On the resolution of binomial edge ideals

Ahmet Dokuyucu1

The National School on Algebra

Bucharest, September 2014

1Faculty of Mathematics and Computer Science, Ovidius University Bd. Mamaia 124, 900527 Constanta and Lumina-The University of South-East Europe Sos. Colentina nr. 64b, Bucharest, Romania
Outline

- Objects
Outline

- Objects
- Problems and results
Simple graphs: undirected, no loops, no multiple edges
Simple graphs: undirected, no loops, no multiple edges

\[G : V(G) = [n], E(G) \]
Simple graphs: undirected, no loops, no multiple edges

$G : V(G) = [n], E(G)$
Binomial ideals $\subset S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$
Binomial ideals $\subset S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$

$1 \leq i < j \leq n, \quad f_{ij} := x_i y_j - x_j y_i$
Binomial ideals $\subset S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$

$1 \leq i < j \leq n, \ f_{ij} := x_iy_j - x_jy_i$

$G = (V(G) = [n], \ E(G)) \longrightarrow J_G := (f_{ij} : \{i,j\} \in E(G)) \subset S$
Binomial ideals $\subset S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$

$1 \leq i < j \leq n, \quad f_{ij} := x_i y_j - x_j y_i$

$G = (V(G) = [n], E(G)) \rightarrow J_G := (f_{ij} : \{i, j\} \in E(G)) \subset S$

The binomial edge ideal of G
Binomial ideals $\subset S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$

$1 \leq i < j \leq n, \ f_{ij} := x_i y_j - x_j y_i$

$G = (V(G) = [n], E(G)) \longrightarrow J_G := (f_{ij} : \{i, j\} \in E(G)) \subset S$

The binomial edge ideal of G

Ahmet Dokuyucu On the resolution of binomial edge ideals
First examples

- $G = K_n$, $J_G = (f_{ij} : 1 \leq i < j \leq n) = l_2(X)$ where

$$X = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{pmatrix}.$$
First examples

- $G = K_n$, $J_G = (f_{ij} : 1 \leq i < j \leq n) = I_2(X)$ where
 \[
 X = \begin{pmatrix}
 x_1 & x_2 & \cdots & x_n \\
 y_1 & y_2 & \cdots & y_n
 \end{pmatrix}.
 \]

- $G = L_n$, $J_G = (f_{i,i+1} : 1 \leq i \leq n-1)$, the ideal of adjacent minors of X.

Ahmet Dokuyucu
On the resolution of binomial edge ideals
Theorem (HHHKR)

Let G be a simple graph on the vertex set $[n]$ with the edge set $E(G)$, and let $<$ be the lexicographic order on S induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$. Then the following conditions are equivalent:

(a) The generators f_{ij} of J_G form a quadratic Gröbner basis.

(b) For all edges $\{i, j\}$ and $\{i, k\}$ with $j > i < k$ or $j < i > k$ one has $\{j, k\} \in E(G)$.
Closed graphs

1. Closed
 - 1 → 2 → 3
 - 2 → 3

2. Not closed
 - 2 → 1 → 3
Closed graphs

\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
\end{array} \]
Ahmet Dokuyucu

On the resolution of binomial edge ideals
Closed graph = there exists a labeling of its vertices with respect to which it is closed.
Closed graph = there exists a labeling of its vertices with respect to which it is closed.

\[G \text{ closed} \implies G \text{ chordal and claw-free.} \]
Closed graph = there exists a labeling of its vertices with respect to which it is closed.

\[G \text{ closed } \implies G \text{ chordal and claw-free.} \]
Ahmet Dokuyucu

On the resolution of binomial edge ideals
Closed graphs with CM binomial edge ideal: Betti numbers

Theorem (Ene, Herzog, Hibi)

Let G be a closed graph with Cohen–Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}(J_G))$ for all i and j.
Closed graphs with CM binomial edge ideal: Betti numbers

Theorem (Ene, Herzog, Hibi)

Let G be a closed graph with Cohen–Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}(J_G))$ for all i and j.

Conjectures:

- $\beta_{ij}(J_G) = \beta_{ij}(\text{in}_<(J_G))$ for all i and j for any closed graph G.
Theorem (Ene, Herzog, Hibi)

Let G be a closed graph with Cohen–Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}(J_G))$ for all i and j.

Conjectures:

- $\beta_{ij}(J_G) = \beta_{ij}(\text{in}_<(J_G))$ for all i and j for any closed graph G.
- The extremal Betti numbers of J_G and $\text{in}_<(J_G)$ coincide for any graph G.
Example
Example

<table>
<thead>
<tr>
<th></th>
<th>J_G</th>
<th>$\text{in}(J_G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>0:</td>
<td>1 – – – – –</td>
<td>1 – – – – – –</td>
</tr>
<tr>
<td>1:</td>
<td>– 6 4 – –</td>
<td>– 6 5 – – –</td>
</tr>
<tr>
<td>2:</td>
<td>– – 9 12 4</td>
<td>– 1 10 12 4</td>
</tr>
<tr>
<td>Total:</td>
<td>1 6 13 12 4</td>
<td>1 7 15 13 4</td>
</tr>
</tbody>
</table>

Ahmet Dokuyucu
On the resolution of binomial edge ideals
A. Dokuyucu, *Extremal Betti numbers of some classes of binomial edge ideals*, accepted, The Mathematical Reports.
A. Dokuyucu, *Extremal Betti numbers of some classes of binomial edge ideals*, accepted, The Mathematical Reports.

A. Dokuyucu, *Extremal Betti numbers of some classes of binomial edge ideals*, accepted, The Mathematical Reports.

A. Dokuyucu, *Extremal Betti numbers of some classes of binomial edge ideals*, accepted, The Mathematical Reports.

Betti diagram of S/J_G where $G = K_{m,n}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>mn</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>β_{24}</td>
<td>...</td>
<td>$\beta_{p,p+2}$</td>
</tr>
</tbody>
</table>

where $p = \text{proj dim } S/J_G = \begin{cases} m, & \text{if } n = 1, \\ 2m + n - 2, & \text{if } n > 1. \end{cases}$

\[S/J_G \text{ has a unique extremal Betti number, namely } \]

\[\beta_{p,p+2} = \begin{cases}
 m-1, & \text{if } p = m, \\
 n-1, & \text{if } p = 2m+n-2.
\end{cases} \]
Theorem (HHHKR)

The set of binomials

\[\mathcal{G} = \bigcup_{i<j} \{ u_\pi f_{ij} : \pi \text{ is an admissible path from } i \text{ to } j \} \]

is the reduced Gröbner basis of \(J_G \) with respect to lexicographic order on \(S \) induced by the natural order of indeterminates, \(x_1 > \cdots > x_n > y_1 > \cdots > y_n \).
Gröbner basis [HHHKR]

Definition

Let $i < j$ be two vertices of G. A path $i = i_0, i_1, \ldots, i_{r-1}, i_r = j$ from i to j is called **admissible** if the following conditions are satisfied:

(i) $i_k \neq i_\ell$ for $k \neq \ell$;

(ii) for each $k = 1, \ldots, r - 1$, one has either $i_k < i$ or $i_k > j$;

(iii) for any proper subset $\{j_1, \ldots, j_s\}$ of $\{i_1, \ldots, i_{r-1}\}$, the sequence i, j_1, \ldots, j_s, j is not a path in G.

With a given admissible path π of G from i to j, we associate a monomial

$$u_\pi = (\prod_{i_k > j} x_{i_k})(\prod_{i_\ell < i} y_{i_\ell}),$$

where $\pi : i = i_0, i_1, \ldots, i_{r-1}, i_r = j$, from i to j, $i < j$.
Let $G = K_{3,2}$ be a complete bipartite graph with 5 vertices.

The admissible paths of $K_{3,2}$ other than the edges are:

$$
\pi_1 = 1, 4, 2; \quad \pi_2 = 1, 5, 2; \quad \pi_3 = 1, 4, 3; \quad \pi_4 = 1, 5, 3; \quad \pi_5 = 2, 4, 3; \\
\pi_6 = 2, 5, 3; \quad \pi_7 = 4, 1, 5; \quad \pi_8 = 4, 2, 5; \quad \pi_9 = 4, 3, 5.
$$
Let $G = K_{3,2}$ be a complete bipartite graph with 5 vertices.

The admissible paths of $K_{3,2}$ other than the edges are:

$\pi_1 = 1, 4, 2; \quad \pi_2 = 1, 5, 2; \quad \pi_3 = 1, 4, 3; \quad \pi_4 = 1, 5, 3; \quad \pi_5 = 2, 4, 3; \quad \pi_6 = 2, 5, 3; \quad \pi_7 = 4, 1, 5; \quad \pi_8 = 4, 2, 5; \quad \pi_9 = 4, 3, 5.$

\[f_{14}, f_{15}, f_{24}, f_{25}, f_{34}, f_{35}, \]

\[x_4 f_{12}, x_5 f_{12}, x_4 f_{13}, x_5 f_{13}, x_4 f_{23}, x_5 f_{23}, y_1 f_{45}, y_2 f_{45}, y_3 f_{45} \]
Corollary

Let $G = K_{m,n}$ be the complete bipartite graph on the vertex set $V(G) = \{1, \ldots, m\} \cup \{m + 1, \ldots, m + n\}$. Then

$$\text{in}_<(J_G) = (\{x_i y_j\}_{1 \leq i \leq m}^{m+1 \leq j \leq m+n}, \{x_i x_{m+k} y_j\}_{1 \leq i < j \leq m}, \{x_{m+i} y_k y_{m+j}\}_{1 \leq i < j \leq n}^{1 \leq k \leq m}).$$
Theorem

Let $G = K_{m,n}$ be the complete graph. Then

(a) $\text{in}_<(J_G)$ has linear quotients.

(b) The graded Betti numbers of $\text{in}_<(J_G)$ are:

$$\beta_{t,t+2}(\text{in}_<(J_G)) = \sum_{1 \leq i \leq m, m+1 \leq j \leq m+n} \binom{i+j-m-2}{t},$$

$$\beta_{t,t+3}(\text{in}_<(J_G)) = \begin{cases}
\sum_{1 \leq i < j \leq m, 1 \leq k \leq n} \binom{n+k+j-3}{t}, & \text{if } n = 1, \\
\sum_{1 \leq i < j \leq m, 1 \leq k \leq n} \binom{n+k+j-3}{t} + \sum_{1 \leq i < j \leq n, 1 \leq k \leq m} \binom{m+k+j-3}{t}, & \text{if } n > 1.
\end{cases}$$
Corollary

Let $G = K_{m,n}$ be the complete graph. Then:

(a) $\text{projdim}(S/\text{in}_<(J_G)) = \text{projdim}(\text{in}_<(J_G)) + 1 = \begin{cases} m, & \text{if } n = 1, \\ 2m + n - 2, & \text{if } n > 1. \end{cases}$

(b) $S/\text{in}_<(J_G)$ has a unique extremal Betti number, namely

$$\beta_{p,p+2}(S/\text{in}_<(J_G)) = \beta_{p-1,p+2}(\text{in}_<(J_G)) = \begin{cases} m - 1, & \text{if } n = 1, \\ n - 1, & \text{if } n > 1. \end{cases}$$
$C_n, n \geq 4$

\[
\begin{array}{ccccccc}
 & 0 & 1 & 2 & 3 & \cdots & n \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & n & 0 & 0 & \cdots & 0 \\
2 & 0 & 0 & \beta_{24} & 0 & \cdots & 0 \\
3 & 0 & 0 & 0 & \beta_{36} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
n-2 & 0 & 0 & \beta_{2,n} & \beta_{3,n+1} & \cdots & \beta_{n,2n-2}
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & \cdots & n \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & n & 0 & 0 & \cdots & 0 \\
2 & 0 & 0 & \beta_{24} & 0 & \cdots & 0 \\
3 & 0 & 0 & 0 & \beta_{36} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
n-2 & 0 & 0 & \beta_{2,n} & \beta_{3,n+1} & \cdots & \beta_{n,2n-2} \\
\end{array}
\]

\[
\beta_{n,2n-2} = \binom{n-1}{2} - 1.
\]
Admissible paths in C_n: edges $i, i+1$ for $1 \leq i \leq n-1$ and $1, n$ together with $i, i-1, \ldots, 1, n, n-1, \ldots, j+1, j$ where $2 \leq j - i \leq n-2$.
Admissible paths in C_n: edges $i, i+1$ for $1 \leq i \leq n-1$ and $1, n$ together with $i, i-1, \ldots, 1, n, n-1, \ldots, j+1, j$ where $2 \leq j - i \leq n-2$.

Corollary

Let G be the n–cycle with the natural labeling of its vertices. Then

$$\text{in}_<(J_G) = (x_1y_2, \ldots, x_{n-1}y_n, x_1y_n, \{x_i x_{j+1} \cdots x_n y_1 \cdots y_{i-1} y_j\} \mid 2 \leq j - i \leq n-2).$$
$C_n, n \geq 4$

$\text{in}_<(J_G)$ is minimally generated by the initial monomials of the binomials corresponding to the edges of G and by $m = n(n-3)/2$ monomials of degree ≥ 3 which we denote by v_1, \ldots, v_m where we assume that if $i < j$, then either $\deg v_i < \deg v_j$ or $\deg v_i = \deg v_j$ and $v_i > v_j$.
In \(\text{in}_{<}(J_G) \) is minimally generated by the initial monomials of the binomials corresponding to the edges of \(G \) and by \(m = n(n-3)/2 \) monomials of degree \(\geq 3 \) which we denote by \(v_1, \ldots, v_m \) where we assume that if \(i < j \), then either \(\deg v_i < \deg v_j \) or \(\deg v_i = \deg v_j \) and \(v_i > v_j \).

If \(v_k = x_ix_{i+1} \cdots x_ny_1 \cdots y_{i-1}y_j \), we have \(\deg v_k = n-j+i+1 \).

Hence, there are two monomials of degree 3, namely, \(v_1 = x_1x_ny_{n-1} \) and \(v_2 = x_2y_1y_n \), three monomials of degree 4, namely, \(v_3 = x_1x_{n-1}x_ny_{n-2} \), \(v_4 = x_2x_ny_1y_{n-1} \), \(v_5 = x_3y_1y_2y_n \), etc.
Notation. \(J = (x_1y_2, x_2y_3, \ldots, x_{n-1}y_n) \), \(I = J + (x_1y_n) \), and, for \(1 \leq k \leq m \), \(I_k = I_{k-1} + (v_k) \), with \(I_0 = I \). Therefore, \(I_m = \text{in}_<(J_G) \).
Notation. \(J = (x_1y_2, x_2y_3, \ldots, x_{n-1}y_n) \), \(I = J + (x_1y_n) \), and, for \(1 \leq k \leq m \), \(l_k = l_{k-1} + (v_k) \), with \(l_0 = l \). Therefore, \(l_m = \text{in}_<(J_G) \).

Lemma

The ideals quotient \(J : (x_1y_n) \) and \(l_{k-1} : (v_k) \), for \(k \geq 1 \), are minimally generated by regular sequences of monomials of length \(n-1 \).
Theorem

Let G be a cycle. Then $S/\text{in}_<(J_G)$ and S/J_G have the same extremal Betti number, namely

$$\beta_{n,2n-2}(S/J_G) = \beta_{n,2n-2}(S/\text{in}_<(J_G)) = \binom{n-1}{2} - 1.$$
Matsuda and Murai \cite{MatsudaMurai}: If \(G \) is any connected graph on the vertex set \([n]\), we have

\[
\ell \leq \text{reg}(S/J_G) \leq n - 1,
\]

where \(\ell \) is the length of the longest induced path of \(G \).
Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If G is any connected graph on the vertex set $[n]$, we have

$$\ell \leq \text{reg}(S/J_G) \leq n - 1,$$

where ℓ is the length of the longest induced path of G.

Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If G is any connected graph on the vertex set $[n]$, we have

$$\ell \leq \operatorname{reg}(S/J_G) \leq n - 1,$$

where ℓ is the length of the longest induced path of G.

Theorem

Let G be a closed graph. Then:

- $\operatorname{reg}(S/J_G) = \operatorname{reg}(S/\operatorname{in}(J_G)) = \text{the length of the longest induced path in } G$.

Ahmet Dokuyucu On the resolution of binomial edge ideals
Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If G is any connected graph on the vertex set $[n]$, we have

$$\ell \leq \text{reg}(S/J_G) \leq n - 1,$$

where ℓ is the length of the longest induced path of G.

Theorem

Let G be a closed graph. Then:

- $\text{reg}(S/J_G) = \text{reg}(S/\text{in}(J_G)) = \text{the length of the longest induced path in } G.$
Example
Example

\[\text{reg}(S/J_G) = \text{reg}(S/\text{in}(J_G)) = 4 \]
Example

\[
\text{reg}(S/J_G) = \text{reg}(S/\text{in}(J_G)) = 4
\]

Question: May we characterize the connected graphs \(G \) whose longest induced path has length \(\ell \) and \(\text{reg}(S/J_G) = \ell \)?
Example

\[\text{reg}(S/J_G) = \text{reg}(S/\text{in}(J_G)) = 4 \]

Question: May we characterize the connected graphs G whose longest induced path has length ℓ and $\text{reg}(S/J_G) = \ell$?

Positive answer for trees (almost never closed).
C_ℓ-graphs

Let G be a connected graph on the vertex set $[n]$ which consists of

(i) a sequence of maximal cliques F_1, \ldots, F_ℓ with $\dim F_i \geq 1$ for all i such that $|F_i \cap F_{i+1}| = 1$ for $1 \leq i \leq \ell - 1$ and $F_i \cap F_j = \emptyset$ for any $i < j$ such that $j \neq i + 1$, together with

(ii) some additional edges of the form $F = \{j, k\}$ where j is an intersection point of two consecutive cliques F_i, F_{i+1} for some $1 \leq i \leq \ell - 1$, and k is a vertex of degree 1.
Theorem

Let G be a C_ℓ-graph on the vertex set $[n]$. Then

$$\text{reg}(S/J_G) = \text{reg}(S/\text{in}_<(J_G)) = \ell$$

and

$$\text{depth } S/J_G = \text{depth } (S/\text{in}_<(J_G)) = n + 1.$$
Caterpillar trees

A *caterpillar tree* is a tree T with the property that it contains a path P such that any vertex of T is either a vertex of P or it is adjacent to a vertex of P. Clearly, any caterpillar tree is a C_ℓ-graph for some positive integer ℓ.
Caterpillar trees

A caterpillar tree is a tree T with the property that it contains a path P such that any vertex of T is either a vertex of P or it is adjacent to a vertex of P. Clearly, any caterpillar tree is a C_ℓ-graph for some positive integer ℓ.

Figure: Caterpillar
Let T be a tree on the vertex set $[n]$ whose longest induced path P has length ℓ. Then $\text{reg}(S/J_T) = \ell$ if and only if T is caterpillar.