The 22nd National School on Algebra: Algebraic and Combinatorial Applications of Toric Ideals Romania, September 1-5, 2014

Toric and Lattice Ideals: Generating Sets

Hara Charalambous

Department of Mathematics Aristotle University of Thessaloniki

Toric and lattice Ideals: Generating Sets

Toric ideals

Let $A = \{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subseteq \mathbb{Z}^m \setminus \{0\}$, so that the corresponding matrix with columns the vectors of A has rank m. Let $\mathbb{N}A := \{l_1\mathbf{a}_1 + \cdots + l_n\mathbf{a}_n \mid l_i \in \mathbb{N}_0\}$, \mathbb{k} a field, $L = \ker_{\mathbb{Z}}(A) \subset \mathbb{Z}^n$. Note that L is a lattice. We grade $R = \mathbb{k}[x_1, \ldots, x_n]$ by the semigroup $\mathbb{N}A$:

$$\deg_{\mathcal{A}}(x_i) = \mathbf{a}_i \;,\;\; i = 1, \dots, m \;.$$

For
$$\mathbf{u} = (u_1, \dots, u_n) \in \mathbb{N}^n$$
 and $\mathbf{x}^{\mathbf{u}} := x_1^{u_1} \cdots x_n^{u_n}$ we let

$$\deg_A(\mathbf{x}^{\mathbf{u}}) := u_1 \mathbf{a}_1 + \cdots + u_n \mathbf{a}_n \in \mathbb{N}A.$$

Definition

The toric ideal of A is the ideal $I_A := \langle \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} : \deg_A(\mathbf{x}^{\mathbf{u}}) = \deg_A(\mathbf{x}^{\mathbf{v}}) \rangle$. I_A is also called the lattice ideal I_L .

- toric ideals are prime ideals
- toric ideals are generated by binomials

•
$$I_A = I_L = \langle \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}}$$
 such that $\mathbf{u} - \mathbf{v} \in L >$.

- The ring R/I_A has Krull dimension m.
- For every term order, the corresponding Gröbner basis of *I_A* consists of binomials.

How do we compute toric ideals?

Example I

Example

Let
$$A = \{2, 1, 1\}$$
. In ϕ : $K[x_1, x_2, x_3]$ we set $\deg_A(x_1) = 2$,
 $\deg_A(x_2) = \deg_A(x_1) = 1$. Note that $L = \ker_{\mathbb{Z}} A = \langle (1, -2, 0), (0, -1, 1) \rangle$.

$$I_A = (x_1 - x_2^2, x_2 - x_3)$$

Let $\mathbf{u} = (1, -2, 0) \in \ker \pi$. Then

$$\mathbf{u} = (1,0,0) - (0,2,0) = (3,1,2) - (2,3,2)$$

The corresponding binomials are

$$x_1 - x_2^2 ext{ and } x_1^3 x_2 x_3^2 - x_1^2 x_2^3 x_3^2 \in I_A$$
.

We let $\mathbf{u}^+ = (1, 0, 0)$, $\mathbf{u}^- = (0, 2, 0)$.

Let
$$A = \{1, -1, 1\}$$
. In $R = \Bbbk[x_1, x_2, x_3]$ we set $\deg_A(x_1) = 1$,
 $\deg_A(x_2) = -1$, $\deg_A(x_3) = 1$. Note that $L = \ker_{\mathbb{Z}} A$
 $= \langle (1, 1, 0), (0, 1, 1), (1, 0, -1) \rangle = \langle (1, 1, 0), (0, 1, 1) \rangle$.

$$\begin{split} I_L &= (1 - x_1 x_2, 1 - x_2 x_3, x_1 - x_3) = (1 - x_1 x_2, x_1 - x_3) \\ &= (1 - x_1 x_2, 1 - x_2 x_3) \end{split}$$

There are infinitely many monomials in R of degree 0: $\deg_A(x_1^t x_2^t) = 0$ for $t \in \mathbb{N}$. Thus $1 - x_1^t x_2^t \in I_L$.

Lattice ideals

Let $L \subset \mathbb{Z}^n$ be a lattice.

Definition

The lattice ideal I_L is

$$I_L := \langle x^u - x^v : u - v \in L \rangle = \langle x^{w^+} - x^{w^-} : w \in L \rangle$$

where $w = w^+ - w^-$ and $gcd(x^{w^+}, x^{w^-}) = 1$.

Let $\mathbf{a_i} = \mathbf{e_i} + \mathbf{L} \in \mathbb{Z}^n / \mathbf{L}$ for i = 1, ..., n, $A = \{\mathbf{a_1}, ..., \mathbf{a_n}\}$. For $u \in \mathbb{N}^n$, we let

$$\deg_A(x^u) := \sum u_i \mathbf{a}_i \; .$$

Theorem

 I_L is generated by all binomials $\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}}$ such that $\deg_A(\mathbf{x}^{\mathbf{u}}) = \deg_A(\mathbf{x}^{\mathbf{v}}).$

Toric and lattice Ideals: Generating Sets

Let $L = 3\mathbb{Z}$. Then $u - v \in L$ iff $u \equiv v \mod 3$.

$$I_L = \langle 1 - x^3 \rangle = \langle 1 - x^6, x^5 - x^8 \rangle.$$

$$1 - x^3 = (1 - x^6) + x(x^5 - x^8) - x^3(1 - x^6)$$
.

Note that in this case \mathbb{Z}/L has torsion.

Finding generating sets: $L = \ker A$ where $A \subset \mathbb{Z}^m$

 I_L is a toric Ideal. Let the columns of A be $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ and $S = R[t_0, \ldots, t_m]$.

Algorithm

1. Let

$$J = \langle 1 - t_0 t_1 \dots t_m, x_1 t^{\mathbf{a}_1^-} - t^{\mathbf{a}_1^+}, \dots, x_n t^{\mathbf{a}_n^-} - t^{\mathbf{a}_n^+} \rangle$$

It can be proved that $I_L = J \cap R$.

2. Compute a reduced Gröbner basis G for J according to a proper (eliminating) order: $\{t_j\} > \{x_i\}$. (Use of computer). It can be proved that the elements of G are binomials

3. Choose the elements of G that do not involve t_0, \ldots, t_m , $(G \cap R)$. They form a generating set of I_L since they are a Gröbner basis of I_L .

4. Minimize $G \cap R$.

If J is any ideal of R and $f \in R$, we let

$$(J: f^{\infty}) = \{g \in R: gf^r \in J, r \in \mathbb{N}\}$$
.

Theorem

Let E be a \mathbb{Z} -basis of L. For all $w \in E$ consider the ideal $I(E) = \langle x^{w^+} - x^{w^-} : w \in E \rangle$. Then $I_L = (I(E) : (x_1 \cdots x_m)^{\infty})$

The computations involve computational tricks and techniques and heavy Gröbner bases usage

Important binomial subsets of I_A and corresponding subsets of $L = \ker_{\mathbb{Z}}(A)$

To each binomial $x^u - x^v \in I_A$ we correspond $u - v \in L$.

- The set consisting of all **primitive** binomials of *I_A*. The corresponding vectors form the Graver basis of *A*
- The universal Gröbner basis of I_A is the union of all reduced Gröbner basis of I_A . The corresponding vectors form the universal Gröbner basis of A.
- A Markov basis of I_A i.e. a minimal generating set of binomials of I_A . The corresponding vectors form a **Markov** basis of A.
- The universal Markov basis of I_A is the union of all Markov bases of I_A . The corresponding vectors form the universal Markov basis of A.
- The indispensable binomials that belong to all Markov bases of *I_A*. The corresponding vectors form the set of indispensables of *A*.

An irreducible binomial $x^{\mathbf{u}^+} - x^{\mathbf{u}^-} \in I_A$ is called *primitive* if there exists no other binomial $x^{\mathbf{v}^+} - x^{\mathbf{v}^-} \in I_A$ such that $x^{\mathbf{v}^+}$ divides $x^{\mathbf{u}^+}$ and $x^{\mathbf{v}^-}$ divides $x^{\mathbf{u}^-}$. The set of all primitive binomials of a toric ideal I_A is the Graver basis of I_A .

Example

We have seen that $I = (x_1 - x_2^2, x_2 - x_3)$ is the toric ideal corresponding to $A = \{2, 1, 1\}$.

All elements of the minimal generating set of *I* are primitive.

$$x_2^5 - x_1^2 x_3 \in I$$
 is not primitive since $x_2^2 - x_1 \in I$.

Theorem

(Diaconis, Sturmfels 1998) $A \subseteq \mathbb{Z}^m \setminus \{0\}$. Let $C \subset L = \ker_{\mathbb{Z}}(A)$. Then

$$\{x^{\mathbf{u}^-} - x^{\mathbf{u}^+}: \mathbf{u} \in C\}$$

is a minimal generating set of I_A iff C is minimal with respect to the following property:

whenever $\mathbf{w}, \mathbf{u} \in \mathbb{N}^n$ and $\mathbf{w} - \mathbf{u} \in L$ (i.e. $A\mathbf{w} = A\mathbf{u}$), there exists a subset $\{\mathbf{v}_i : i = 1, ..., s\}$ of C that connects \mathbf{w} to \mathbf{u} . This means that for $1 \leq p \leq s$,

$$\mathbf{w} + \sum_{i=1}^{p} \mathbf{v}_{i} \in \mathbb{N}^{n}, \text{ and } \mathbf{w} + \sum_{i=1}^{s} \mathbf{v}_{i} = \mathbf{u} .$$

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be nonzero integer vectors. We say that $\mathbf{u} = \mathbf{v} +_c \mathbf{w}$ is a conformal decomposition of \mathbf{u} if $\mathbf{u}^+ = \mathbf{v}^+ + \mathbf{w}^+$ and $\mathbf{u}^- = \mathbf{v}^- + \mathbf{w}^-$.

It is immediate that the Graver basis of A consists of all elements of L which have no conformal decomposition.

What is the relation between the previously defined sets (Graver, universal Gröbner, universal Markov)? Of course the universal Gröbner basis **contains** a Markov basis, but is it also true that the universal Markov basis is inside the universal Gröbner basis?

Theorem

(Sturmfels 95) For any lattice ideal I_A the following containments hold:

Universal Gröbner basis of $A \subset$ Graver basis of A

What is the relation between the universal Gröbner basis of A and the universal Markov basis of A? What is the relation between the universal Markov basis of A and the Graver basis of A?

Example

Let $I = (x_1x_2 - x_3x_4, x_5x_6 - x_7x_8, x_1^2x_2^2x_3x_4 - x_5x_6x_7x_8)$. This generating set is not part of any reduced Gröbner basis of I.

Let

$$A = \begin{pmatrix} 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\ 4 & 0 & 4 & 0 & 3 & 3 & 3 & 3 \\ 4 & 0 & 0 & 4 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 2 & 6 & 0 & 6 & 0 \\ 2 & 2 & 2 & 2 & 6 & 0 & 0 & 6 \end{pmatrix}$$

It can be shown that

$$I_{A} = (x_{1}x_{2} - x_{3}x_{4}, x_{5}x_{6} - x_{7}x_{8}, x_{1}^{2}x_{2}^{2}x_{3}x_{4} - x_{5}x_{6}x_{7}x_{8}).$$

The binomial $x_1^2 x_2^2 x_3 x_4 - x_5 x_6 x_7 x_8$ does not belong to a reduced Gröbner basis of I_A since for any monomial order, the initial term of $x_1 x_2 - x_3 x_4$ divides $x_1^2 x_2^2 x_3 x_4$ while the initial term of $x_5 x_6 - x_7 x_8$ divides $x_5 x_6 x_7 x_8$.

Let $A \subset \mathbb{N}^m$. For $u \in L$, let $\mathcal{F}_{\mathbf{u}} = \mathcal{F}_{\mathbf{u}^+} := \{\mathbf{t} \in \mathbb{N}^n : \mathbf{u}^+ - \mathbf{t} \in L\}$.

Construct the graph $G_{\mathbf{u}}$: its vertices are the elements of $\mathcal{F}_{\mathbf{u}}$. Two vertices \mathbf{w}_1 , \mathbf{w}_2 are joined by an edge if $gcd(x^{w_1}, x^{w_2}) \neq 1$.

Theorem

(CKT07, DSS09) **u** is in the universal Markov basis of A if and only if \mathbf{u}^+ and \mathbf{u}^- belong to different connected components of $G_{\mathbf{u}}$.

We consider the convex hulls of the connected components of G_{u} .

Definition

(CTV14a) A Markov polytope is the convex hull of the elements in a connected component of this graph.

Universal Markov and universal Gröbner basis

Let
$$A \subset \mathbb{N}^m$$
, $L = \ker_{\mathbb{Z}}(A)$.

Theorem

(St 95) $\mathbf{u} \in L$ is in the universal Gröbner basis of A if \mathbf{u} is in the Graver basis of A and $[\mathbf{u}^+, \mathbf{u}^-]$ is an edge at the convex hull of all points in \mathcal{F}_u .

We get the following characterization:

Theorem

(CTVI14a) Let \mathcal{L} be as above. An element \mathbf{u} of the universal Markov basis of A belongs to the universal Gröbner basis of A if and only if \mathbf{u}^+ and \mathbf{u}^- are vertices of two different (Markov) polytopes.

Let A be the matrix of the previous example. Recall that $x_1^2 x_2^2 x_3 x_4 - x_5 x_6 x_7 x_8$ is in the universal Markov basis of I_A but not in the universal Gröbner basis of I_A . Let $\mathbf{u} = (2, 2, 1, 1, -1, -1, -1, -1) \in L$. Then $|\mathcal{F}_{\mathbf{u}}| = 7$ and $\mathcal{F}_{\mathbf{u}} =$

 $\{(3,3,0,\ldots,0), u^+, (1,1,2,2,0,0,0,0), (0,0,3,3,0,0,0,0)\}$

 $\cup \{(0,\ldots,0,2,2,0,0), u^-, (0,\ldots,0,2,2)\}$

The graph G_{u} has two connected components.

The Markov polytopes are line segments: u^+ and u^- are not vertices of their Markov polytopes.

Let $A \subset \mathbb{Z}^m$, $L = \ker_{\mathbb{Z}}(A)$.

- If A ⊂ N^m, then the universal Markov basis of A is contained in the Graver basis of A.
- The universal Gröbner basis of A is always contained in the Graver basis of A.
- The universal Markov basis of A is not necessarily a subset of the Gröbner basis of A.
- The universal Markov basis of A is part of the Graver basis of A if and only if L ∩ Nⁿ = 0 or if L = ⟨u⟩ where u ∈ Nⁿ, (CTV14a).

- CKT H. Charalambous, A. Katsabekis, A. Thoma, Minimal systems of binomial generators and the indispensable complex of a toric ideal, Proc. Amer. Math. Soc. **135**, 3443–3451 (2007).
- CTV H. Charalambous, A. Thoma, M. Vladoiu, Markov bases of lattice ideals, arXiv:1303.2303v2.
- CTVa H. Charalambous, A. Thoma, M. Vladoiu, Markov complexity of monomial curves, J. Algebra, (2014)
- CTV H. Charalambous, A. Thoma, M. Vladoiu, Markov bases and generalized Lawrence liftings, Annals of Combinatorics, (2014)
- DS P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. **26**, 363–397 (1998).
- DSS M.Drton, B.Sturmfels, S. Sullivant, Lectures on Algebraic Statistics, 2009
- B. Sturmfels, Gröbner bases and Convex Polytopes, University Lecture Series, Vol 8, AMS (1995)