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Analytic centers of polytopes

convex polyhedron P = {y ∈ Rn−d : c t
i y ≤ ei , i = 1, 2, . . . , n}

The Barrier function

f (y) :=
n∑

i=1

log(ei − c t
i y)

is strictly concave on the interior of P. If P is a polytope (bounded) then the
unique maximum over the interior of P is called the analytic center.

Basis for linear programming max{w ty : x ∈ P} with interior point methods.

fλ(y) = w ty + λ · f (y)

is strictly concave for λ > 0 and the maxima y(λ)→ yopt for λ→ 0.
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Analytic centers of hyperplane arrangements

Barrier function extends to the complement the induced hyperplane arr’ment

f (y) =
n∑

i=1

log |ei − c t
i y |

Affine hyperplane arrangement partitions ambient space into regions.

Barrier function has maximum on a region if and only if the region is bounded.

# analytic centers = # bounded regions

Analytic centers are solutions to a polynomial system derived from {c t
i y ≤ ei}.
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Convienient change of coordinates

P = {y ∈ Rn−d : Cy ≤ e} for C =

— c t
1 —
...

— c t
n —

 , e =

e1

...
en


Mapping y 7→ F (y) = e − Cy defines injection F : Rn−d → Rn

{y ∈ Rn−d : c t
i y = ei} ∼= {x ∈ Rn : xi = 0} ∩ im F

For A ∈ Rd×n of full rank such that AC = 0 we have im F = {x : Ax = b} with
b = Ae.

The hyperplane arrangement is isomorphic to the arrangement of coordinate
hyperplanes in {x : Ax = b}. The polytope P ∼= {x : Ax = b, x ≥ 0}.
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The variety of analytic centers

From here on A ∈ Rd×n of full row rank.

For b ∈ Rd the coordinate planes induce a hyperplane arrangement in {Ax = b}.
The Barrier function is the restriction of x 7→ f (x) = log(x1x2 · · · xn).
The analytic centers are the solutions to

maximize f (x) subject to Ax = b

Karush–Kuhn–Tucker conditions are necessary and sufficient

x∗ is an
analytic center

⇐⇒ Ax∗ = b
∇f (x∗) ∈ rowspan(A)

∇f (x) = x−1 := (x−1
1 , x−1

2 , . . . , x−1
n ) and the analytic centers are given by

Cb = {Ax = b} ∩ rowspan(A)−1
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The variety of analytic centers

The Zariski closure L−1
A of rowspan(A)−1 inside CPn−1 was studied by

Proudfoot & Speyer’06. The variety L−1
A is irreducible of degree

deg(L−1
A ) = # bounded regions in {Ax = b}

(for b ∈ Rd generic).
This is exactly the number of analytic centers and

Cb = {Ax = b} ∩ L−1
A

is the (real) variety of analytic centers. {Cb : b ∈ Cd} is a algebraic family.
For special b, Cb is not reduced. Real geometrically, analytic centers collide

−→

This is a codimension-2 condition.

Question
What is the complex region for which b ∈ Cd is Cb singular?
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The entropic discriminant

The entropic discriminant is the locus for which Cb is singular.

Theorem
Let A be a real d × n-matrix whose columns span ≥ d + 1 distinct lines. The
entropic discriminant is a hypersurface given by the vanishing of a homogeneous
polynomial HA(b) of degree

deg HA = 2(−1)d · (dχA(0) + χ′A(0)) ≤ 2(n − d)

(
n − 1

d − 1

)
.

where χA(t) is the characteristic polynomial of A and equality holds for A
generic.
Moreover, HA(b) is non-negative restricted on Rd and the real locus of
V (HA) ⊂ CPd−1 is pure of codimension-2 corresponding to colliding analytic
centers.

A =

1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 Very difficult to compute. Here, the entropic
discriminant has degree 8 and 39 terms

χA(t) = t3 − 5t2 + 8t − 4
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Polar Cremona transforms

A =

 | | |
a1 a2 · · · an

| | |

 ∈ Rd×n −→ f (z) =
n∏

i=1

z tai

VC(f ) = hyperplane arrangement associated to the columns of A

The polar map associated to f is

∇f : Pd−1 99K Pd−1, z 7→
(
∂f
∂z1

(z) : ∂f
∂z2

(z) : · · · : ∂f
∂zd

(z)
)

= A(z tA)−1

Rational map with base locus Sing(V (f )) = codim-2 subspaces of V (f )

Jacobian of ∇f is the Hessian Hess(f ) = det
(

∂2f
∂zi∂zj

)
of f

Proposition
V (HA) = closure of ∇f (V (Hess(f )) \ V (f )) .

Basic idea: {z : ∇f (z) = b} = {x : Ax = b, x ∈ rowspan(A)−1}
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For A = Idd the identity matrix we have f (z) = z1z2 · · · zd and

Hess(f ) = (−1)d−1(d − 2)f d−2

and the entropic discriminant is not a hypersurface.
We call a matrix A ∈ Rd×n basic if the columns span ≤ d lines.

Corollary
If A is not basic, then the entropic discriminant is a hypersurface.

Idea: V (Hess(f )) \ V (f ) 6= ∅ and ∇f : Pd−1 \ V (f )→ Pd−1 is finite-to-one.

Corollary
HA(b) is a homogeneous polynomial, non-negative on Rd .

Question
Is HA(b) a sum of squares

HA(b) = h1(b)2 + h2(b)2 + · · · + hs(b)2

for some h1, h2, . . . , hs ∈ R[b1, . . . , bd ]?
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The codimension-1 case

Theorem
If A is real non-basic matrix with d − 1 rows and d columns, then HA(b) is an
explicit sum of squares.

Sufficient to consider A =

(
1 1

. . .
...

1 1

)
. The reciprocal plane L−1

A is the

hypersurface defined by the symmetric determinantal form

det


x1 + xd xd xd

xd x2 + xd xd

...
. . .

...
xd xd · · · xd−1 + xd


Cb = L−1

A ∩ {Ax = b} are the eigenvalues of a symmetric matrix M(b).

Cb is singular iff M(b) has a double eigenvalue.

The discriminant of det(M(b)− t · Id) is a sum of squares (Borchart 1846, Newell’72).

This is arrangements, analytic centers, and collisions on the line! Boring?
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Discriminants of derivatives

Let p(t) = tn + c1tn−1 + · · ·+ cn−1t + cn =
∏n

i=1(t − ri ) be a univariate
polynomial.

The discriminant of p(t) is the ‘unique’ polynomial in the coefficients such that

∆(c1, . . . , cn) =
n∏

i<j

(ri − rj)
2

Conjecture (Sottile, Mukhin’10)
The discriminant of the derivative p′(t) is a sum of squares in the ri − rj .

True!

Real case: The roots of p(t) give an affine hyperplane arrangement in R1.

Deformation of n linear hyperplanes in R with bi = ri − r1 for i = 2, . . . , n.

The roots of p′(t) are the analytic centers of the arrangement.

The discriminant of p′(t) is the sum-of-squares HA(b).
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Double eigenvalues

Question
Given a net A(x , y) = A0 + xA1 + yA2 of real symmetric n × n-matrices.
For how many real (x , y) does A(x , y) have a double eigenvalue?

Theorem (Lax’98)
At least one, if n = 4k + 2.

Double eigenvalue ⇔ Discriminant of p(x,y)(t) = det(A(x , y)− t · Id) vanishes.

Theorem (Sturmfels’02)
For a general net A(x , y) the number of critical double eigenvalues is

(
n+1
3

)
(= the degree of the singular set of the discriminant).

Conjecture (Sturmfels’02)
There is a net A(x , y) ∈ Rn×n

sym with precisely
(
n+1
3

)
real double eigenvalues.
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Theorem
There is a net A(x , y) ∈ Rn×n

sym with precisely
(
n+1
3

)
real double eigenvalues.

Sketch of Proof.
In codim 1, HA(b) is the discriminant of a real symmetric n × n-matrix map

M(b) = b1M1 + b2M2 + · · ·+ bnMn

for symmetric matrices M1,M2, . . . ,Mn.

Real locus V (HA) ∩ Rn is pure of codim 2 with
(
n+1
3

)
linear components

R
√
〈HA(b)〉 =

⋂
1≤i<j≤n

〈bi , bj〉 ∩
⋂

1≤i<k<j≤n

〈bi − bk , bj − bk〉

b0=0 b1 b2 bn

For generic vectors a0, a1, a2 ∈ Rn, the net

M(a0 + xa1 + ya2) = A0 + xA1 + yA2

has exactly
(
n+1
3

)
real double eigenvalues.
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Characteristic polynomials

Think of A =

 | | |
a1 a2 · · · an

| | |

 ⊂ Rd as spanning collection of vectors

For a J ⊆ [n], denote by AJ the corresponding subcollection. The characteristic
polynomial of A is defined by

χA(t) =
∑
J⊆[n]

(−1)|J|td−rk (AJ )

depends only on the independence structure – deletion-contraction invariant.

Deleting the i-th column A\i := A[n]\i

Contracting the i-th column A/i ∈ R(d−1)×(n−1) is obtained by projecting to a⊥i .

contraction deletion

For ai 6= 0 deletion-contraction gives

χA(t) = χA\i
(t) − χA/i

(t)
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Geometric interpretations

Consider the linear hyperplane arr’ment A given by Hi = {at
i x = 0} ⊂ Rd

Let G be a general affine hyperplane.

A =

(
1 1 1 1
−2 −1 1 2

)
χA(t) = t2 − 4t + 3

Theorem (Zaslavsky’70s)
(−1)dχA(0) is the number bounded components induced by A in G .

Deletion A\i yields deletion A \ Hi .

Contraction A/i yields restriction A|Hi of A \ {Hi} to Hi
∼= Rd−1.

#

{
bounded components

of A

}
= #

{
bounded components

of A \ Hi

}
+ #

{
bounded components

of A|Hi

}
(−1)dχA(0) = (−1)dχA\i

(0) + (−1)d−1χA/i
(0)
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For A =


1 2 3 4 5

1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 we get χA(t) = t3 − 5t2 + 8t − 4.

The intersection of the corresponding arrangement with a general hyperplane G
is this.

Analogous interpretations for all coefficients by
summing ‘local’ contributions of closed sets AJ .

J ⊆ [n] is closed if rk AJ < rk AK for all K ⊃ J.
The linear coefficient equals∑

{χAJ
(0) : J closed, rk (AJ) = d − 1} = χ′A(0)
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Geometry of L−1
A = closure of rowspan(A)−1 ⊆ Pn−1

In the torus Tn−1 = (C∗)n this is a complete intersection given by Bx−1 = 0
where ker(B) = rowspan(A).

The boundary components are L−1
AJ

for J ⊆ [n] is closed.

L−1
A =

⋃
J closed

rowspan(AJ)−1 ⊆ Pn−1

Singular set Sing(L−1
A ) is the union of strata L−1

AJ
for which A/J is non-basic.

Degree deg(L−1
A ) = (−1)dχA(0). In fact, χA(t) is the multidegree for

closure of
{

(u, u−1) : u ∈ rowspan(A)
}
⊂ Pn−1 × Pn−1

The map A : Pn−1 99K Pd−1 is basepoint free on L−1
A . The ramification locus is

the (closure of) the set of smooth points p ∈ L−1
A at which the tangent space

TpL−1
A and {Ax = Ap} are not transverse.

The entropic discriminant V (HA) is the image of the ramification locus of A on
L−1

A . The degree of HA equals the degree of the ramification cycle RA of L−1
A .
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Degree of ramification cycle

The ramification cycle is hard to get but over the torus the ramification cycle is
defined by

gA(x) = det

(
B · diag(x)−2

A

)
= det(A · diag(x)2 · AT )

The tangent space at p ∈ rowspan(A)−1 is exactly ker(B · diag(x)−2).

Let R̂A be the subscheme in L−1
A cut out by gA.

R̂A = RA ∪ 2 ·
⋃ {

L−1
AJ

: J closed, rk (AJ) = d − 1
}

By Bézout’s theorem deg(R̂A) = deg(gA) · deg(L−1
A ) = (−1)d2dχA(0) and thus

deg(HA) = deg(RA) = (−1)d2 (dχA(0) + χ′A(0)) .
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Open Questions

What is the Newton polytopes of HA(b)?
In codim-1 this is permutohedron Π(2, 4, . . . , 2d).

Is HA(b) always a sum-of-squares?
True in codim-1 and d = 2 but open even for (d , n) = (3, 5).

Generators for the ramification scheme?

Conjecture
For a general d × n-matrix A with n ≥ d + 2, the ramification scheme in L−1

A is

defined by the polynomials(!) gA(x)
xixj

for i , j ∈ [n].

What is a discrete-geometric interpretation for 2(−1)d(dχA(0) + χ′A(0))?

The entropic discriminant
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