Divisors on graphs, orientations, syzygies, and system reliability

Fatemeh Mohammadi

University of Osnabrück

The 22nd National School on Algebra
Algebraic and Combinatorial Applications of Toric Ideals
5 September 2014

Table of contents

Algebra: Lattice ideals

Divisor theory: Toppling ideals

Combinatorics: Partition ideals

Matroid theory: Lawrence ideals

Motivation:

These ideals appear in several different contexts. One can prove many numerical facts about one ideal by looking 'instead' at another ideal in this family. We can pick our favorite ideal to study its numerical invariants, and then translate them to the original setting.

- Graphic arrangements (Greene-Zaslavsky 1983, Novik-Postnikov-Sturmfels 2002, M-Shokrieh 2014)
- Parking functions (Postnikov-Shapiro 2004)
- Theory of divisors on graphs (Baker-Norine 2007, Manjunath-Sturmfels 2012, M-Shokrieh 2013)
- Deformation of Quasisymmetry Models (Kateri-M-Sturmfels 2014)
- The theory of system reliability (M. 2014)
- Percolation theory (M-Sáenz-Wynn, 2014)

Lattice ideals:

- G is a simple graph with $n=|V(G)|$
- Laplacian matrix of G : The symmetric $n \times n$ matrix with

$$
\begin{aligned}
& a_{i j}=\mid\left\{\text { edges between } v_{i} \text { and } v_{j}\right\} \mid \\
& a_{i i}=-\operatorname{deg}\left(v_{i}\right) .
\end{aligned}
$$

- $L(G) \subset Z^{n}$: generated by the columns of the Laplacian matrix.
- $S=K\left[x_{i}: v_{i} \in V(G)\right]$
- Lattice ideal:

$$
I_{G}=\left\langle\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}: \mathbf{u}, \mathbf{v} \in N^{n}, \mathbf{u}-\mathbf{v} \in L(G)\right\rangle .
$$

Questions:

Describe the algebraic invariants (a minimal free resolution) of I_{G} in combinatorial terms of graph.

More precisely:
Give a polyhedral complex minimally resolving the resolution of I_{G}.
For example:

- Betti numbers
- regularity: $|E(G)|-|V(G)|+1$
- Multiplicity (The leading coefficient of Hilbert polynomial): Number of spanning trees
- h-vector as an evaluation of Tutte polynomial $T(1, y)$
- The CW-complex resolving the minimal free resolution of I_{G}.

Divisors on graphs

- G is a simple graph
- $\operatorname{Div}(G)$: free abelian group generated by $V(G)$

$$
D=\sum_{v \in V(G)} a_{v}(v)
$$

$$
D(v):=a_{v} \in \mathbb{Z}
$$

Chip-firing game:

- initial configuration: assign an integer number of dollars to each vertex, D
- move: consists of a vertex v either borrowing one dollar from each of its neighbors or giving one dollar to each of its neighbors.
- $D \sim D^{\prime}$: there is a sequence of moves taking D to D^{\prime} in the chip-firing game.

Chip-firing game:

- initial configuration: assign an integer number of dollars to each vertex, D
- move: consists of a vertex v either borrowing one dollar from each of its neighbors or giving one dollar to each of its neighbors.
- $D \sim D^{\prime}$: there is a sequence of moves taking D to D^{\prime} in the chip-firing game.

Chip-firing game:

- initial configuration: assign an integer number of dollars to each vertex, D
- move: consists of a vertex v either borrowing one dollar from each of its neighbors or giving one dollar to each of its neighbors.
- $D \sim D^{\prime}$: there is a sequence of moves taking D to D^{\prime} in the chip-firing game.

Chip-firing game:

- initial configuration: assign an integer number of dollars to each vertex, D
- move: consists of a vertex v either borrowing one dollar from each of its neighbors or giving one dollar to each of its neighbors.
- $D \sim D^{\prime}$: there is a sequence of moves taking D to D^{\prime} in the chip-firing game.

The toppling ideal I_{G}

- $S=K\left[x_{i}: i \in V(G)\right]$
- $I_{G}:=\left\langle\mathbf{x}^{D_{1}}-\mathbf{x}^{D_{2}}: D_{1} \sim D_{2}\right.$ and $\left.D_{1}, D_{2} \geq 0\right\rangle$
- $M_{G}:=\mathrm{in}_{\text {revlex }}\left(I_{G}\right)$ with respect to $x_{1}>\cdots>x_{n}$.

Figure: $x_{2}^{3}-x_{1} x_{3} x_{4}$

Connected 2-partitions (Minimal generating set of I_{G})

Binomial associated to an 2-acyclic orientation

Figure: $x_{1} x_{3}^{2}-x_{2}^{2} x_{4}$

Binomial associated to an 2-acyclic orientation

Figure: $x_{1} x_{3}^{2}-x_{2}^{2} x_{4}$

Binomial associated to an 2-acyclic orientation

Binomial associated to an 2-acyclic orientation

Figure: $x_{1} x_{3}^{2}-x_{2}^{2} x_{4}$

2-acyclic orientations (Minimal generating set of M_{G})

Minimal free resolution of I_{G} ?

Theorem (Novik-Postnikov-Sturmfels 2002, M-Shokrieh 2013)
There is a one-to-one correspondence between:
(1) $(k-2)^{\text {th }}$ syzygies of I_{G} and M_{G} (its distinguished initial ideal)
(2) k-connected flags of G with unique source
(3) k-acyclic orientations of G with unique source
(4) maximal q-reduced divisors on the partition graphs
(5) k-dimensional bounded regions of the graphical arrangement.

Theorem (Postnikov-Shapiro 2004)
For the complete graph $K_{n}, \beta_{k-2}\left(M_{K_{n}}\right)=(k-1)!S(n, k)$, where $S(n, k)$ denotes the Stirling number of the second kind (i.e. the number of ways to partition a set of n elements into k nonempty subsets).

Hyperplane arrangements

Definition

- Corresponding to each edge ij of G with $i<j$

$$
H_{i j}:=\left\{v \in \mathbb{R}^{n}: h_{i j}(v)=0 \text { for } h_{i j}(v):=v_{i}-v_{j}\right\}
$$

- The graphical hyperplane arrangement of G is

$$
\mathcal{A}_{G}:=\left\{H_{i j}: \quad i j \in E(G) \text { and } i<j\right\} .
$$

- \mathcal{H}_{G} : The restriction of \mathcal{A}_{G} to

$$
H_{q}:=\left\{v \in \mathbb{R}^{n}: v_{n}=0 \text { and } v_{1}+\cdots+v_{n-1}=1\right\} .
$$

Example

\mathcal{H}_{G} is the restriction of

$$
\begin{aligned}
\mathcal{A}_{G} & :=\left\{H_{12}, H_{24}, H_{34}, H_{14}, H_{13}\right\} \\
\text { to } H_{q}=\left\{v \in \mathbb{R}^{4}: v_{4}\right. & \left.=0 \text { and } v_{1}+v_{2}+v_{3}=1\right\} .
\end{aligned}
$$

Oriented matroid ideal:

Relabeling \rightarrow initial ideal of the toppling ideal:

Minimal free resolution of O_{G} and M_{G} ?

Theorem (Novik-Postnikov-Sturmfels 2002, M-Shokrieh 2012) The bounded complex of the graphical arrangementre supports a minimal free resolution for the oriented matroid ideal, and the initial ideal of the toppling ideal (studied by Postnikov-Shapiro 2004).

$$
0 \rightarrow R^{4} \rightarrow R^{9} \rightarrow R^{6} \rightarrow R
$$

Minimal free resolution of O_{G} and M_{G} ?

Theorem (Novik-Postnikov-Sturmfels 2002, M-Shokrieh 2012)
The bounded complex of the graphical arrangementre supports a minimal free resolution for the oriented matroid ideal, and the initial ideal of the toppling ideal (studied by Postnikov-Shapiro 2004).

$$
0 \rightarrow R^{4} \rightarrow R^{9} \rightarrow R^{6} \rightarrow R
$$

Proof: Relabeling makes sense from Algebraic point of view!
Polyhedral complex: Convex geometry and potential theory.

Graph K_{3} and a fixed orientation:

Remember the columns of the Laplacian matrix:
$(-2,1,1),(1,-2,1),(1,1,-2)$.
$c_{1}=-2\left(u_{1}\right)+\left(u_{2}\right)+\left(u_{3}\right)$,
$c_{2}=\left(u_{1}\right)-2\left(u_{2}\right)+\left(u_{3}\right), c_{3}=\left(u_{1}\right)+\left(u_{2}\right)-2\left(u_{3}\right)$.

The lattice $\operatorname{Prin}\left(K_{3}\right) \subseteq \mathbb{R}^{3}$

Minimal free resolution of J_{G} and I_{G} ?

Theorem (M-Shokrieh 2013)
The quotient cell complex $\operatorname{Del}(\operatorname{Prin}(\mathrm{G}) / \operatorname{Prin}(\mathrm{G}))$ supports a $\operatorname{Pic}(\mathrm{G})$-graded minimal free resolution for I_{G}.

After drawing the Delaunay decomposition of $\left(\operatorname{Prin}(G),\langle., .\rangle_{e n}\right)$, we will see lots of hyperplanes corresponding to the edges of the graph!

How to read the resolution of the Lawrence ideal, and the Toppling ideal from constructed complex?

- Pick a fundamental domain of 'Delaunay Decomposition’ of $\left(\operatorname{Prin}(G),\langle., .\rangle_{\text {en }}\right)$
- Label the faces with Laurent monomials; the vertices take their labels from the corresponding cuts, and the face $F=\left\{v_{1}, \ldots, v_{k}\right\}$ are labeled by the Icm of the labels of v_{i} 's.

Fundamental domain for K_{3}

Figure: A choice of fundamental domain with labels

Thank you!

