# On the resolution of binomial edge ideals 

Ahmet Dokuyucu ${ }^{1}$

## The National School on Algebra

Bucharest, September 2014

[^0]
## Outline

- Objects


## Outline

- Objects
- Problems and results


## Combinatorial objects

Simple graphs: undirected, no loops, no multiple edges

## Combinatorial objects

Simple graphs: undirected, no loops, no multiple edges

$$
G: V(G)=[n], E(G)
$$

## Combinatorial objects

Simple graphs: undirected, no loops, no multiple edges

$$
G: V(G)=[n], E(G)
$$



## Algebraic objects

## Binomial ideals $\subset S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$

## Algebraic objects

Binomial ideals $\subset S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$

$$
1 \leq i<j \leq n, f_{i j}:=x_{i} y_{j}-x_{j} y_{i}
$$

## Algebraic objects

Binomial ideals $\subset S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$

$$
1 \leq i<j \leq n, f_{i j}:=x_{i} y_{j}-x_{j} y_{i}
$$

$$
G=(V(G)=[n], E(G)) \longrightarrow J_{G}:=\left(f_{i j}:\{i, j\} \in E(G)\right) \subset S
$$

## Algebraic objects

$$
\begin{gathered}
\text { Binomial ideals } \subset S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \\
1 \leq i<j \leq n, f_{i j}:=x_{i} y_{j}-x_{j} y_{i} \\
G=(V(G)=[n], E(G)) \longrightarrow J_{G}:=\left(f_{i j}:\{i, j\} \in E(G)\right) \subset S \\
\text { The binomial edge ideal of } G
\end{gathered}
$$

## Algebraic objects

$$
\begin{gathered}
\text { Binomial ideals } \subset S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \\
1 \leq i<j \leq n, f_{i j}:=x_{i} y_{j}-x_{j} y_{i} \\
G=(V(G)=[n], E(G)) \longrightarrow J_{G}:=\left(f_{i j}:\{i, j\} \in E(G)\right) \subset S \\
\text { The binomial edge ideal of } G
\end{gathered}
$$

图 [HHHKR] J. Herzog, T. Hibi, F. Hreinsdotir, T. Kahle, J. Rauh, Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), 317-333.

目 M. Ohtani, Graphs and Ideals generated by some 2-minors, Commun. Algebra 39 (2011), no. 3, 905-917.

## First examples

- $G=K_{n}, J_{G}=\left(f_{i j}: 1 \leq i<j \leq n\right)=I_{2}(X)$ where

$$
X=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)
$$

## First examples

- $G=K_{n}, J_{G}=\left(f_{i j}: 1 \leq i<j \leq n\right)=I_{2}(X)$ where

$$
X=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)
$$

- $G=L_{n}, J_{G}=\left(f_{i, i+1}: 1 \leq i \leq n-1\right)$, the ideal of adjacent minors of $X$.


## Quadratic Gröbner basis [HHHKR]

## Theorem (HHHKR)

Let $G$ be a simple graph on the vertex set $[n]$ with the edge set $E(G)$, and let $<$ be the lexicographic order on $S$ induced by $x_{1}>\cdots>x_{n}>y_{1}>\cdots>y_{n}$. Then the following conditions are equivalent:
(a) The generators $f_{i j}$ of $J_{G}$ form a quadratic Gröbner basis.
(b) For all edges $\{i, j\}$ and $\{i, k\}$ with $j>i<k$ or $j<i>k$ one has $\{j, k\} \in E(G)$.


## Closed graphs


2
closed

1
not closed

## Closed graphs



## Closed graphs



## Closed graph $=$ there exists a labeling of its vertices with respect to which it is closed.

# Closed graph $=$ there exists a labeling of its vertices with respect to which it is closed. 

## $G$ closed $\Longrightarrow G$ chordal and claw-free.

# Closed graph $=$ there exists a labeling of its vertices with respect to which it is closed. 

## $G$ closed $\Longrightarrow G$ chordal and claw-free.




## Closed graphs with CM binomial edge ideal: Betti numbers

## Theorem (Ene, Herzog, Hibi)

Let $G$ be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\operatorname{in}\left(J_{G}\right)\right)$ for all $i$ and $j$.

## Closed graphs with CM binomial edge ideal: Betti numbers

## Theorem (Ene, Herzog, Hibi)

Let $G$ be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\operatorname{in}\left(J_{G}\right)\right)$ for all $i$ and $j$.

## Conjectures:

- $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\mathrm{in}_{<}\left(J_{G}\right)\right)$ for all $i$ and $j$ for any closed graph $G$.


## Closed graphs with CM binomial edge ideal: Betti numbers

## Theorem (Ene, Herzog, Hibi)

Let $G$ be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\operatorname{in}\left(J_{G}\right)\right)$ for all $i$ and $j$.

## Conjectures:

- $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\mathrm{in}_{<}\left(J_{G}\right)\right)$ for all $i$ and $j$ for any closed graph $G$.
- The extremal Betti numbers of $J_{G}$ and $\mathrm{in}_{<}\left(J_{G}\right)$ coincide for any graph $G$.


## Example



## Example


(R. Dokuyucu, Extremal Betti numbers of some classes of binomial edge ideals, accepted, The Mathematical Reports.
A. Dokuyucu, Extremal Betti numbers of some classes of binomial edge ideals, accepted, The Mathematical Reports.
睩 Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).
A. Dokuyucu, Extremal Betti numbers of some classes of binomial edge ideals, accepted, The Mathematical Reports.
睩 Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).

## $K_{m, n}$

A. Dokuyucu, Extremal Betti numbers of some classes of binomial edge ideals, accepted, The Mathematical Reports.
R Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).

Betti diagram of $S / J_{G}$ where $G=K_{m, n}$

|  | 0 | 1 | 2 | $\cdots$ | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | $\cdots$ | 0 |
| 1 | 0 | $m n$ | 0 | $\cdots$ | 0 |
| 2 | 0 | 0 | $\beta_{24}$ | $\cdots$ | $\beta_{p, p+2}$ |

where $p=\operatorname{proj} \operatorname{dim} S / J_{G}= \begin{cases}m, & \text { if } n=1, \\ 2 m+n-2, & \text { if } n>1 .\end{cases}$

- Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).


## $K_{m, n}$

(1. Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).
$S / J_{G}$ has a unique extremal Betti number, namely

$$
\beta_{p, p+2}= \begin{cases}m-1, & \text { if } p=m \\ n-1, & \text { if } p=2 m+n-2\end{cases}
$$

## Gröbner basis [HHHKR]

## Theorem (HHHKR)

The set of binomials

$$
\mathscr{G}=\bigcup_{i<j}\left\{u_{\pi} f_{i j}: \pi \text { is an admissible path from } i \text { to } j\right\}
$$

is the reduced Gröbner basis of $J_{G}$ with respect to lexicographic order on $S$ induced by the natural order of indeterminates, $x_{1}>\cdots>x_{n}>y_{1}>\cdots>y_{n}$.

## Gröbner basis [HHHKR]

## Definition

Let $i<j$ be two vertices of $G$. A path $i=i_{0}, i_{1}, \ldots, i_{r-1}, i_{r}=j$ from $i$ to $j$ is called admissible if the following conditions are satisfied:
(i) $i_{k} \neq i_{\ell}$ for $k \neq \ell$;
(ii) for each $k=1, \ldots, r-1$, one has either $i_{k}<i$ or $i_{k}>j$;
(iii) for any proper subset $\left\{j_{1}, \ldots, j_{s}\right\}$ of $\left\{i_{1}, \ldots, i_{r-1}\right\}$, the sequence $i, j_{1}, \ldots, j_{s}, j$ is not a path in $G$.

With a given admissible path $\pi$ of $G$ from $i$ to $j$, we associate a monomial

$$
u_{\pi}=\left(\prod_{i_{k}>j} x_{i_{k}}\right)\left(\prod_{i_{\ell}<i} y_{i_{\ell}}\right)
$$

where $\pi: i=i_{0}, i_{1}, \ldots, i_{r-1}, i_{r}=j$, from $i$ to $j, i<j$,

## Gröbner basis [HHHKR]

Let $G=K_{3,2}$ be a complete bipartite graph with 5 vertices.


The admissible paths of $K_{3.2}$ other than the edges are:

$$
\begin{gathered}
\pi_{1}=1,4,2 ; \quad \pi_{2}=1,5,2 ; \quad \pi_{3}=1,4,3 ; \quad \pi_{4}=1,5,3 ; \quad \pi_{5}=2,4,3 ; \\
\pi_{6}=2,5,3 ; \quad \pi_{7}=4,1,5 ; \quad \pi_{8}=4,2,5 ; \quad \pi_{9}=4,3,5 .
\end{gathered}
$$

## Gröbner basis [HHHKR]

Let $G=K_{3,2}$ be a complete bipartite graph with 5 vertices.


The admissible paths of $K_{3.2}$ other than the edges are:

$$
\begin{gathered}
\pi_{1}=1,4,2 ; \quad \pi_{2}=1,5,2 ; \quad \pi_{3}=1,4,3 ; \quad \pi_{4}=1,5,3 ; \quad \pi_{5}=2,4,3 ; \\
\pi_{6}=2,5,3 ; \quad \pi_{7}=4,1,5 ; \quad \pi_{8}=4,2,5 ; \quad \pi_{9}=4,3,5 .
\end{gathered}
$$

$$
f_{14}, f_{15}, f_{24}, f_{25}, f_{34}, f_{35},
$$

$x_{4} f_{12}, x_{5} f_{12}, x_{4} f_{13}, x_{5} f_{13}, x_{4} f_{23}, x_{5} f_{23}, y_{1} f_{45}, y_{2} f_{45}, y_{3} f_{45}$

## $K_{m, n}$

## Corollary

Let $G=K_{m, n}$ be the complete bipartite graph on the vertex set $V(G)=\{1, \ldots, m\} \cup\{m+1, \ldots, m+n\}$. Then $\operatorname{in}_{<}\left(J_{G}\right)=\left(\left\{x_{i} y_{j}\right\}_{\substack{1 \leq i \leq m \\ m+1 \leq j \leq m+n}}^{\left.1,\left\{x_{i} x_{m+k} y_{j}\right\}_{\substack{1 \leq i j i \leq m \\ 1 \leq k \leq n}},\left\{x_{m+i} y_{k} y_{m+j}\right\}_{\substack{1 \leq i j i \leq n \\ 1 \leq k \leq m}}\right) . . . . . . . ~}\right.$

## $K_{m, n}$

## Theorem

Let $G=K_{m, n}$ be the complete graph. Then
(a) $\mathrm{in}_{<}\left(J_{G}\right)$ has linear quotients.
(b) The graded Betti numbers of $\mathrm{in}_{<}\left(J_{G}\right)$ are:

$$
\begin{gathered}
\beta_{t, t+2}\left(\operatorname{in}_{<}\left(J_{G}\right)\right)=\sum_{\substack{1 \leq i \leq m \\
m+1 \leq j \leq m+n}}\binom{i+j-m-2}{t}, \\
\beta_{t, t+3}\left(\operatorname{in}_{<}\left(J_{G}\right)\right)= \begin{cases}\left.\sum_{\substack{1 \leq i<j \leq m \\
1 \leq k \leq n}}^{\substack{n+k+j-3 \\
t}} \begin{array}{c}
\sum_{1 \leq i \leq j \leq m}\left(\begin{array}{c}
n+k+j-3 \\
1 \leq k \leq n
\end{array}\right. \\
t
\end{array}\right)+\sum_{\substack{1 \leq i<j \leq n \\
1 \leq k \leq m}}\binom{m+k+j-3}{t}, & \text { if } n>1 .\end{cases}
\end{gathered}
$$

## $K_{m, n}$

## Corollary

Let $G=K_{m, n}$ be the complete graph. Then:
(a) $\operatorname{proj} \operatorname{dim}\left(S / \mathrm{in}_{<}\left(J_{G}\right)\right)=\operatorname{projdim}\left(\mathrm{in}_{<}\left(J_{G}\right)\right)+1=$

$$
\begin{cases}m, & \text { if } n=1 \\ 2 m+n-2, & \text { if } n>1\end{cases}
$$

(b) $S / \mathrm{in}_{<}\left(J_{G}\right)$ has a unique extremal Betti number, namely

$$
\beta_{p, p+2}\left(S / \mathrm{in}_{<}\left(J_{G}\right)\right)=\beta_{p-1, p+2}\left(\operatorname{in}_{<}\left(J_{G}\right)\right)= \begin{cases}m-1, & \text { if } n=1, \\ n-1, & \text { if } n>1 .\end{cases}
$$

## $C_{n}, n \geq 4$

回 Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).

## $C_{n}, n \geq 4$

- Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).

|  | 0 | 1 | 2 | 3 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | $\cdots$ | 0 |
| 1 | 0 | $n$ | 0 | 0 | $\cdots$ | 0 |
| 2 | 0 | 0 | $\beta_{24}$ | 0 | $\cdots$ | 0 |
| 3 | 0 | 0 | 0 | $\beta_{36}$ | $\cdots$ | 0 |
| $\vdots$ |
| $n-2$ | 0 | 0 | $\beta_{2, n}$ | $\beta_{3, n+1}$ | $\cdots$ | $\beta_{n, 2 n-2}$ |

## $C_{n}, n \geq 4$

- Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, The Electronic Journal of Combinatorics (2013).

|  | 0 | 1 | 2 | 3 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | $\cdots$ | 0 |
| 1 | 0 | $n$ | 0 | 0 | $\cdots$ | 0 |
| 2 | 0 | 0 | $\beta_{24}$ | 0 | $\cdots$ | 0 |
| 3 | 0 | 0 | 0 | $\beta_{36}$ | $\cdots$ | 0 |
| $\vdots$ |
| $n-2$ | 0 | 0 | $\beta_{2, n}$ | $\beta_{3, n+1}$ | $\cdots$ | $\beta_{n, 2 n-2}$ |

$$
\beta_{n, 2 n-2}=\binom{n-1}{2}-1 .
$$

## $C_{n}, n \geq 4$

Admissible paths in $C_{n}$ : edges $i, i+1$ for $1 \leq i \leq n-1$ and $1, n$ together with $i, i-1, \ldots, 1, n, n-1, \ldots, j+1, j$ where $2 \leq j-i \leq n-2$.

## $C_{n}, n \geq 4$

Admissible paths in $C_{n}$ : edges $i, i+1$ for $1 \leq i \leq n-1$ and $1, n$ together with $i, i-1, \ldots, 1, n, n-1, \ldots, j+1, j$ where $2 \leq j-i \leq n-2$.

## Corollary

Let $G$ be the $n$-cycle with the natural labeling of its vertices. Then
$\operatorname{in}_{<}\left(J_{G}\right)=\left(x_{1} y_{2}, \ldots, x_{n-1} y_{n}, x_{1} y_{n},\left\{x_{i} x_{j+1} \cdots x_{n} y_{1} \cdots y_{i-1} y_{j}\right\}_{2 \leq j-i \leq n-2}\right)$.

## $C_{n}, n \geq 4$

$\mathrm{in}_{<}\left(J_{G}\right)$ is minimally generated by the initial monomials of the binomials corresponding to the edges of $G$ and by $m=n(n-3) / 2$ monomials of degree $\geq 3$ which we denote by $v_{1}, \ldots, v_{m}$ where we assume that if $i<j$, then either $\operatorname{deg} v_{i}<\operatorname{deg} v_{j}$ or $\operatorname{deg} v_{i}=\operatorname{deg} v_{j}$ and $v_{i}>v_{j}$.

## $C_{n}, n \geq 4$

$\mathrm{in}_{<}\left(J_{G}\right)$ is minimally generated by the initial monomials of the binomials corresponding to the edges of $G$ and by $m=n(n-3) / 2$ monomials of degree $\geq 3$ which we denote by $v_{1}, \ldots, v_{m}$ where we assume that if $i<j$, then either $\operatorname{deg} v_{i}<\operatorname{deg} v_{j}$ or $\operatorname{deg} v_{i}=\operatorname{deg} v_{j}$ and $v_{i}>v_{j}$.
If $v_{k}=x_{i} x_{j+1} \cdots x_{n} y_{1} \cdots y_{i-1} y_{j}$, we have $\operatorname{deg} v_{k}=n-j+i+1$.
Hence, there are two monomials of degree 3, namely, $v_{1}=x_{1} x_{n} y_{n-1}$ and $v_{2}=x_{2} y_{1} y_{n}$, three monomials of degree 4, namely, $v_{3}=x_{1} x_{n-1} x_{n} y_{n-2}, v_{4}=x_{2} x_{n} y_{1} y_{n-1}, v_{5}=x_{3} y_{1} y_{2} y_{n}$, etc.

## $C_{n}, n \geq 4$

Notation. $J=\left(x_{1} y_{2}, x_{2} y_{3}, \ldots, x_{n-1} y_{n}\right), I=J+\left(x_{1} y_{n}\right)$, and, for $1 \leq k \leq m, I_{k}=I_{k-1}+\left(v_{k}\right)$, with $I_{0}=I$. Therefore, $I_{m}=\operatorname{in}_{<}\left(J_{G}\right)$.

## $C_{n}, n \geq 4$

Notation. $J=\left(x_{1} y_{2}, x_{2} y_{3}, \ldots, x_{n-1} y_{n}\right), I=J+\left(x_{1} y_{n}\right)$, and, for $1 \leq k \leq m, I_{k}=I_{k-1}+\left(v_{k}\right)$, with $I_{0}=I$. Therefore, $I_{m}=\operatorname{in}_{<}\left(J_{G}\right)$.

## Lemma

The ideals quotient $J:\left(x_{1} y_{n}\right)$ and $I_{k-1}:\left(v_{k}\right)$, for $k \geq 1$, are minimally generated by regular sequences of monomials of length $n-1$.

## $C_{n}, n \geq 4$

## Theorem

Let $G$ be a cycle. Then $S / \mathrm{in}_{<}\left(J_{G}\right)$ and $S / J_{G}$ have the same extremal Betti number, namely
$\beta_{n, 2 n-2}\left(S / J_{G}\right)=\beta_{n, 2 n-2}\left(S / \mathrm{in}_{<}\left(J_{G}\right)\right)=\binom{n-1}{2}-1$.

## $C_{\ell}$-graphs

Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If $G$ is any connected graph on the vertex set [ $n$ ], we have

$$
\ell \leq \operatorname{reg}\left(S / J_{G}\right) \leq n-1
$$

where $\ell$ is the length of the longest induced path of $G$.

## $C_{\ell}$-graphs

Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If $G$ is any connected graph on the vertex set [ $n$ ], we have

$$
\ell \leq \operatorname{reg}\left(S / J_{G}\right) \leq n-1,
$$

where $\ell$ is the length of the longest induced path of $G$.
围 V. Ene, A. Zarojanu, On the regularity of binomial edge ideals, Math. Nachr. (2014)

## $C_{\ell}$-graphs

Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If $G$ is any connected graph on the vertex set [ $n$ ], we have

$$
\ell \leq \operatorname{reg}\left(S / J_{G}\right) \leq n-1,
$$

where $\ell$ is the length of the longest induced path of $G$.
目 V. Ene, A. Zarojanu, On the regularity of binomial edge ideals, Math. Nachr. (2014)

## Theorem

Let $G$ be a closed graph. Then:

- $\operatorname{reg}\left(S / J_{G}\right)=\operatorname{reg}\left(S / \operatorname{in}\left(J_{G}\right)\right)=$ the length of the longest induced path in $G$.


## $C_{\ell}$-graphs

Matsuda and Murai [Regularity bounds for binomial edge ideals, J. Commut. Algebra (2013)]: If $G$ is any connected graph on the vertex set [ $n$ ], we have

$$
\ell \leq \operatorname{reg}\left(S / J_{G}\right) \leq n-1,
$$

where $\ell$ is the length of the longest induced path of $G$.
目 V. Ene, A. Zarojanu, On the regularity of binomial edge ideals, Math. Nachr. (2014)

## Theorem

Let $G$ be a closed graph. Then:

- $\operatorname{reg}\left(S / J_{G}\right)=\operatorname{reg}\left(S / \operatorname{in}\left(J_{G}\right)\right)=$ the length of the longest induced path in $G$.


## Example



## Example



$$
\operatorname{reg}\left(S / J_{G}\right)=\operatorname{reg}\left(S / \operatorname{in}\left(J_{G}\right)\right)=4
$$

## Example



$$
\operatorname{reg}\left(S / J_{G}\right)=\operatorname{reg}\left(S / \operatorname{in}\left(J_{G}\right)\right)=4
$$

Question: May we characterize the connected graphs $G$ whose longest induced path has length $\ell$ and $\operatorname{reg}\left(S / J_{G}\right)=\ell$ ?

## Example



$$
\operatorname{reg}\left(S / J_{G}\right)=\operatorname{reg}\left(S / \operatorname{in}\left(J_{G}\right)\right)=4
$$

Question: May we characterize the connected graphs $G$ whose longest induced path has length $\ell$ and $\operatorname{reg}\left(S / J_{G}\right)=\ell$ ?
Positive answer for trees (almost never closed).

## $C_{\ell}$-graphs

围 F. Chaudry, A. Dokuyucu, R. Irfan, On the binomial edge ideals of block graphs, submitted.

## $C_{\ell}$-graphs

(e) F. Chaudry, A. Dokuyucu, R. Irfan, On the binomial edge ideals of block graphs, submitted.


## $C_{\ell \text {-graphs }}$

F. Chaudry, A. Dokuyucu, R. Irfan, On the binomial edge ideals of block graphs, submitted.


Let $G$ be a connected graph on the vertex set $[n]$ which consists of
(i) a sequence of maximal cliques $F_{1}, \ldots, F_{\ell}$ with $\operatorname{dim} F_{i} \geq 1$ for all $i$ such that $\left|F_{i} \cap F_{i+1}\right|=1$ for $1 \leq i \leq \ell-1$ and $F_{i} \cap F_{j}=\emptyset$ for any $i<j$ such that $j \neq i+1$, together with
(ii) some additional edges of the form $F=\{j, k\}$ where $j$ is an intersection point of two consecutive cliques $F_{i}, F_{i+1}$ for some $1 \leq i \leq \ell-1$, and $k$ is a vertex of degree 1 .

## $C_{\ell \text {-graphs }}$

## Theorem

Let $G$ be a $C_{\ell}$-graph on the vertex set $[n]$. Then

$$
\operatorname{reg}\left(S / J_{G}\right)=\operatorname{reg}\left(S / \operatorname{in}_{<}\left(J_{G}\right)\right)=\ell
$$

and

$$
\left.\operatorname{depth} S / J_{G}\right)=\operatorname{depth}\left(S / \operatorname{in}_{<}\left(J_{G}\right)\right)=n+1
$$

## Caterpillar trees

A caterpillar tree is a tree $T$ with the property that it contains a path $P$ such that any vertex of $T$ is either a vertex of $P$ or it is adjacent to a vertex of $P$. Clearly, any caterpillar tree is a $C_{\ell^{-}}$graph for some positive integer $\ell$.

## Caterpillar trees

A caterpillar tree is a tree $T$ with the property that it contains a path $P$ such that any vertex of $T$ is either a vertex of $P$ or it is adjacent to a vertex of $P$. Clearly, any caterpillar tree is a $C_{\ell^{-}}$graph for some positive integer $\ell$.


Figure: Caterpillar

## Caterpillar

## Theorem

Let $T$ be a tree on the vertex set $[n]$ whose longest induced path $P$ has length $\ell$. Then $\operatorname{reg}\left(S / J_{T}\right)=\ell$ if and only if $T$ is caterpillar.


[^0]:    ${ }^{1}$ Faculty of Mathematics and Computer Science, Ovidius University Bd. Mamaia 124, 900527 Constanta and Lumina-The University of South-East Europe Sos. Colentina nr. 64b, Bucharest, Romania

