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Grassmannians

Let V be an n-dimensional vector space over an algebraically closed
field K . Let {e1, . . . , en} be the standard basis for V over K , where
ei = (0, . . . , 1, . . . , 0), with 1 at the i th place and remaining are
zeros.
Fix the flag F : V0 = (0) ⊂ V1 ⊂ · · · ⊂ Vn = V , where Vi = the
subspace of V spanned by e1, . . . , ei .

Let G (r , n) = the set of all r -dimensional K -subspaces of V . Then
G (r , n) is a projective variety via Plücker embedding into P(

∧r V ),
called the r th Grassmannian of V .

Define I (r , n) := {(a1, . . . , ar ) : 1 ≤ a1 < · · · < ar ≤ n}. For
θ = (θ1, . . . , θr ) ∈ I (r , n), define
X (θ) := {W ∈ G (r , n) : dimK W ∩ Vθj ≥ j , for 1 ≤ j ≤ r}, then
X (θ) is a projective variety called Schubert variety defined by θ.



Schubert variety in G (r , n)

Let A(θ) = the homogeneous coordinate ring of X (θ) and m = the
homogeneous maximal ideal of A(θ).

Let d = dimA(θ). Note that d = θ1 + · · ·+ θr −
(

r+1
2

)

+ 1, where
θ = (θ1, . . . , θr ).

◮ A(θ) is Cohen-Macaulay

◮ A(θ) is a graded ASL with respect to a poset Π(θ) over K



Definitions and Notation:

Let HA(θ)(i) := dimK A(θ)i , for all i ∈ Z+, is the Hilbert function
of A(θ).
It is well known that for i sufficiently large, HA(θ)(i) is a
polynomial of degree equal to d − 1. This polynomial is called the
Hilbert polynomial of A(θ) and denoted by PA(θ)(z).

Write PA(θ)(z) =

e0(A(θ))
(

z+d−1
d−1

)

− e1(A(θ))
(

z+d−2
d−2

)

+ · · ·+ (−1)d−1ed−1(A(θ)),

where ei (A(θ)) ∈ Z is called the i th Hilbert coefficient of A(θ).
The zeroth Hilbert coefficient is called the multiplicity and the first
Hilbert coefficient is called the Chern coefficient.

The Hilbert-Poincare series of A(θ) is denoted and defined as
HSA(θ)(z) :=

∑

i∈Z+
HA(θ)(i)z

i , the generating function of
HA(θ)(i).



It is well known that HSA(θ)(z) is a rational function and one can

write HSA(θ)(z) = hA(θ)(z)/(1 − z)d , for a unique polynomial
hA(θ)(z) ∈ Z[z ] with hA(θ)(1) 6= 0, called the h-polynomial of A(θ).
The postulation number of A(θ) is defined as

min{i ∈ Z+ : HA(θ)(n) = PA(θ)(n) for all n ≥ i}.



It is well known that HSA(θ)(z) is a rational function and one can

write HSA(θ)(z) = hA(θ)(z)/(1 − z)d , for a unique polynomial
hA(θ)(z) ∈ Z[z ] with hA(θ)(1) 6= 0, called the h-polynomial of A(θ).
The postulation number of A(θ) is defined as

min{i ∈ Z+ : HA(θ)(n) = PA(θ)(n) for all n ≥ i}.

Many authors give various combinatorial formulas for the
multiplicity of A(θ), cf. [Herzog-Trung, 1994], [Conca, 1994] and
[Raghavan-Simis, 1995], etc...
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Questions

Question 1: What about the higher Hilbert coefficients ? Can we
have combinatorial formulas ?

Question 2: Can we have combinatorial formulas for the
h-polynomial of A(θ) ?

Question 3: Can we have a combinatorial formula for the
Cohen-Macaulay type of A(θ) ?



We answer all the above questions.

we explicitly give closed form formulas for

1. ei (A(θ)), the i th Hilbert coefficient,

2. the h-polynomial hA(θ)(z) and

3. the Cohen-Macaulay type, τ(A(θ)), of A(θ)

in terms of the poset Π(θ) associated to A(θ).



Combinatorial formulas for the Hilbert coefficients of A(θ)

Let vj := λ( m
j+1
m

Jmm
j
m

), where J is a minimal reduction of m in A(θ)

generated by homogeneous elements of degree 1. Note that
λ(m

j+1

Jmj ) = vj for all j ≥ 0.

Let R := A(θ)[mt] = ⊕i≥0m
i t i ⊆ A(θ)[t] be the Rees algebra of m

and G (A(θ)m) := ⊕i≥0m
iA(θ)m/m

i+1A(θ)mt
i be the associated

graded ring of mA(θ)m in the local ring A(θ)m. For simplicity
denote G (A(θ)m) by G .
Note that dimR = d + 1 = dimR[A(θ)m] and dimG = d .
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Let vj := λ( m
j+1
m
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), where J is a minimal reduction of m in A(θ)

generated by homogeneous elements of degree 1. Note that
λ(m

j+1

Jmj ) = vj for all j ≥ 0.

Let R := A(θ)[mt] = ⊕i≥0m
i t i ⊆ A(θ)[t] be the Rees algebra of m

and G (A(θ)m) := ⊕i≥0m
iA(θ)m/m

i+1A(θ)mt
i be the associated

graded ring of mA(θ)m in the local ring A(θ)m. For simplicity
denote G (A(θ)m) by G .
Note that dimR = d + 1 = dimR[A(θ)m] and dimG = d .

Theorem (Hodge-Pedoe, Theorem III, page 387)

Let θ = (θ1, . . . , θr ) ∈ I (r , n) and X (θ) be the Schubert variety

corresponding to θ. Then dimK [A(θ)]j = ωθ1,...,θr (j) for all j ∈ Z+,

where ωθ1,...,θr (j) is the postulation of X (θ) given by the

determinant,
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ωθ1,...,θr (j) =
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Theorem
The following are true for A(θ).

(i) ad (A(θ)) < 0, where ad (A(θ)) is the a-invariant of the d th

local cohomology, Hd
m
(A(θ)), of A(θ) with respect to m.

(ii) R and R[mA(θ)m] are Cohen-Macaulay.

Recall a theorem of Bruns and Herzog which gives a combinatorial
formula for the a-invariant of a graded ASL:
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Theorem (Bruns-Herzog, 1992)

Let R be a monotonically graded ASL over a field K on an upper

semimodular lattice Π with principal chain P(Π) = ξ1, . . . , ξm.
Then a(R) = −

∑m
j=1 deg ξj .

Since A(θ) satisfies the graded ASL property with some lattice say
Π(θ), we have:
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Theorem (Bruns-Herzog, 1992)

Let R be a monotonically graded ASL over a field K on an upper

semimodular lattice Π with principal chain P(Π) = ξ1, . . . , ξm.
Then a(R) = −

∑m
j=1 deg ξj .

Since A(θ) satisfies the graded ASL property with some lattice say
Π(θ), we have:

Corollary

regA(θ) = ad (A(θ)) + d = d −
∑m

j=1 deg ξj , where ξ1, . . . , ξm is a

principal chain in Π(θ) and regA(θ) is the Castelnuovo-Mumford

regularity of A(θ).
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Remark
For an one dimensional Cohen-Macaulay graded ring R, the

following holds:

1. vj = e0(R)− HR(j) for all j ≥ 0.

2. hi = HR(i)− HR(i − 1) where (h0, . . . , hs), is the
h-polynomial of R.

3. hi = vi−1 − vi , for all i ≥ 1.
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Remark
For an one dimensional Cohen-Macaulay graded ring R, the

following holds:

1. vj = e0(R)− HR(j) for all j ≥ 0.

2. hi = HR(i)− HR(i − 1) where (h0, . . . , hs), is the
h-polynomial of R.

3. hi = vi−1 − vi , for all i ≥ 1.

Theorem

(i) For all j ≥ 0,

vj = e0(A(θ))−

min{j ,d−1}
∑

i=0

(−1)iωθ1,...,θr (j − i)

(

d − 1

i

)

;

(ii) the i th Hilbert coefficient of A(θ) is given by
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ei (A(θ)) = e0(A(θ))
∑

i≤j≤d−
∑m

l=1 deg ξl

(

j − 1

i − 1

)

−
∑

i≤j≤d−
∑m

l=1 deg ξl

j−1
∑

s=0

(−1)s

ωθ1,...,θr (j − 1− s)

(

d − 1

s

)(

j − 1

i − 1

)

for i ≥ 1.
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ei (A(θ)) = e0(A(θ))
∑

i≤j≤d−
∑m

l=1 deg ξl

(

j − 1

i − 1

)

−
∑

i≤j≤d−
∑m

l=1 deg ξl

j−1
∑

s=0

(−1)s

ωθ1,...,θr (j − 1− s)

(

d − 1

s

)(

j − 1

i − 1

)

for i ≥ 1.

Corollary

e0(A(θ)) =

d−
∑m

l=1 deg ξl
∑

i=0

(−1)iωθ1,...,θr (d −

m
∑

l=1

deg ξl − i)

(

d − 1

i

)

.
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ei (A(θ)) = e0(A(θ))
∑

i≤j≤d−
∑m

l=1 deg ξl

(

j − 1

i − 1

)

−
∑

i≤j≤d−
∑m

l=1 deg ξl

j−1
∑

s=0

(−1)s

ωθ1,...,θr (j − 1− s)

(

d − 1

s

)(

j − 1

i − 1

)

for i ≥ 1.

Corollary

e0(A(θ)) =

d−
∑m

l=1 deg ξl
∑

i=0

(−1)iωθ1,...,θr (d −

m
∑

l=1

deg ξl − i)

(

d − 1

i

)

.

Corollary

ei (A(θ)) > 0 for all i ≤ d −
∑m

l=1 deg ξl and ei (A(θ)) = 0 for all

d −
∑m

l=1 deg ξl + 1 ≤ i ≤ d − 1.



Combinatorial formula for the h-polynomial of A(θ)
Let hA(θ)(z) = h0 + h1z + · · ·+ hsz

s be the h-polynomial of A(θ),
where hi ∈ Z and since A(θ) is Cohen-Macaulay, we have
s = r(m) = d −

∑m
l=1 deg ξl . The following proposition explicitly

gives the h-polynomial of A(θ):

Proposition

Let hA(θ)(z) = h0 + h1z + · · ·+ hsz
s be the h-polynomial of A(θ),

where hi ∈ Z+. Then

hi =
i−1
∑

l=0

(−1)l
(

d − 1

l

)

[ωθ1,...,θr (i − l)− ωθ1,...,θr (i − 1− l)] +

(−1)i
(

d − 1

i

)

for all 0 ≤ i ≤ s.
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Let hA(θ)(z) = h0 + h1z + · · ·+ hsz

s be the h-polynomial of A(θ),
where hi ∈ Z and since A(θ) is Cohen-Macaulay, we have
s = r(m) = d −

∑m
l=1 deg ξl . The following proposition explicitly

gives the h-polynomial of A(θ):

Proposition

Let hA(θ)(z) = h0 + h1z + · · ·+ hsz
s be the h-polynomial of A(θ),

where hi ∈ Z+. Then

hi =
i−1
∑

l=0

(−1)l
(

d − 1

l

)

[ωθ1,...,θr (i − l)− ωθ1,...,θr (i − 1− l)] +

(−1)i
(

d − 1

i

)

for all 0 ≤ i ≤ s.

Corollary

For d ≥ 2, the postulation number of A(θ) is equal to

{

1 if d
′

= d − 1
0 otherwise.



A criterion for X (θ) to be a c.i

Now we give necessary and sufficient conditions for X (θ) to be a
complete intersection.

Theorem
A Schubert variety X (θ) is a complete intersection ⇐⇒ there exist

t ∈ Z+ and g1, . . . , gt positive integers such that

g1 + · · ·+ gt = d −
∑m

l=1 deg ξl satisfying

i−1
∑

l=0

(−1)l
(

d − 1

l

)

[ωθ1,...,θr (i − l)− ωθ1,...,θr (i − 1− l)] + (−1)i
(

d − 1

i

)

=

(

t + i − 1

t − 1

)

−
t

∑

j=1

(

i + t − gj − 2

t − 1

)

for all 1 ≤ i ≤ d −
∑m

l=1 deg ξl .
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in terms of Π(θ)
Let M = {C1, · · · ,Ct} be the set of all maximal chains in Π(θ)
and |Ci | = |Cj | for all i 6= j . For any s ≤ t,

Ms(i) = {(i1, . . . , is) : 1 ≤ i1 < · · · < is ≤ t, |Ci1 ∩ · · · ∩ Cis | = |C1| − i} .
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in terms of Π(θ)
Let M = {C1, · · · ,Ct} be the set of all maximal chains in Π(θ)
and |Ci | = |Cj | for all i 6= j . For any s ≤ t,

Ms(i) = {(i1, . . . , is) : 1 ≤ i1 < · · · < is ≤ t, |Ci1 ∩ · · · ∩ Cis | = |C1| − i} .

Theorem
Let A(θ) be the homogeneous coordinate ring of the Schubert

variety X (θ) in the r th Grassmannian G (r , n) defined by θ ∈ I (r , n).
Then the Hilbert coefficients of A(θ) are given by the formulas,

ei (A(θ)) =
t

∑

j=2

(−1)j |Mj(i)|,

for all i , 0 ≤ i ≤ d − 1, where

Mj(i) =
{

(i1, . . . , ij ) : 1 ≤ i1 < · · · < ij ≤ t, |Ci1 ∩ · · · ∩ Cij | = |C1| − i
}

.
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Corollary

e0(A(θ)) = the number of maximal chains in Π(θ).
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in terms of Π(θ)

Corollary

e0(A(θ)) = the number of maximal chains in Π(θ).

Corollary

Let d
′

= d −
∑m

l=1 deg ξl . Then v
d
′−1 = e

d
′ and

vi−1 = ei −
∑d

′

j=i+1

(

j−1
i−1

)

vj−1 for all i , 1 ≤ i ≤ d
′

− 1.
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in terms of Π(θ)

Corollary

e0(A(θ)) = the number of maximal chains in Π(θ).

Corollary

Let d
′

= d −
∑m

l=1 deg ξl . Then v
d
′−1 = e

d
′ and

vi−1 = ei −
∑d

′

j=i+1

(

j−1
i−1

)

vj−1 for all i , 1 ≤ i ≤ d
′

− 1.

Mitsuhiro Miyazaki proved that Schubert varieties in the
Grassmannians are level. Using this result we derive a formula for
the Cohen-Macaulay type of A(θ) and a simple combinatorial
criterion for the Gorensteinness of X (θ):



A criterion for X (θ) to be arithmetically Gorenstein

Corollary

Let d
′

= d −
∑m

l=1 deg ξl . Then

1. τ(A(θ)) =
∑t

i=2(−1)i |Mi(d
′

)|, where t = the number of

maximal chains in Π(θ);

2. A(θ) is Gorenstein ⇐⇒
∑t

i=2(−1)i |Mi(d
′

)| = 1.



A criterion for X (θ) to be arithmetically Gorenstein

Corollary

Let d
′

= d −
∑m

l=1 deg ξl . Then

1. τ(A(θ)) =
∑t

i=2(−1)i |Mi(d
′

)|, where t = the number of

maximal chains in Π(θ);

2. A(θ) is Gorenstein ⇐⇒
∑t

i=2(−1)i |Mi(d
′

)| = 1.

Corollary

A(θ) is almost Gorenstein ⇐⇒
∑t

i=2(−1)i [|Mi (d
′

)| − |Mi (1)|] ≥ 0,
where t = the number of maximal chains in Π(θ).



Example
Let X (θ) = G (3, 5), where θ = (3, 4, 5) ∈ I (3, 5). d = 7.

(1, 2, 3)

(1, 2, 4)

(1, 2, 5) (1, 3, 4)

(1, 3, 5) (2, 3, 4)

(3, 4, 5)

(2, 3, 5)

(2, 4, 5)

The principal chain in I (3, 5) is:
(1, 2, 3) ≤ (1, 2, 4) ≤ (1, 3, 5) ≤ (2, 4, 5) ≤ (3, 4, 5).
Therefore d

′

= 7− 5 = 2.



Example

I (3, 5) has 4 maximal chains:
C1 : (1, 2, 3) ≤ (1, 2, 4) ≤ (1, 2, 5) ≤ (1, 3, 5) ≤ (1, 4, 5) ≤
(2, 4, 5) ≤ (3, 4, 5)

C2 : (1, 2, 3) ≤ (1, 2, 4) ≤ (1, 3, 4) ≤ (1, 3, 5) ≤ (1, 4, 5) ≤
(2, 4, 5) ≤ (3, 4, 5)

C3 : (1, 2, 3) ≤ (1, 2, 4) ≤ (1, 3, 4) ≤ (1, 3, 5) ≤ (2, 3, 5) ≤
(2, 4, 5) ≤ (3, 4, 5)

C4 : (1, 2, 3) ≤ (1, 2, 4) ≤ (1, 3, 4) ≤ (2, 3, 4) ≤ (2, 3, 5) ≤
(2, 4, 5) ≤ (3, 4, 5).

Therefore |M2(1)| = 2, |M2(2)| = 3, |M2(3)| = 1, |M2(4)| =
|M2(5)| = · · · = 0.



Example

|M3(1)| = 0, |M3(2)| = 1, |M3(3)| = 2, |M3(4)| = |M3(5)| = · · · =
0.
Now e0 = the number of maximal chains = 4
e1 = |M2(1)| − |M3(1)| + |M4(1)| = 2
e2 = |M2(2)| − |M3(2)| + |M4(2)| = 2
e3 = e4 = · · · = 0.
The Cohen-Macaulay type of
A(θ) = |M2(2)| − |M3(2)| + |M4(2)| = 2. Therefore G (3, 5) is not
Gorenstein.
Now consider

∑4
i=2(−1)i [|Mi (2)| − |Mi(1)|] = 0. Therefore by one

of above Corollary, we have G (3, 5) is almost Gorenstein.



Combinatorial formulas for the Hilbert coefficients of

points on X (θ)

Let A := {p ∈ X (θ) : depthG (OX (θ),p) ≥ dimG (OX (θ),p)− 1}.
For simplicity let B = OX (θ),p and np = the unique maximal ideal
of OX (θ),p . Note that B is Cohen-Macaulay.
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Let wj := λ

(

n
j+1
p

J
′
n
j
p

)

, for all j ≥ 0, where J
′

is a minimal reduction

of np in B generated by homogeneous elements of degree 1. Let
r(np) denote the reduction number of np.
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points on X (θ)

Let A := {p ∈ X (θ) : depthG (OX (θ),p) ≥ dimG (OX (θ),p)− 1}.
For simplicity let B = OX (θ),p and np = the unique maximal ideal
of OX (θ),p . Note that B is Cohen-Macaulay.

Let wj := λ

(

n
j+1
p

J
′
n
j
p

)

, for all j ≥ 0, where J
′

is a minimal reduction

of np in B generated by homogeneous elements of degree 1. Let
r(np) denote the reduction number of np.

Theorem (Raghavan-Kodiyalam)

Let θ, v ∈ I (r , n) and X (θ) be the Schubert variety corresponding

to θ and ev be the T-fixed point in X (θ) corresponding to v .

Then dimK

[

G (OX (θ),ev )
]

j
= Sv

θ (j) for all j ∈ Z+.
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points on X (θ)

Theorem
For a T-fixed point p = ev ∈ A, where v ∈ I (r , n), the following

hold.

(i) For all j ≥ 0, wj = e0(B)−

min{j ,d−2}
∑

i=0

(−1)iSv
θ (j − i)

(

d − 2

i

)

;

(ii) the i th Hilbert coefficient of B is given by

ei (B) = e0(B)
∑

i≤j≤r(np)

(

j − 1

i − 1

)

−
∑

i≤j≤r(np)

min{j−1,d−2}
∑

s=0

(−1)s

Sv
θ (j − 1− s)

(

d − 2

s

)(

j − 1

i − 1

)

for i ≥ 1, where r(n ) is the reduction number of n .



Combinatorial formula for the h-polynomial of points on

X (θ)
Let HOX (θ),p

(z) = H0 + H1z + · · ·+ Hsz
s be the h-polynomial of

OX (θ),ev , where Hi ∈ Z. Then the following proposition gives
combinatorial expression for Hi :

Proposition

Let p = ev ∈ A be a T-fixed point corresponding to v ∈ I (r , n)
and HOX (θ),p

(z) = H0 + H1z + · · ·+ Hsz
s be the h-polynomial of

OX (θ),ev , where Hi ∈ Z. Then for i ≤ d − 2,

Hi =
i−1
∑

l=0

(−1)l
(

d − 2

l

)

[Sv
θ (i − l)− Sv

θ (i − 1− l)]+(−1)i
(

d − 2

i

)

and for i ≥ d − 1,

Hi =
d−2
∑

l=0

(−1)l
(

d − 2

l

)

[Sv
θ (i − l)− Sv

θ (i − 1− l)] .



Combinatorial Criterion for the tangent cone to X (θ) at p

to be a c.i

Corollary

For p = ev ∈ A be a T-fixed point corresponding to v ∈ I (r , n).
Then the tangent cone of X (θ) at p is a complete intersection if

and only if there exist t ∈ Z+ and g1, . . . , gt positive integers such

that g1 + · · ·+ gt = r(np) satisfying

i−1
∑

l=0

(−1)l
(

d − 2

l

)

[Sv
θ (i − l)− Sv

θ (i − 1− l)] + (−1)i
(

d − 2

i

)

=

(

t + i − 1

t − 1

)

−

t
∑

j=1

(

i + t − gj − 2

t − 1

)

for all 1 ≤ i ≤ d − 2 and
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to be a c.i

d−2
∑

l=0

(−1)l
(

d − 2

l

)

[Sv
θ (i − l)− Sv

θ (i − 1− l)]

=

(

t + i − 1

t − 1

)

−

t
∑

j=1

(

i + t − gj − 2

t − 1

)

for all i ≥ d − 1.
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