Markov Bases of Lattice Ideals

Hara Charalambous

Mathematics Department
Aristotle University of Thessalonike, Greece
Lattice Ideals

Let \(k \) be a field and \(R = k[x_1, \ldots, x_n] \). For \(u = (u_1, \ldots, u_n) \in \mathbb{N}^n \) we let \(x^u = x_1^{u_1} \cdot \cdots \cdot x_n^{u_n} \). Let \(L \subset \mathbb{Z}^n \) be a lattice.

Definition

The lattice ideal \(I_L \) is

\[
I_L := \langle x^u - x^v : u - v \in L \rangle = \langle x^{w^+} - x^{w^-} : w \in L \rangle
\]

The papers mentioned on this lecture are
Example: lattice ideals

Let \(L \subset \mathbb{Z}^2 \) be the lattice generated by \((1, -2)\). \(R = \mathbb{k}[x, y] \)

\[
(1, -2) = (1, 0) - (0, 2), \quad I_L = \langle x - y^2 \rangle
\]

The exponents of the binomials in \(I_L \) are in the first quadrant and determine lines parallel to \(L \).

\(I_L \) has a unique minimal binomial generating set.

If \(L \cap \mathbb{N}^m = \{0\} \), we say that \(L \) is positive.
Example: lattice ideals

Let $L = 3\mathbb{Z}$, so L is generated by 3. We work in $R = \mathbb{k}[x]$.

$u - v \in L$ iff $u \equiv v \mod 3$.

$I_L = \langle 1 - x^3 \rangle$.

But also $I_L = \langle 1 - x^6, x^5 - x^8 \rangle$

I_L has (at least) two minimal generating sets of different cardinality.
A set S is a Markov basis for I_L if S consists of binomials and S is a minimal generating set of I_L of minimal cardinality.

For counting purposes, a binomial B is the same as $-B$. How many “different” Markov bases are there? Can we compute the cardinality of a Markov basis? Are there indispensable binomials or indispensable monomial terms of I_L? Is there a characteristic shared by different Markov sets?
Motivation-History

Applications of Lattice Ideals in Algebraic Statistics, Integer Programming, Graph Theory, Hypergeometric Differential Equations, etc.

Most of the applications deal with the cases of positively graded lattices.
Degrees and fibers

$L \subset \mathbb{Z}^m$. Let $a_i = e_i + L$ for $i = 1, \ldots, m$, $A_L = \{a_1, \ldots, a_m\}$.

Recall the A-degree of a monomial

$$\text{deg}_{A_L}(x_1^{u_1} \cdots x_m^{u_m}) := u_1a_1 + \cdots + u_ma_m.$$

and the property

$$l_l = \langle x^u - x^v : \text{deg}_{A_L}(x^u) = \text{deg}_{A_L}(x^v) \rangle.$$

Yesterday we talked about fibers corresponding to vectors of L (\mathcal{F}_u or \mathcal{F}_{u^+}). We recall the definition and emphasize the connection to the A-degree.

Definition

Let $b \in \mathbb{N}A_L$. The fiber at b is the following set of monomials:

$$\text{deg}_{A_L}^{-1}(b) = \{x^w : \text{deg}_{A_L}(x^w) = b\} = \mathcal{F}_w = \mathcal{F}_{x^w}.$$
Degree and ordering the fibers

Multiplication by a monomial pushes one fiber inside another fiber.

Example

\[L = \langle (1, -2) \rangle \subset \mathbb{Z}^2, \quad I_L = \langle x - y^2 \rangle. \]

\[L \text{ is positive. The fibers are finite. We can order the fibers by their } A\text{-degree.} \]
Proposition

When L is positive then all fibers are finite and \(\deg_{A_L} \) determines a partial order on them.

Caution: we have already seen that this fails if \(L \) is not positive.

Example

Let \(L = \mathbb{Z}(1,1) \), \(A = \{1,-1\} \subset \mathbb{Z} \), \(\deg_A(x) = 1 \), \(\deg_A(y) = -1 \), \(\deg_A(xy) = 0 \) and of course the \(A \)-degree of 1 is 0. The fiber that contains 1 is infinite.

\[
\deg_A^{-1}(0) = \{1, xy, \cdots \} = F_1 = F_{x^i y^i}
\]
We consider the A_L-degrees of the binomials in a minimal generating set of I_L.

Theorem

Let $L \cap \mathbb{N}^m = 0$. All minimal binomial generating sets of I_L have the same cardinality and the same A_L-degrees.

The proof follows from the graded Nakayama Lemma.
Generating I_L when $L \cap \mathbb{N}^m = 0$, CKT (2007).

For every degree b define a subideal of I_L generated by the binomials that have A-degrees less than b.

Definition

$$I_{L,b} = I_{L,F} = (x^u - x^v \mid \deg_{A_L}(x^u) = \deg_{A_L}(x^v) \leq b) \subset I_L$$

where F is the fiber at b.

Then we define two graphs.

Definition

First graph Let $G(b)$ be the graph with vertices the elements of $\deg_{A_L}^{-1}(b)$ and edges all the sets $\{x^u, x^v\}$ whenever $x^u - x^v \in I_{L,b}$.
The complete graph on the components of $G(b)$

Definition

The second graph is the complete graph with vertex set the connected components of first graph $G(b)$. Let T_b be a spanning tree of this graph.

In this picture, on the left we see the vertices of $G(b)$ while on the right, with red we see a spanning tree T_b.
Spanning trees and generators

For every edge of the tree T_b joining two components of $G(b)$ take one binomial by taking the difference of (two arbitrary) monomials, one from each component.

Let the tree be denoted by red edges: green and orange line segments would produce different sets of binomials for the same tree T_b.
Markov basis for \(I_L \) (CKT07)

For every \(b \), choose a tree \(T_b \) on the graph \(G(b) \) (whose vertices are the connected components of the fiber at \(b \)) and then choose the binomials. Denote this collection by \(\mathcal{F}_{T_b} \).

Theorem

The set \(\mathcal{F} = \bigcup_{b \in \mathbb{N}A_L} \mathcal{F}_{T_b} \) is a Markov basis of \(I_L \).

Let \(\mu(I_L) \) be the cardinality of a Markov basis, \(n_b \) be the number of connected components of \(G(b) \), \(t_i(b) \) be the number of vertices of the \(i \)th component.

Theorem

\[
\mu(I_L) = \sum_{b \in \mathbb{N}A_L} (n_b - 1)
\]

The number of different Markov bases of \(I_L \) is

\[
\prod_{b \in \mathbb{N}A} t_1(b) \cdots t_{n_b}(b)(t_1(b) + \cdots + t_{n_b}(b))^{n_b-2}
\]
When \(L \cap \mathbb{N}^n \neq 0 \)

It is easier to think of the fibers as the sets:

\[
F_{x^u} = \{ x^u : x^u - x^v \in I \}
\]

Example

Let \(L = \langle (1, 1) \rangle \). Then \(I_L = \langle 1 - xy \rangle \). We have seen that \(\deg_{A_L}^{-1}(0) = \{ 1, xy, x^2y^2, \ldots \} = F_1 = F_{xy} \). There are infinitely many fibers.
Example

Let $L = \langle (1, 1), (0, 5) \rangle$. It can be shown that $I = \langle 1 - xy, 1 - x^5 \rangle$.

$$F_1 = \{ x^i y^j : i \equiv j \mod 5 \} = \{ 1, xy, x^5, \ldots \}$$

is represented as the union of black lines. There are five different fibers: $F_1, F_x, F_{x^2}, F_{x^3}, F_{x^4}$.
Are there fibers ”bigger” than others? would multiplication by monomials determine this order?

Example

Since

$$xF_1 \subset F_x,$$ $$x^4F_x \subset F_{x^5} = F_1$$

the answer seems to be negative.
However we can **define** an equivalence relation on the set of fibers and then we will see that we can **order** the equivalence classes!

Definition

\[F \equiv_L G \iff x^u F \subseteq G, x^v G \subseteq F \]

By \overline{F} we will denote the equivalence class of the fiber F.

Theorem

*When $L \cap \mathbb{N}^n = \{0\}$ then $\overline{F} = \{F\}$.***
Ordering the fibers

Examples

When $I_L = \langle 1 - xy \rangle$ there is only one equivalence class $F_1 = \{ F_1, F_x, F_y, \ldots \}$ consisting of all (infinitely many) fibers.

When $I = \langle 1 - xy, 1 - x^5 \rangle$ there is only one equivalence class: $F_1 = \{ F_1, F_x, F_x^2, F_x^3, F_x^4 \}$
Ordering equivalence classes of fibers

Theorem

All equivalence classes contain the same number of fibers. This number is determined by \(L \cap \mathbb{N}^n \).

Let \(F, G \) be two equivalence classes of \(I_L \)-fibers. We define a partial order on the equivalence classes of the fibers as follows:

\[
F \leq G \text{ if there exists } x^u \text{ such that } x^u F \subset G.
\]

Since \(R \) is Noetherian, an important property is given by the following theorem:

Theorem

All chains of equivalence classes of fibers have a minimal element.
Next, we generalize the ideal $I_{L,F}$.

Definition

$$I_{L,F} = \langle x^u - x^v \in I : \overline{F_x} < \overline{F} \rangle$$

Let $B = x^u - x^v \in I$ and $G = F_{x^u}$.

Theorem

B belongs to a Markov basis of I_L if and only if B is not in $I_{L,F}$.
Suppose that L is equal to its pure part, that is $\langle L \subset \mathbb{N}^n \rangle$. We have already seen that F_1 (the fiber of one) is infinite.

Theorem

Assume that the support of L is n. All fibers are equivalent to F_1.

The following generalizes a result of Sturmfels, Weismantel and Ziegler (95).

Theorem

Suppose that the rank of L is r. There are r binomials that generate I_L (and thus I_L is a complete intersection).

The theorem actually gives much more. It gives a complete description of all generating sets of I_L setting conditions on the exponents of the binomials.
Two problems arise in the general case while attempting to construct the graphs:

- Infinite fibers.
- In principle we should deal with the fibers in the equivalence classes all at once.

Let σ be the support of $L \cap \mathbb{N}^n$. If F is a fiber, we let m_F be the monomial ideal generated by the elements of F where for any variable in σ we substitute the value 1.

Theorem

Let G, F be fibers so that $G \equiv F$. Then $m_F = m_G$.
Let F be a fiber, We construct $G = G(F)$.

Definition

First graph Let G be the graph with vertices the set of minimal monomial generators of m_F. Two vertices are connected by an edge if the corresponding ”original” binomial is in $I_{L,F}$.

If F and G are two equivalent fibers, then the above construction yields the same graph. We proceed as expected for the second graph.

Definition

Second graph: complete graph on the components of G.

Markov Bases of Lattice Ideals
If $L \cap \mathbb{N}^n = \{0\}$ then

- $\sigma = \{\}$
- $F = \{F\}$

the set of minimal monomial generators of m_F is equal to F

$I_L, F = I_{L,b}$ where b is the A-degree of any element in F.

Thus we obtain the same graphs.
Markov Bases of I_L

For any fiber F we let $\Gamma(F)$ be the second graph. We consider spanning trees of $\Gamma(F)$.

![Graph 1](image1)

the we make choices of monomials for each red edge (green or orange)

![Graph 2](image2)

then go back and choose a binomial from one of the equivalence classes.
Markov Bases of I_L

Theorem

A set S of binomials of I_L is a Markov basis of I_L if and only if

- for every \overline{F} the elements of S determine a spanning tree of $\Gamma(\overline{F})$ and
- the binomials of S in the equivalence class of the origin minimally generate the lattice generated by $L \cap \mathbb{N}^n$.

What are the invariants of the Markov bases of I_L?

Theorem

Let $S = \{B_1, \ldots, B_s\}$ be a Markov basis of I_L. The equivalence classes of fibers that correspond to these binomials and their multiplicity in S are uniquely determined and are invariants of I_L.
We can compute the cardinality of a Markov basis, the Markov fibers, the indispensable fibers, the indispensable binomials, and the indispensable monomials. If the rank of $\langle L \cap \mathbb{N}^n \rangle$ is bigger than 1 there are no indispensable binomials. If the rank of $\langle L \cap \mathbb{N}^n \rangle$ is 1, there exists exactly one indispensable binomial.
Cardinality of I_L

What is $\mu(I_L)$ the cardinality of a Markov basis?

Let r be the rank of the lattice generated by the elements of $L \cap \mathbb{N}^n$. If F is a fiber we let $t(\overline{F})$ be the number of vertices of $\Gamma_{\overline{F}}$.

Theorem

$$\mu(I_L) = r + \sum_{\overline{F} \neq \{1\}} (t(\overline{F}) - 1),$$

