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Introduction

Introduction

Throughout this talk,

let S := k[x1, . . . , xn] be a polynomial ring over a field k
All the Zn-graded S-modules are assumed to be finitely
generated.

A minimal Zn-graded S-free resolutions is referred to just as a
minimal free resolution, and

a not necessarily minimal Zn-graded S-free resolutions just as a
free resolution.
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Introduction

Introduction

Short history about graded free resolutions of Zn-graded S-modules

(D. Taylor 1960) Free resolutions of monomial ideals.

(S. Eliahou and M. Kervaire 1990) Minimal free resolutions of
stable monomial ideals.

(J. Herzog and Y. Takayama 2002) Minimal graded free
resolutions of monomial ideals with linear quotients and regular
decomposition function.

(A. B. Tchernev 2007) Free resolutions of Zn-graded modules.
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Introduction

Introduction

Purpose of today’s talk

Introduction of (possibly) “new” free resolutions of Zn-graded
modules. (The connection with Tchernev’s is not known).

Making use of the resolution above, construct a minimal free
resolution of any monomial ideal with linear quotients (that does
not necessarily have a regular decomposition function).

The key tool is Algebraic Discrete Morse Theory due to M.
Jöllenbeck and V. Welker, and independently E. Sköldberg.

This is essentially a survey on E. Sköldberg’s result on minimal
free reslutions of modules with initially linear syzygies
(generalization of monomial ideals with linear quotients).
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Free resolutions of Zn-graded modules
Positively t-determined modules

In the sequel,

bold alphabet a, b, . . . denotes elements of Zn and
a = (a1, . . . , an), b = (b1, . . . , bn), and so on.

1 := (1, . . . , 1), 0 := (0, . . . , 0), and let ei be the i -th unit
vector.

for a ∈ Zn, set xa :=
∏n

i=1 x
ai
i .

Zn is regarded as the poset with the order < given as

a ≤ b ⇐⇒ ai ≤ bi ∀i ,

For a ∈ Zn, set
supp(xa) := supp(a) := {i ∈ [n] = {1, . . . , n} | ai > 0}.
Fix a vector t ∈ Zn with t ≥ 1.
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Free resolutions of Zn-graded modules
Positively t-determined modules

.
Definition (E. Miller)
..

......

An Zn-graded moduleM is said to be positively t-determined ifMa = 0
for a ̸≥ 0, and if

Ma
xi−→ Ma+ei

is isomorphic for all i with ai = ti .

modt S := the category consisting of pos. t-det. S-modules and
degree-preserving S-homomorphisms.

Typical examples are monomial ideals which are generated by
monomials xa with 0 ≤ a ≤ t.
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Free resolutions of Zn-graded modules
Positively t-determined modules

.
Lemma (Basic facts)
..

......

The following are well-known.

The category modt S is abelian. In particular, it is closed under
taking kernel and cokernel.

A Zn-graded module M is in modt S if and only if it has a
presentation⊕

0≤a≤t

S(−a)β1,a −→
⊕
0≤a≤t

S(−a)β0,a −→ M −→ 0.

Hence for any Zn-graded module M , ∃t ≥ 1 and a≫ 0 such
that M(−a) ∈ modt S .
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Free resolutions of Zn-graded modules
Not necessarily minimal free resolution for M ∈ modt S

We fix M ∈ modt S . For F ⊆ [n] and a ∈ Zn, set

eF :=
∑
i∈F

ei , M≤a :=
⊕
b≤a

Mb.

For i with i ≥ 0,

KM
i :=

⊕
F⊆[n], #F=i

S ⊗k k · xF ⊗k Mt−eF , where xF := xeF ,

dM
i : KM

i ∋ x ⊗ xF ⊗ y 7→
∑
i∈F

(−1)ε(i ;F )(xxi)⊗ xF\{i} ⊗ y

−
∑
i∈F

(−1)ε(i ;F )x ⊗ xF\{i} ⊗ (xiy) ∈ KM
i−1,

where ε(i ;F ) := # {j ∈ F | j < i}.
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Free resolutions of Zn-graded modules
Not necessarily minimal free resolution for M ∈ modt S

I = (x1, x2x3), t = {1, 1, 1}.

(x_1,x_2*x_3)

(1,x_1*x_2*x_3)(1,x_2*x_3)

(x_2,x_1)

(1,x_1*x_2) (1,x_1)

(x_2,x_1*x_3)

(1,x_1*x_3)

(x_3,x_1)(x_3,x_1*x_2)

(x_2*x_3,x_1)

Level_0

Level_1

Level_2 Level_3
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Free resolutions of Zn-graded modules
Not necessarily minimal free resolution for M ∈ modt S

.
Theorem
..

......
The sequence (KM

• , dM
• ) is a complex and moreover a free resolution

of M .

Sketch of Proof

Set M≥i := S ·
⊕

0≤a≤t, |a|≥i Ma ∈ modt S , where |a| =
∑n

i=1 ai , and
consider

0 ⊆ M≥|t| ⊆ M≥|t|−1 ⊆ · · · ⊆ M0 = M .

The exact sequence 0→ M≥i → M≥i−1 → M≥i−1/M≥i → 0 induces

0 −→ K
M�i
• −→ K

M�i�1
• −→ K

M�i�1/M�i
• −→ 0.
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Free resolutions of Zn-graded modules
Not necessarily minimal free resolution for M ∈ modt S

Each M≥i/M≥i−1 and M|t| are a direct sum of finitely many copies of
X := S/(xi1 , . . . , xik )(−a) for some a and i1, . . . , ik .

For such X , the complex KX is just a Koszul complex, shifted by a,
of xi1 , . . . , xik , and hence it is a minimal free resolution.

Thus we can use induction.

KM
• is not minimal in most cases.

To get a minimal free resolution, we must remove extra free
summands from KM

• .

Algebraic discrete Morse theory is an effective one for such
reduction.
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Algebraic discrete Morse theory

Henceforth,

we fix M = a monomial ideal I .

Each free basis of K• := K I
• is labeled by (xF , x

a) with F ⊆ [n],
a ≤ t− eF , and Ia ̸= 0. (Thus K I

i =
⊕

S · e(xF , xa)).
X := all such labels, and Xi := {(xF , xa) ∈ X | #F = i}
For α ∈ Xi and β ∈ Xi−1, set

dβ,α : S · e(α) ↪→ Ki −→ Ki−1 ↠ S · e(β).

Let G = (V ,E ) be the directed graph such that

vertices = X
edges = {α −→ β | dβ,α ̸= 0}.
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Algebraic discrete Morse theory

For a subset A ⊆ E , let GA be the directed graph such that
vertices = X .
edges = (E \ A) ∪ {β −→ α | α −→ β ∈ A}

.
Definition
..

......

A subset A ⊆ E is said to be acyclic matching if

dβ,α is isomorphic for all α −→ β ∈ A,

(matching) ̸ ∃

−→ • −→, −→ • ←−, ←− • −→

in A, and

(acyclic) GA has no directed cycle.
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Algebraic discrete Morse theory

For an acyclic matching A, we set

XA
i := {α ∈ Xi | α does not appear in any adge in A}, and

XA =
∪

i X
A
i . The elements of XA are said to be critical.

KA
i :=

⊕
α∈XA

i
S · e(α).

dA
β,α :=

{
−d−1

β,α if α −→ β ∈ A

dβ,α otherwise,

For a path p = α0 → α1 → · · · → αs in GA,

dA
p := dA

αs ,αs�1
◦ dA

αs�1,αs�2
◦ · · · ◦ dA

α1,α0
.

dA
i :=

∑
p∈Path(α,β)

α∈XA
i , β∈XA

i�1

dA
p .

Ryota Okazaki Min. gr. free res. by ADMT 4th, Sep., 2012 15 / 27



. . . . . .

Algebraic discrete Morse theory

Algebraic discrete Morse theory

I = (x1, x2x3).

(x_1,x_2*x_3)

(1,x_1*x_2*x_3)(1,x_2*x_3)

(x_2,x_1)

(1,x_1*x_2) (1,x_1)

(x_2,x_1*x_3)

(1,x_1*x_3)

(x_3,x_1)(x_3,x_1*x_2)

(x_2*x_3,x_1)

Level_0

Level_1

Level_2 Level_3
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Algebraic discrete Morse theory

.
Theorem (Jöllenbeck-Welker-Sköldberg)
..

......

The sequence (KA, dA) is a complex and homotopy equivalent with
the original one (K , d), and hence it is also a free resolution of I .

.
Remark
..

......

Clearly (KA, dA) is a free resolution smaller than (K , d).

If dβ,α is not zero and isomorphic, then A := {α→ β} is always
an acyclic matching.

Thus applying the theorem above repeatedly, we get a minimal
free resolution.
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Algebraic discrete Morse theory
Minimal free resolution of monomial ideals with linear quotients

G (I ) := a minimal system of monomial generators. M(I ) := the set
of the monomials in I .
.
Definition (Herzog-Takayama and Batzies-Welker)
..

......

I is said to have linear quotients if ∃ a linear ordering < on G (I ) such
that letting G (I ) = {u1, . . . , us} with u1 < · · · < us , each colon ideal
(u1, . . . , ui) : ui+1 is generated by some variables of S .

.
Example
..

......

For example,

I = (x1x2, x2x3, x2x4) has linear quotients, and

I = (x21 , x2x3, x2x4) does not.
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Algebraic discrete Morse theory
Minimal free resolution of monomial ideals with linear quotients

Henceforth, we assume I has linear quotients with the linear ordering
< on G (I ).

.
Definition (Herzog-Takayama)
..

......

Define g : M(I ) → G (I ) by g(u) := min< {ui ∈ G (I ) | ui divides u}.
The function g is called the decomposition function (with respect to
< and I ).

.
Exercises
..
......Show that g(xiu) ≤ g(u) for all i and u ∈ M(I ).
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Algebraic discrete Morse theory
Minimal free resolution of monomial ideals with linear quotients

For u ∈ M(I ), set c(u) := u/g(u) and stb(u) := {i | g(u) = g(xiu)}.
Thus

u = c(u) · g(u)

.
Exercises
..

......

Show the following.

(1) stb(u) ⊇ supp(c(u)) for all u ∈ M(I ).

(2) For u ∈ M(I ) with g(u) = uk ,

stb(u) = stb(g(u)) = [n] \ {i | xi ∈ (u1, . . . , uk−1) : uk} .
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Algebraic discrete Morse theory
Minimal free resolution of monomial ideals with linear quotients

Recall that G = (V ,E ) is the directed graph associated with
K• := K I

• , and hence

V = X = {(xF , xa) | F ⊆ [n], a ≤ t− eF , xa ∈ I}, and
E = {α −→ β | α ∈ Xi , β ∈ Xi−1, dβ,α ̸= 0}.

Let A be the subset of E consisting of the edges

(xF , x
a) −→ (xF\{i}, xix

a)

such that

(1) i ∈ F and

(2) i = max(supp(xFc(x
a)) ∩ stb(xa)) (hence g(xa) = g(xix

a)).
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Minimal free resolution of monomial ideals with linear quotients
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Algebraic discrete Morse theory
Minimal free resolution of monomial ideals with linear quotients

.
Theorem (Sköldberg)
..

......
The set A is an acyclic matching, and the induced complex KA

• is a
minimal free resolution of I .

For (xF , x
a)→ (xG , x

b) ∈ A, it follows that xFc(x
a) = xGc(x

b).

.
Exercises
..

......

(1) the set A is indeed an acyclic matching..

(2) XA = {(XF , u) | u ∈ G (I ), F ∩ stb(u) = ∅}.
(3) Deduce that any path from (xF , x

a) ∈ XA
i to (xG , x

b) ∈ XA
i−1

satisfies xFx
a/(xGx

b) ∈ m, and hence KA
• is minimal.
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Minimal free resolution of monomial ideals with linear quotients

We can also reduce the Taylor resolution to get a minimal free
resolution of a monomial ideal with linear quotients. Indeed,
Batzies and Welker gave an acyclic matching for the Taylor
resolution, but the construction of the matching is very technical.

However their method has the advantage that it equips the
minimal free resolution with a CW complex. (Such resolutions
are called cellular resolutions).

I and K. Yanagawa concretely described the corresponding
minimal free resolution of a strongly stable monomial ideal I
without using paths.

Moreover we showed that the resolution is equipped with a
regular CW complex homeomorphic to a ball when I is
Cohen-Macaulay.
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