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Lattice Ideals

Let k be a field and R = k[x1, · · · , xn]. For u = (u1, . . . , un) ∈ Nn

we let xu := xu11 · · · xunn . Let L ⊂ Zn be a lattice.

.
Definition
..

.

The lattice ideal IL is

IL := ⟨xu − xv : u − v ∈ L⟩ = ⟨xw+ − xw
−
: w ∈ L⟩

The papers mentioned on this lecture are
—, A. Katsabekis, A. Thoma, ”Minimal systems of binomial
generators and the indispensable complex of a toric ideal”, Proc.
of the AM.S., 2007.
—, A. Thoma, M. Vladoiou “Markov Bases of Lattice ideals”,
arXiv: 1303.2303v2
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Example: lattice ideals

.
Example
..

.

Let L ⊂ Z2 be the lattice generated by (1,−2). R = k[x , y ]

(1,−2) = (1, 0)− (0, 2), IL = ⟨x − y2⟩

The exponents of the binomials in IL are in the first quadrant and
determine lines parallel to L.
IL has a unique minimal binomial generating set.

If L ∩ Nm = {0}, we say that L is positive.
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Example: lattice ideals

.
Example
..

.

Let L = 3Z, so L is generated by 3. We work in R = k[x ].
u − v ∈ L iff u ≡ v mod 3.

IL = ⟨1− x3⟩ .

But also IL = ⟨1− x6, x5 − x8⟩

IL has (at least) two minimal generating sets of different cardinality.
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Minimal generating sets of lattice ideals

.
Definition
..

.

A set S is a Markov basis for IL if S consists of binomials and S is
a minimal generating set of IL of minimal cardinality.

For counting purposes, a binomial B is the same as −B.
How many “different” Markov bases are there? Can we compute
the cardinality of a Markov basis? Are there indispensable
binomials or indispensable monomial terms of IL? Is there a
characteristic shared by different Markov sets?
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Motivation-History

Paper by Eisenbud and Strumfels: Binomial ideals, Duke
Math. J. (1996)

Paper by Diaconis and B. Sturmfels, Algebraic algorithms for
sampling from conditional distributions, Ann. Statist., (1998)

Applications of Lattice Ideals in Algebraic Statistics, Integer
Programming, Graph Theory, Hypergeometric Differential
Equations, etc.

Most of the applications deal with the cases of positively graded
lattices.
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Degrees and fibers

L ⊂ Zm. Let ai = ei + L for i = 1, . . . ,m, AL = {a1, . . . , am},
Recall the A-degree of a monomial

degAL
(xu11 · · · xumm ) := u1a1 + · · ·+ umam .

and the property

Il = ⟨xu − xv : degAL
(xu) = degAL

(xv)⟩ .

Yesterday we talked about fibers corresponding to vectors of L (Fu

or Fu+). We recall the definition and emphasize the connection to
the A-degree.
.
Definition
..

.

Let b ∈ NAL. The fiber at b is the following set of monomials:

deg−1
AL

(b) = {xw : degAL
(xw) = b} = Fw = Fxw

Markov Bases of Lattice Ideals



Degree and ordering the fibers

Multiplication by a monomial pushes one fiber inside another fiber.
.
Example
..

.

L = ⟨(1,−2)⟩ ⊂ Z2, IL = ⟨x − y2⟩.

L is positive. The fibers are finite. We can order the fibers by their
A-degree.
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Fibers and degrees II

.
Proposition
..

.

When L is positive then all fibers are finite and degAL
determines a

partial order on them.

Caution: we have already seen that this fails if L is not positive.
.
Example
..

.

Let L = Z(1, 1), A = {1,−1} ⊂ Z, degA(x) = 1, degA(y) = −1
degA(xy) = 0 and of course the A-degree of 1 is 0. The fiber that
contains 1 is infinite.

deg−1
A (0) = {1, xy , · · · } = F1 = Fx iy i
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Invariants when L ∩ Nm = 0.

We consider the AL-degrees of the binomials in a minimal
generating set of IL.

.
Theorem
..

.

Let L ∩ Nm = 0. All minimal binomial generating sets of IL have
the same cardinality and the same AL-degrees.

The proof follows from the graded Nakayama Lemma.
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Generating IL when L ∩ Nm = 0, CKT (2007).

For every degree b define a subideal of IL generated by the
binomials that have A-degrees less than b.
.
Definition
..

.

IL,b = IL,F = (xu − xv | degAL
(xu) = degAL

(xv) � b) ⊂ IL

where F is the fiber at b.

Then we define two graphs.
.
Definition
..

.

First graph Let G (b) be the graph with vertices the elements of

deg−1
AL

(b) and edges all the sets {xu, xv} whenever xu − xv ∈ IL,b.
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The complete graph on the components of G (b)

.
Definition
..

.

The second graph is the complete graph with vertex set the
connected components of first graph G (b). Let Tb be a spanning
tree of this graph.

In this picture, on the left we see the vertices of G (b) while on the
right, with red we see a spanning tree Tb
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Spanning trees and generators

For every edge of the tree Tb joining two components of G (b) take
one binomial by taking the difference of (two arbitrary) monomials,
one from each component.

Let the tree be denoted by red edges: green and orange line
segments would produce different sets of binomials for the same
tree Tb.
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Markov basis for IL (CKT07)

For every b, choose a tree Tb on the graph G (b) (whose vertices
are the connected components of the fiber at b) and then choose
the binomials. Denote this collection by FTb

.
.
Theorem
..
.The set F = ∪b∈NAL

FTb
is a Markov basis of IL.

Let µ(IL) be the cardinality of a Markov basis, nb be the number of
connected components of G (b), ti (b) be the number of vertices of
the ith component.
.
Theorem
..

.

µ(IL) =
∑

b∈NAL

(nb − 1)

The number of different Markov bases of IL is∏
b∈NA

t1(b) · · · tnb(b)(t1(b) + · · ·+ tnb(b))
nb−2
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When L ∩ Nn ̸= 0

It is easier to think of the fibers as the sets:

Fxu = {xu : xu − xv ∈ I}
.
Example
..

.

Let L = ⟨(1, 1)⟩. Then IL = ⟨1− xy⟩. We have seen that
deg−1

AL
(0) = {1, xy , x2y2, . . .} = F1 = Fxy . There are infinitely

many fibers.
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Infinite Fibers

.
Example
..

.

Let L = ⟨(1, 1), (0, 5)⟩. It can be shown that I = ⟨1− xy , 1− x5⟩.

F1 = {x iy j : i ≡ j mod 5} = {1, xy , x5, . . .}

is represented as the union of black lines. There are five different
fibers: F1,Fx ,Fx2 ,Fx3 ,Fx4 .
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Ordering the fibers

Are there fibers ”bigger” than others? would multiplication by
monomials determine this order?
.
Example
..

.

Since
xF1 ⊂ Fx , x4Fx ⊂ Fx5 = F1

the answer seems to be negative.
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Ordering the fibers II

However we can define an equivalence relation on the set of fibers
and then we will see that we can order the equivalence classes!
.
Definition
..

. F ≡L G ⇔ xuF ⊂ G , xvG ⊂ F

By F we will denote the equivalence class of the fiber F .
.
Theorem
..

.When L ∩ Nn = {0} then F = {F}.
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Ordering the fibers

.
Examples
..

.

When IL = ⟨1− xy⟩ there is only one equivalence class
F1 = {F1,Fx ,Fy , . . .} consisting of all (infinitely many) fibers.

When I = ⟨1− xy , 1− x5⟩ there is only one equivalence class:
F1 = {F1,Fx ,Fx2 ,Fx3 ,Fx4}
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Ordering equivalence classes of fibers

.
Theorem
..

.

All equivalence classes contain the same number of fibers. This
number is determined by L ∩ Nn.

Let F , G be two equivalence classes of IL-fibers. We define a
partial order on the equivalence classes of the fibers as follows:

F ≤ G if there exists xu such that xuF ⊂ G .

Since R is Noetherian, an important property is given by the
following theorem:
.
Theorem
..
.All chains of equivalence classes of fibers have a minimal element.
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Generating a lattice ideal IL

Next, we generalize the ideal IL,F .

.
Definition
..

.
IL, F = ⟨xu − xv ∈ I : Fxu < F ⟩

Let B = xu − xv ∈ I and G = Fxu .
.
Theorem
..

.
B belongs to a Markov basis of IL if and only if B is not in IL, F .
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Pure lattices

Suppose that L is equal to its pure part, that is ⟨L ⊂ Nn⟩. We
have already seen that F1 (the fiber of one) is infinite.
.
Theorem
..
.Assume that the support of L is n. All fibers are equivalent to F1.

The following generalizes a result of Sturmfels, Weismantel and
Ziegler (95).
.
Theorem
..

.

Suppose that the rank of L is r . There are r binomials that
generate IL (and thus IL is a complete intersection)

The theorem actually gives much more. It gives a complete
description of all generating sets of IL setting conditions on the
exponents of the binomials.
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Generalizing CKT

Two problems arise in the general case while attempting to
construct the graphs:

Infinite fibers.

In principle we should deal with the fibers in the equivalence
classes all at once.

Let σ be the support of L ∩ Nn. If F is a fiber, we let mF be the
monomial ideal generated by the elements of F where for any
variable in σ we substitute the value 1.
.
Theorem
..
.Let G, F be fibers so that G ≡ F . Then mF = mG .
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Generalizing the graphs on the fibers

Let F be a fiber, We construct G = G (F ).
.
Definition
..

.

First graph Let G be the graph with vertices the set of minimal
monomial generators of mF . Two vertices are connected by an
edge if the corresponding ”original” binomial is in IL,F .

If F and G are two equivalent fibers, then the above construction
yields the same graph. We proceed as expected for the second
graph.
.
Definition
..

.Second graph: complete graph on the components of G .
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True Generalization

If L ∩ Nn = {0} then

σ = {}
F = {F}
the set of minimal monomial generators of mF is equal to F

IL, F = IL,b where b is the A-degree of any element in F .

Thus we obtain the same graphs.
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Markov Bases of IL

For any fiber F we let Γ(F ) be the second graph. We consider
spanning trees of Γ(F ).

the we make choices of monomials for the each red edge (green or
orange)

then go back and choose a binomial from one of the equivalence
classes.
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Markov Bases of IL

.
Theorem
..

.

A set S of binomials of IL is a Markov basis of IL if and only if

for every F the elements of S determine a spanning tree of
Γ(F ) and

the binomials of S in the equivalence class of the origin
minimally generate the lattice generated by L ∩ Nn.

What are the invariants of the Markov bases of IL?
.
Theorem
..

.

Let S = {B1, . . . ,Bs} be a Markov basis of IL. The equivalence
classes of fibers that correspond to these binomials and their
multiplicity in S are uniquely determined and are invariants of IL.
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Markov Bases of IL

We can compute the cardinality of a Markov basis, the Markov
fibers, the indispensable fibers, the indispensable binomials, and
the indispensable monomials. If the rank of ⟨L ∩Nn⟩ is bigger than
1 there are no indispensable binomials. If the rank of ⟨L ∩Nn⟩ is 1,
there exists exactly one indispensable binomial.
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Cardinality of IL

What is µ(IL) the cardinality of a Markov basis?

Let r be the rank of the lattice generated by the elements of
L ∩Nn. If F is a fiber we let t(F ) be the number of vertices of ΓF .

.
Theorem
..

.

µ(IL) = r +
∑

F ̸=F{1}

(t(F )− 1),
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