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Analytic centers of polytopes
convex polyhedron P ={y e R" 9 : cly < e,i=1,2,...,n}
The Barrier function

fly) = Zlog(e;—cfty)

is strictly concave on the interior of P. If P is a polytope (bounded) then the
unique maximum over the interior of P is called the analytic center.

Basis for linear programming max{w'y : x € P} with interior point methods.

fiy) =w'y +X-f(y)

is strictly concave for A > 0 and the maxima y(A) — yopt for A — 0.



Analytic centers of hyperplane arrangements

Barrier function extends to the complement the induced hyperplane arr'ment

n
fly) = > _loglei — cfy|
i=1

Affine hyperplane arrangement partitions ambient space into regions.

Barrier function has maximum on a region if and only if the region is bounded.

# analytic centers = # bounded regions

Analytic centers are solutions to a polynomial system derived from {cfy < e;}.



Convienient change of coordinates

—q— €1
P:{yGR"*d:Cyge} for C= : ,e=

—ct— en
Mapping y — F(y) = e — Cy defines injection F : R"~9 — R"
{yeR™:cly=¢} =2 {xcR":x=0} N imF

For A € R9*" of full rank such that AC = 0 we have im F = {x : Ax = b} with

e

The hyperplane arrangement is isomorphic to the arrangement of coordinate
hyperplanes in {x : Ax = b}. The polytope P = {x : Ax = b, x > 0}.
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The variety of analytic centers

From here on A € R¥*" of full row rank.

For b € R? the coordinate planes induce a hyperplane arrangement in {Ax = b}.

The Barrier function is the restriction of x — f(x) = log(x1x2 - - - x,,).
The analytic centers are the solutions to

maximize f(x) subjectto Ax=b
Karush—Kuhn—Tucker conditions are necessary and sufficient

Xx* is an Ax* = b
analytic center Vif(x*) € rowspan(A)

VF(x) =x"1:= (x5 %", ...,x; 1) and the analytic centers are given by

Cp, = {Ax=b} N rowspan(A)~!



The variety of analytic centers

The Zariski closure £ of rowspan(A)~! inside CP"~* was studied by
Proudfoot & Speyer'06. The variety L’;l is irreducible of degree

deg(L,") = # bounded regions in {Ax = b}

(for b € R? generic).
This is exactly the number of analytic centers and

Chb = {Ax=b} N L;*

is the (real) variety of analytic centers. {Cp : b € C%} is a algebraic family.
For special b, Cp is not reduced. Real geometrically, analytic centers collide

This is a codimension-2 condition.

Question
What is the complex region for which b € C? is Cy, singular?

6
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The entropic discriminant

The entropic discriminant is the locus for which Cy, is singular.

Theorem

Let A be a real d x n-matrix whose columns span > d + 1 distinct lines. The
entropic discriminant is a hypersurface given by the vanishing of a homogeneous
polynomial Ha(b) of degree

n—1
degHa = 21 (@a(0) + x4(0) < 20 )([7}):
where xa(t) is the characteristic polynomial of A and equality holds for A
generic.
Moreover, Ha(b) is non-negative restricted on R? and the real locus of
V(Ha) € CP~1 is pure of codimension-2 corresponding to colliding analytic
centers.

1 0 0 1 1 Very difficult to compute. Here, the entropic
A=(0 1 0 1 0 discriminant has degree 8 and 39 terms
0 01 01

xa(t) =t3—5t2 +8t—4
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Polar Cremona transforms

| | n
A= la, a -+ ap| € RI*" — f(z) = Hzta,-
i=1

Ve (f) = hyperplane arrangement associated to the columns of A

The polar map associated to f is

Bzy

Ve:PIl o pd-l 2 (g—z’;(z) : g—zfz(z) s Of (z)) = A(Z'A)?

Rational map with base locus Sing(V/(f)) = codim-2 subspaces of V/(f)

Jacobian of V¢ is the Hessian Hess(f) = det (8?,-28;) of f

Proposition

V(Ha) = closure of V¢ (V(Hess(f)) \ V(f)).

Basic idea: {z: V¢(z) = b} = {x:Ax = b,x € rowspan(A)~1}
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For A =1dy the identity matrix we have f(z) = zz---z4 and
Hess(f) = (—1)‘1*1(d—2)7‘d*2

and the entropic discriminant is not a hypersurface.
We call a matrix A € R¥*" basic if the columns span < d lines.

Corollary
If A is not basic, then the entropic discriminant is a hypersurface.
Idea: V/(Hess(f))\ V(f) # 0 and V¢ : P41\ V(f) — P91 is finite-to-one.

Corollary
Ha(b) is a homogeneous polynomial, non-negative on R9.

Question
Is Ha(b) a sum of squares

Ha(b) = hi(b)® + ha(b)®> + --- + hg(b)?

for some hy, hy, ..., hs € R[by, ..., by]?
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The codimension-1 case

Theorem
If A is real non-basic matrix with d — 1 rows and d columns, then Ha(b) is an
explicit sum of squares.

1 1

Sufficient to consider A = ) The reciprocal plane E;l is the
11

hypersurface defined by the symmetric determinantal form

X1 + Xd Xd Xd
Xd Xo + Xy Xd
det

Xd Xd cer Xd—1 7t Xd

Cp = L3 N {Ax = b} are the cigenvalues of a symmetric matrix M(b).
Cp is singular iff M(b) has a double eigenvalue.

The discriminant of det(M(b) — t - Id) is a sum of squares (Borchart 1846, Newell'72).

This is arrangements, analytic centers, and collisions on the line! Boring?
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Discriminants of derivatives
Let p(t) = t"+ cat" 4+ o1t + ¢, =[]_,(t — r;) be a univariate
polynomial.

The discriminant of p(t) is the ‘unique’ polynomial in the coefficients such that

n

Alcy,...,c)) = H(fi —r)?

i<j

Conjecture (Sottile, Mukhin'10)

The discriminant of the derivative p'(t) is a sum of squares in the r; — r;.

True!

Real case: The roots of p(t) give an affine hyperplane arrangement in RY.
Deformation of n linear hyperplanes in R with bj =r; —rp fori =2,...,n.
The roots of p/(t) are the analytic centers of the arrangement.

The discriminant of p’(t) is the sum-of-squares Ha(b).
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Double eigenvalues

Question

Given a net A(x,y) = Ag + xA1 + yA, of real symmetric n X n-matrices.
For how many real (x,y) does A(x,y) have a double eigenvalue?

Theorem (Lax'98)
At least one, if n = 4k + 2.

Double eigenvalue < Discriminant of p,,)(t) = det(A(x,y) — t - Id) vanishes.

Theorem (Sturmfels'02)

For a general net A(x,y) the number of critical double eigenvalues is (
(= the degree of the singular set of the discriminant).

n-é—l)

Conjecture (Sturmfels'02)
n+1

There is a net A(x,y) € RIX! with precisely ("}*) real double eigenvalues.
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Theorem
There is a net A(x,y) € RIX" with precisely ("3') real double eigenvalues.

Sym
Sketch of Proof.
In codim 1, Ha(b) is the discriminant of a real symmetric n x n-matrix map

M(b) = biMy + boMy + -+ b,M,

for symmetric matrices My, My, ..., M,.

Real locus V(Ha) NR™ is pure of codim 2 with ("') linear components

V(Ha(b)) = ) (bib) n () (b — bk, bj — bx)

1<i<j<n 1<i<k<j<n

[ . 4 @ L 4 4 L 4 @ L 4 9
bo=0 by by

o
B

For generic vectors ag, a;, a, € R”, the net

M(30+X31—|—y32) = A0—|—XA1 —|—yA2

has exactly ("1") real double eigenvalues.



Characteristic polynomials

Thinkof A= a1 a» --- an| C R as spanning collection of vectors

For a J C [n], denote by A, the corresponding subcollection. The characteristic
polynomial of A is defined by

a(®) = 3 (DM
JC[n]
depends only on the independence structure — deletion-contraction invariant.
Deleting the i-th column Ay; := Ap\;
Contracting the i-th column A; € R=1>(n=1) js obtained by projecting to a:.
For a; # 0 deletion-contraction gives
Xalt) = xa (1) = xa, (0
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Geometric interpretations

Consider the linear hyperplane arr'ment A given by H; = {afx = 0} C R?
Let G be a general affine hyperplane.

A_(l 11 1> _—
-2 -1 1 2

T~
xa(t) =t*—4t+3 \

Theorem (Zaslavsky'70s)
(—1)?x4(0) is the number bounded components induced by A in G.

Deletion A,; yields deletion A\ H;.
Contraction A; yields restriction Aly, of A\ {H;} to H; = R,

#{ bounded components} - # { bounded components} + # { bounded components}
of A -

Of.A\H; of -AIH,'

(—1)?xa(0) = (—=1)%xa,(0) + (=1)%xa,(0)
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1 2 3 4 5
1 00 11

ForA= [0 1 0 1 O we get  xa(t) = t3 — 5t2 + 8t — 4.
001 01

The intersection of the corresponding arrangement with a general hyperplane G
is this.

7 S

Analogous interpretations for all coefficients by
summing ‘local’ contributions of closed sets A;.

J C [n]is closed if rk Ay < rk Ak for all K D J.
The linear coefficient equals

Z {xa,(0) : J closed, rk (A)) =d — 1} = x4(0)
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Geometry of L' = closure of rowspan(A)~! C P!

In the torus T"~1 = (C*)" this is a complete intersection given by Bx~1 =0
where ker(B) = rowspan(A).

The boundary components are L;Jl for J C [n] is closed.

Lt = U rowspan(A;)~t C P"!

J closed

Singular set Sing(£,") is the union of strata C;Jl for which A/, is non-basic.

Degree deg(L,") = (—1)9xa(0). In fact, xa(t) is the multidegree for
closure of {(u,u™"): u € rowspan(A)} C P" ! x Pt

The map A: P! ——s P91 is basepoint free on £,'. The ramification locus is
the (closure of) the set of smooth points p € L;l at which the tangent space
ToL,"' and {Ax = Ap} are not transverse.

The entropic discriminant V/(H,a) is the image of the ramification locus of A on
E;l. The degree of Ha equals the degree of the ramification cycle Ra of C;l.
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Degree of ramification cycle
The ramification cycle is hard to get but over the torus the ramification cycle is
defined by

B - diag(x) 2

ga(x) = det( A

> — det(A- diag(x)* - A”)

The tangent space at p € rowspan(A)~! is exactly ker(B - diag(x)~2).
Let R4 be the subscheme in E;l cut out by ga.
~ 1 B
Ra = Ra U 2| {£,}: J closed, rk(A)) = d — 1}
By Bézout's theorem deg(Ra) = deg(ga) - deg(L£;1) = (—1)92dxa(0) and thus

deg(Ha) = deg(Ra) = (~1)"2(dxa(0) +x4(0)).
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Open Questions
What is the Newton polytopes of Ha(b)?
In codim-1 this is permutohedron 1(2,4,...,2d).

Is Ha(b) always a sum-of-squares?
True in codim-1 and d = 2 but open even for (d, n) = (3,5).
Generators for the ramification scheme?

Conjecture
For a general d x n-matrix A With n>d + 2, the ramification scheme in L' is

defined by the polynomials(! gA ) fori,j € [n].

What is a discrete-geometric interpretation for 2(—1)?(dxa(0) + x/4(0))?
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