S} = \langle \alpha, \beta \rangle$	$ \mathcal{F}_{lpha,eta} $	genus
$\langle 4,5 \rangle$	14	6
$\langle 4,7 angle$	30	9
$\langle 6, 11 \rangle$	728	25
$\langle 11, 13 \rangle$	104 006	60

Main Theorem (M.–Uliczka)

Let $R = \mathbb{F}[X, Y]$ be the polynomial ring in two variables s.th.

$$deg(X) = \alpha$$
, $deg(Y) = \beta$, with $gcd(\alpha, \beta) = 1$.

Let *M* be a finitely generated graded *R*-module. Then

Hdep(M) > 0 if and only if $H_M(t) = \sum_n h_n t^n$ satisfies the condition

$$(\star) \qquad \sum_{i \in I} h_{i+n} \leq \sum_{j \in J} h_{j+n} \quad \text{ for all } n \in \mathbb{Z}, \ [I, J] \in \mathcal{F}_{\alpha, \beta}.$$

In the special case $\langle 3,5\rangle$ the criterion is given by the inequalities

About the proof:

• Necessity follows from simple arguments even not involving numerical semigroups.

For any *R*-module with Hdep(M) > 0 the Hilbert series can be written in the form

$$H_{M}(t) = \frac{Q_{2}(t)}{(1-t^{\alpha})(1-t^{\beta})} + \frac{Q_{X}(t)}{1-t^{\alpha}} + \frac{Q_{Y}(t)}{1-t^{\beta}}$$

with nonnegative $Q_2, Q_X, Q_Y \in \mathbb{Z}[t, t^{-1}]$.

It is just to show that the constituting elements here satisfy the condition (\star) .

About the proof:

• Necessity follows from simple arguments even not involving numerical semigroups.

For any *R*-module with Hdep(M) > 0 the Hilbert series can be written in the form

$$H_{M}(t) = \frac{Q_{2}(t)}{(1-t^{\alpha})(1-t^{\beta})} + \frac{Q_{X}(t)}{1-t^{\alpha}} + \frac{Q_{Y}(t)}{1-t^{\beta}}$$

with nonnegative $Q_2, Q_X, Q_Y \in \mathbb{Z}[t, t^{-1}]$.

It is just to show that the constituting elements here satisfy the condition (\star) .

• Sufficiency needs a deep understanding of the numerical structure of the (α, β) -fundamental couples.

One shows that condition (\star) is enough to ensure Hdep(M) > 0.

Let *M* be *R*-module with its Hilbert series satisfying (*). By the decomposition theorem there are nonnegative $Q_i \in \mathbb{Z}[t, t^{-1}]$ such that

$$H_M(t) = Q_0(t) + rac{Q_X(t)}{1-t^{lpha}} + rac{Q_Y(t)}{1-t^{eta}} + rac{Q_2(t)}{(1-t^{lpha})(1-t^{eta})}.$$

We have to show that it is possible to get rid of Q_0 . This is done in two steps:

(i) First we reduce the problem to the one-dimensional case,i. e. we eliminate the Q₂ term.

We may thus assume $Q_2 = 0$. In this case the coefficients in $H_M = \sum_n h_n t^n$ get periodic for, say, $n \ge N$. That is, $h_n = h_{n+\alpha\beta}$ for all $n \ge N$.

Then the sum $h_n + h_{n+1} + \ldots + h_{n+\alpha\beta-1}$ has the same value, say $\sigma(H)$, for every $n \ge N$.

(ii) We apply then induction on $\sigma(H)$.