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Conjecture: Let n ≥ 4, Ai ⊂ [n] for any 1 ≤ i ≤ n and K [A] be
the base ring associated to the transversal polymatroid
presented by A = {A1, . . . ,An}. If the Hilbert series is:

HK [A](t) =
1 + h1 t + . . .+ hn−r tn−r

(1− t)n ,

then we have the following:
1) If r = 1, then type(K [A]) = 1 + hn−2 − h1.

2) If 2 ≤ r ≤ n, then type(K [A]) = hn−r .
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We fix the notation and recall some basic results. For details
we refer the reader to [B], [BH], [BG], [MS] and [V].
The subsets of elements ≥ 0 in Z,Q,R will be referred to by
Z+,Q+,R+ and the subsets of elements > 0 by Z>,Q>,R>.
Fix an integer n > 0. If 0 6= a ∈ Qn, then Ha will denote the
rational hyperplane of Rn through the origin with normal vector
a, that is,

Ha = {x ∈ Rn | 〈x ,a〉 = 0},

where 〈 , 〉 is the scalar product in Rn. The two closed rational
linear halfspaces bounded by Ha are:

H+
a = {x ∈ Rn | 〈x ,a〉 ≥ 0} and H−a = H+

−a = {x ∈ Rn | 〈x ,a〉 ≤ 0}.

The two open rational linear halfspaces bounded by Ha are:

H>
a = {x ∈ Rn | 〈x ,a〉 > 0} and H<

a = H>
−a = {x ∈ Rn | 〈x ,a〉 < 0}.
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If S ⊂ Qn, then the set

R+S = {
r∑

i=1

aivi : ai ∈ R+, vi ∈ S, r ∈ N}

is called the rational cone generated by S.
The dimension of a cone is the dimension of the smallest vector
subspace of Rn which contains it.
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By the theorem of Minkowski-Weyl finitely generated rational
cones can also be described as intersection of finitely many
rational closed subspaces (of the form H+

a ). We further restrict
this presentation to the class of finitely generated rational
cones, which will be simply called cones.
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If a cone C is presented as

C = H+
a1
∩ . . . ∩ H+

ar

such that no H+
ai

can be omitted, then we say that this is an
irredundant representation of C.
If dim(C) = n, then the halfspaces H+

a1
, . . . ,H+

ar in an
irredundant representation of C are uniquely determined and
we set

relint(C) = H>
a1
∩ . . . ∩ H>

ar

the relative interior of C. If ai = (ai1, . . . ,ain), then we call

Hai (x) := ai1x1 + . . .+ ainxn = 0,

the equations of the cone C.
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Discrete polymatroids. Fix an integer n > 0 and set
[n] := {1,2, . . . ,n}. The canonical basis vectors of Rn will be
denoted by e1, . . . ,en. For a vector a ∈ Rn, a = (a1, . . . ,an), we
set | a | := a1 + . . .+ an.
A nonempty finite set B ⊂ Zn

+ is the set of bases a discrete
polymatroid P if:
(a) for every u, v ∈ B one has | u | = | v |;
(b) (the exchange property) if u, v ∈ B, then for all i such that

ui > vi there exists j such that uj < vj and u + ej − ei ∈ B.
An element of B is called a base of the discrete polymatroid P.
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Let K be an infinite field. For a ∈ Zn
+, a = (a1, . . . ,an) we

denote by xa ∈ K [x1, . . . , xn] the monomial xa := xa1
1 xa2

2 · · · x
an
n

and we set log(xa) = a.
Associated with the set of bases B of a discrete polymatroid P
one has a K−algebra K [B], called the base ring of P, defined to
be the K−subalgebra of the polynomial ring in n indeterminates
K [x1, x2, . . . , xn] generated by the monomials xu with u ∈ B.

K [B] = K [xu | u ∈ B]

From [HH], [Vi] the monoid algebra K [B] is known to be normal.
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We recall that by a well known result of Danilov and Stanley the
canonical module ωK [B] of K [B], with respect to standard
grading, can be expressed as an ideal of K [B] generated by
monomials, that is

ωK [B] = ({xa| a ∈ Z+B ∩ relint(R+B)}).
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Transversal polymatroids.
Consider another integer m such that 1 ≤ m ≤ n.
If Ai are some nonempty subsets of [n] for 1 ≤ i ≤ m and
A = {A1, . . . ,Am}, then the set of the vectors

∑m
k=1 eik with

ik ∈ Ak is the set of bases of a polymatroid, called the
transversal polymatroid presented by A.
The base ring of the transversal polymatroid presented by A is
the ring

K [A] := K [xi1 · · · xim | ij ∈ Aj ,1 ≤ j ≤ m].
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We denote by

A := {log(xj1 · · · xjn ) | jk ∈ Ak , for all 1 ≤ k ≤ n} ⊂ Nn

the exponents set of the generators of the base ring K [A].
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Further, for the transversal polymatroid presented by A we
associate a (n × n) square tiled by unit subsquares, called
boxes, colored with white and black as follows: the box of
coordinate (i , j) is white if j ∈ Ai , otherwise the box is black.
We will call this square the polymatroidal diagram associated to
the presentation A = {A1, . . . ,An}([SA1],[SA2]).
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In the following we shall restrict our study to a special family of
transversal polymatroids.
Fix n ∈ Z+, n ≥ 3, 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ n − 1 and
consider the transversal polymatroid presented by

A = {A2 = [n] \ [i], . . . ,Aj+1 = [n] \ [i],

A1 = [n],Aj+2 = [n], . . . ,An = [n]}.
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j − rows

n − rows

i − columns
n − columns

Polymatroidal diagram associated to the presentation A
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We recall at this point some previous results contained in [SA].
The cone generated by A has the irredundant representation

R+A =
⋂
a∈N

H+
a ,

where N = {ν j
i }
⋃
{ek | 1 ≤ k ≤ n} and

ν j
i :=

i∑
k=1

−jek +
n∑

k=i+1

(n − j)ek .

The extreme rays of the cone R+A are given by

E := {nek | i + 1 ≤ k ≤ n}
⋃

{(n − j)er + j es | 1 ≤ r ≤ i and i + 1 ≤ s ≤ n}.
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The polynomial

Pd (k) =

(
d + k − 1

d − 1

)
counts the number of monomials in degree k over the standard
graded polynomial ring K [x1, . . . , xd ], i.e. Pd (k) is the Hilbert
function of K [x1, . . . , xd ].
Then

Pd (k − d) =

(
k − 1
d − 1

)
= Qd (k)

counts the number of monomials in degree k for which all the
variables have nonzero powers, i.e. Qd (k) is the Hilbert
function of the canonical module ωK [x1,...,xd ] = K [x1, . . . , xd ](−d)
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The main result of [SA] is the following theorem.

Theorem
With the above assumptions, the following holds:
If i + j ≤ n − 1, then the type of K [A] is

type(K [A]) = 1 +

n−i−j−1∑
t=1

Qi(n + i − j + t)Qn−i(n − i + j − t),
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Theorem
If i + j ≥ n, then the type of K [A] is

type(K [A]) =

r(n−j)−i∑
t=1

Qi(r(n − j)− t)Qn−i(rj + t),

where r =
⌈

i+1
n−j

⌉
(dxe is the least integer ≥ x).
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Corollary

K [A] is Gorenstein ring if and only if i + j = n − 1.
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Let r ≥ 2, 1 ≤ i1, . . . , ir ≤ n − 2, 0 = t1 ≤ t2, . . . , tr ≤ n − 1 and
consider r presentations of transversal polymatroids:

As = {As,k | As,σts (k) = [n], if k ∈ [is] ∪ {n},
As,σts (k) = [n] \ σts [is], if k ∈ [n − 1] \ [is]}

for any 1 ≤ s ≤ r .
( σ ∈ Sn, σ = (1,2, . . . ,n) the cycle of length n,
σk [i] := {σk (1), . . . , σk (i)} )
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The base rings K [As] are Gorenstein rings.
The exponents set of the generators of the base ring K [As] is:

As = {log(xj1 · · · xjn ) | jk ∈ As,k ,1 ≤ k ≤ n} ⊂ Nn

for any 1 ≤ s ≤ r .
We denote by K [A1 ∩ . . . ∩ Ar ], the K − algebra generated by xα

with α ∈ A1 ∩ . . . ∩ Ar .

Lemma
The K− algebra K [A1 ∩ . . . ∩ Ar ] is a Gorenstein ring.
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Let n ≥ 2 and consider two transversal polymatroids presented
by A = {A1, . . . ,An}, respectively B = {B1, . . . ,Bn}.
Let A and B be the set of exponent vectors of monomials
defining the base rings K [A], respectively K [B], and K [A ∩ B]
the K − algebra generated by xα with α ∈ A ∩ B.
Question: There exists a transversal polymatroid such that its
base ring is the K − algebra K [A ∩ B]?
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Example

Let n = 4, A = {A1,A2,A3,A4}, B = {B1,B2,B3,B4}, where
A1 = A4 = B2 = B3 = {1,2,3,4}, A2 = A3 = {2,3,4},
B1 = B4 = {1,3,4} and K [A], K [B] the base rings associated
to transversal polymatroids presented by A, respectively B. It is
easy to see that the generators set of K [A], respectively K [B],
is given by
A = {y ∈ N4 | | y |= 4, 0 ≤ y1 ≤ 2, yk ≥ 0, 1 ≤ k ≤ 4},
respectively
B = {y ∈ N4 | | y |= 4, 0 ≤ y2 ≤ 2, yk ≥ 0, 1 ≤ k ≤ 4}. We
show that the K− algebra K [A ∩ B] is the base ring of the
transversal polymatroid presented by C = {C1,C2,C3,C4},
where C1 = C4 = {1,3,4}, C2 = C3 = {2,3,4}.
Since the base ring associated to the transversal polymatroid
presented by C has the exponent set C = {y ∈ N4 | | y |=
4, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 2, yk ≥ 0, 1 ≤ k ≤ 4}, it follows that
K [A ∩ B] = K [C]. Thus, in this example K [A ∩ B] is the base
ring of a transversal polymatroid.
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Example

Let n = 4, A = {A1,A2,A3,A4}, B = {B1,B2,B3,B4} where
A1 = A2 = A4 = B1 = B2 = B3 = {1,2,3,4}, A3 = {3,4},
B4 = {1,4} and K [A], K [B] the base rings associated to the
transversal polymatroids presented by A, respectively B. It is
easy to see that the generators set of K [A], respectively K [B],
is A = {y ∈ N4 | | y |= 4, 0 ≤ y1 + y2 ≤ 3, yk ≥ 0, 1 ≤ k ≤ 4},
respectively
B = {y ∈ N4 | | y |= 4, 0 ≤ y2 + y3 ≤ 3, yk ≥ 0, 1 ≤ k ≤ 4}.
We claim that there exists no transversal polymatroid P such
that the K− algebra K [A ∩ B] is its base ring. Suppose, on the
contrary, that P is presented by C = {C1,C2,C3,C4} with each
Ck ⊂ [4]. Since (3,0,1,0), (3,0,0,1) ∈ P and (3,1,0,0) /∈ P,
we may assume by changing the numerotation of {Ci}i=1,4 that
1 ∈ C1,1 ∈ C2,1 ∈ C4 and C3 = {3,4}. Since (0,3,0,1) ∈ P,
we may assume that 2 ∈ C1,2 ∈ C2,2 ∈ C4. Hence
(0,3,1,0) ∈ P, a contradiction.
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Next we give necesary and sufficient conditions such that the
K − algebra K [A ∩ B] is the base ring associated to some
transversal polymatroid.
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Theorem
Let 1 ≤ i1, i2 ≤ n − 2, 0 ≤ t2 ≤ n − 1. We consider two
presentations of transversal poymatroids presented by:
A = {Ak | Ak = [n], if k ∈ [i1] ∪ {n}, Ak = [n] \ [i1], if k ∈
[n − 1] \ [i1]} and
B = {Bk | Bσt2 (k) = [n], if k ∈ [i2] ∪ {n}, Bσt2 (k) =

[n] \ σt2 [i2], if k ∈ [n − 1] \ [i2]}
such that A, respectively B, is the set of exponent vectors of the
monomials defining the base ring associated to the transversal
polymatroid presented by A, respectively B.
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Theorem
Then, the K − algebra K [A ∩ B] is the base ring associated to a
transversal polymatroid if and only if one of the following
conditions holds:
a) i1 = 1;
b) i1 ≥ 2 and t2 = 0;
c) i1 ≥ 2 and t2 = i1;
d) i1 ≥ 2, 1 ≤ t2 ≤ i1 − 1 and
i2 ∈ {1, . . . , i1 − t2} ∪ {n − t2, . . . ,n − 2};
e) i1 ≥ 2, i1 + 1 ≤ t2 ≤ n − 1 and
i2 ∈ {1, . . . ,n − t2} ∪ {n − t2 + i1, . . . ,n − 2}.
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Example

Let A = {A1, . . . ,A7}, where A1 = A2 = A3 = A6 = A7 = [7],
A4 = A5 = [7] \ [3]. The cone genereated by A, the exponent
set of generators of K−algebra K [A], has the irreducible
representation

R+A = H+
ν2

3
∩ H+

e1
∩ . . . ∩ H+

e7
.

The type of K [A] is

type(K [A]) = 1 +

(
8
2

)(
4
3

)
= 113.

The Hilbert series of K [A] is

HK [A](t) =
1 + 1561t + . . .+ 1673t5 + t6

(1− t)7 .

Note that type(K [A]) = 1 + h5 − h1 = 113.
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Example

Let A = {A1, . . . ,A7}, where A3 = A4 = [7],
A1 = A2 = A5 = A6 = A7 = [7] \ [4]. The cone genereated by A,
the exponent set of generators of K−algebra K [A], has the
irreducible representation

R+A = H+
ν5

4
∩ H+

e1
∩ . . . ∩ H+

e7
.

The type of K [A] is

type(K [A]) =

(
4
3

)(
15
2

)
+

(
3
3

)(
16
2

)
= 540.

The Hilbert series of K [A] is

HK [A](t) =
1 + 351t + 2835t2 + 3297t3 + 540t4

(1− t)7 .

Note that type(K [A]) = h4 = 540.
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The product of transversal polymatroids.
Fix n1,n2 ∈ Z+, n1,n2 ≥ 3, n = n1 + n2, i1 ∈ [n1 − 2],
i2 ∈ [n2 − 2], j1 ∈ [n1 − 1] and j2 ∈ [n2 − 1].
For the vectors α ∈ Zn1

+ and β ∈ Zn2
+ we denote by α̃, β̄ ∈ Zn1+n2

+

the vectors

α̃ = (α,0, . . . ,0︸ ︷︷ ︸
n2 times

) ∈ Zn1+n2
+ , β̄ = (0, . . . ,0︸ ︷︷ ︸

n1 times

, β) ∈ Zn1+n2
+ .
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Next, we consider the K−algebras K [A] and K [B] which are
the base rings of the transversal polymatroids presented by A,
respectively B, where:

A = {A2 = [n1] \ [i1], . . . ,Aj1+1 = [n1] \ [i1],

A1 = [n1],Aj1+2 = [n1], . . . ,An1 = [n1]}

and

B = {An1+2 = [n] \ [n1 + i2], . . . ,An1+j2+1 = [n] \ [n1 + i2],

An1+1 = [n] \ [n1],An1+j2+2 = [n] \ [n1], . . . ,An1+n2 = [n] \ [n1]}.
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Let

A = {log(xt1 · · · xtn1
) | jk ∈ Ak , for all 1 ≤ k ≤ n1} ⊂ Zn1

+

be the exponent set of generators of K−algebra K [A] and

B = {log(xt1 · · · xtn1
) | jk ∈ Ak , for all n1 + 1 ≤ k ≤ n1 + n2} ⊂ Zn2

+

be the exponent set of generators of K−algebra K [B].

We denote by K [A � B] the K−algebra K [x α̃+β̄ | α ∈ A, β ∈ B]
and by A � B the exponent set of generators of K [A � B].
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It is easy to see that K−algebra K [A � B] is the base ring
associated to the transversal polymatroid presented by

A � B = {A2 = [n1] \ [i1], . . . ,Aj1+1 = [n1] \ [i1],

A1 = [n1],Aj1+2 = [n1], . . . ,An1 = [n1],

An1+2 = [n] \ [n1 + i2], . . . ,An1+j2+1 = [n] \ [n1 + i2],

An1+1 = [n] \ [n1],An1+j2+2 = [n] \ [n1], . . . ,

An1+n2 = [n] \ [n1]}.
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S
S

Polymatroidal diagram associated to the presentation A � B.

j1 − rows

n1 − rows

i1 − columns
n1 − columns

i2 − columns n2 − columns

j2 − rows

n2 − rows
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With the notations from above, the cone generated by A �B has
the irreducible representation

R+(A � B) = Π ∩
⋂
a∈N

H+
a ,

where Π is the hyperplane described by the equation

−n2x1 − · · · − n2xn1 + n1xn1+1 + · · ·+ n1xn1+n2 = 0

and N = {ν̃ j1
i1
, ν̄ j2

i2
}
⋃
{ ek | 1 ≤ k ≤ n}.
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Theorem
Let K [A] and K [B] the base rings of the transversal
polymatroids presented by A and B from above.
Then:
a) If i1 + j1 ≤ n1 − 1 and i2 + j2 ≤ n2 − 1, then the type of
K [A � B] is

type(K [A � B]) = 1 + (type(K [A]− 1)Q2 + (type(K [B]− 1)Q1

− (type(K [A]− 1)(type(K [B]− 1),

where

Qr =

2(nr−jr )−1∑
t=ir

Qir (t)Qnr−ir (2nr − t), for r ∈ [2].
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Theorem
b) If i1 + j1 ≥ n1 and i2 + j2 ≥ n2 such that r1 ≤ r2 where
r1 =

⌈
i1+1
n1−j1

⌉
, r2 =

⌈
i2+1
n2−j2

⌉
then the type of K [A � B] is

type(K [A � B]) = [

r2(n1−j1)−1∑
t=i1

Qi1(t)Qn1−i1(r2n1 − t)] type(K [B]).
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Theorem

c) If i1 + j1 ≤ n1 − 1, i2 + j2 ≥ n2 and r2 =
⌈

i2+1
n2−j2

⌉
, then the type

of K [A � B] is

type(K [A � B]) = [G + E ] type(K [B]),

where

G =

(r2−1)(n1−j1)∑
t=0

Pi1(t)Pn1−i1((r2 − 1)n1 − t),

E =

n1−i1−j1−1∑
t=1

Qi1(i1 + (r2 − 1)(n1 − j1) + t)∗

∗Qn1−i1(n1 − i1 + (r2 − 1)j1 − t).
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Corollary

Let K [A] and K [B] the base rings of the transversal
polymatroids presented by A and B and K [A � B] the base ring
of the transversal polymatroid presented by A � B, then:
K [A � B] is Gorenstein ring if and only if K [A] and K [B] are
Gorenstein rings.

Alin Ştefan The type computation of some classes of base rings



Next we will give some examples.

Example

Let A = {A1, . . . ,A5}, B = {A6, . . . ,A12} and
A � B = {A1, . . . ,A12}, where A1 = A3 = A4 = A5 = [5],
A2 = [5] \ [2], A6 = A9 = A10 = A11 = A12 = [12] \ [5],
A7 = A8 = [12] \ [8].
The type of K [A � B] is

type(K [A � B]) = 1 + (7− 1)1680 + (113− 1)126
− (7− 1)(113− 1) = 23521,

where

type(K [A]) = 7, type(K [B]) = 113, Q1 = 126,Q2 = 1680.
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Example

The Hilbert series of K [A � B] is

HK [A�B](t) =
1 + 188149t + . . .+ 211669t9 + t10

(1− t)11 .

Note that type(K [A � B]) = 1 + h9 − h1 = 23521.
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Example

Let A = {A1, . . . ,A7}, B = {A8, . . . ,A15} and
A � B = {A1, . . . ,A15}, where A1 = A6 = A7 = [7],
A2 = A3 = A4 = A5 = [7] \ [5], A8 = A15 = [15] \ [7],
A9 = A10 = A11 = A12 = A13 = A14 = [15] \ [13].
The type of K [A � B] is

type(K [A � B]) = (
11∑

t=5

(
t − 1

4

)(
27− t

1

)
)169 = 1327326,

where
type(K [B]) = 169.
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Example

The Hilbert series of K [A � B] is

HK [A�B](t) =
1 + 62818t + . . .+ 91435344t9 + 1327326t10

(1− t)14 .

Note that type(K [A � B]) = h10 = 1327326.
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Example

Let A = {A1, . . . ,A8}, B = {A9, . . . ,A16} and
A � B = {A1, . . . ,A16}, where
A1 = A4 = A5 = A6 = A7 = A8 = [8], A2 = A3 = [8] \ [3],
A9 = A16 = [16] \ [8],
A10 = A11 = A12 = A13 = A14 = A15 = [16] \ [14].
The type of K [A � B] is

type(K [A � B]) = (2572125 + 42630)169 = 441893595,

where

type(K [A]) = 226, type(K [B]) = 169, G = 2572125, E = 42630.
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Example

The Hilbert series of K [A � B] is

HK [A�B](t) =
1 + 1266825t + . . .+ 441893595t11

(1− t)15 .

Note that type(K [A � B]) = h11 = 441893595.

I am grateful to B. Ichim for some extensive computational
experiments which was needed in order to deduce the
formulas!
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The Pappus matroid is the matroid on

E = {1,2,3,4,5,6,7,8,9}

whose bases are all triples except

{123,456,789,148,247,159,357,269,368}

This is not transversal!
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The Hilbert series of the base ring associated to the Pappus
matroid is

HK [P](t) =
1 + 66t + 744t2 + 1915t3 + 1230t4 + 147t5 + t6

(1− t)9

1 + h6 − h1 = 1 + 147− 66 = 82,

but the type the base ring associated to the Pappus matroid is :

type(K [P]) = 181.
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THANK YOU !
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