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A canonical form of a monomial ideal

Let K be a field, R := K[x1, . . . , xn].

Notation

For a monomial ideal I ⊂ R denote by G (I ) the minimal
(monomial) system of generators of I .

Definition (The canonical form)

The power x r
n enters in a monomial u if x r

n | u but x r+1
n 6 | u.

We say that I is of type (k1, . . . , ks) with respect to xn if
xki
n are all the powers of xn which enter in a monomial of G (I )

for i ∈ {1, . . . , s} and 1 ≤ k1 < . . . < ks .

I is in the canonical form with respect to xn if it is of type
(1, 2, . . . , s) for some s ∈ N.

We simply say that I is the canonical form if it is in the
canonical form with respect to all variables x1, . . . , xn.
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A canonical form of a monomial ideal

Remark (How to obtain the canonical form of I )

Suppose that I is of type (k1, . . . , ks) with respect to xn.

Replace xki
n by x i

n whenever xki
n enters in a generator of G (I ).

Applying this procedure by recurrence for the other variables we
get the canonical form of I .

Example

Consider R = Q[x , y ] and the monomial ideal I = (x6, x3y7).
Note that I is of type (7) wrt y (hence y7 7→ y) and of type (3, 6)
wrt x (therefore x3 7→ x and x6 7→ x2).
Then the canonical form of I is I = (x2, xy).
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A canonical form of a factor of monomial ideals

Definition (factor case)

Let J ( I ⊂ R be two monomial ideals. We say that I/J is of type
(k1, . . . , ks) with respect to xn if xki

n are all the powers of xn which
enter in a monomial of G (I ) ∪ G (J) for i ∈ {1, . . . , s} and
1 ≤ k1 < . . . < ks .
All the terminology from the monomial case will automatically
extend to the factor case. Thus we may speak about the canonical
form I/J of I/J.

Example

Consider R = Q[x , y , z ], I = (x10y5, x4yz7, z7y3) and
J = (x10y20z2, x3y4z13, x9y2z7).

The canonical form of I/J is I/J =
(x4y5, x2yz2, y3z2)

(x4y6z , xy4z3, x3y2z2)
.
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A canonical form of a factor of monomial ideals

Remark

Note that the canonical form of the factor of monomial ideals is
not equal to the factor of the canonical forms of the ideals.

Example

Let R = Q[x , y ], I = (x4, y10, x2y7) and J = (x20, y30). The
canonical form of I is I = (x2, y2, xy) and the canonical form of J
is J = (x , y). Then J 6⊂ I .

But the canonical form of the factor I/J is I/J =
(x2, y2, xy)

(x3, y3)
.
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The Stanley Depth

Let K be a field and R = K[x1 . . . , xn]. On R consider the
Zn−grading in which each xi has degree the i−th vector of the
canonical basis.

A Stanley decomposition of a Zn−graded R−module M is a
finite family

D = (Ri , ui )i∈I

in which ui are homogeneous elements of M and Ri is a
Zn−graded K−algebra retract of R for each i ∈ I such that
Ri ∩ Ann(ui ) = 0 and

M =
⊕
i∈I

Riui

as a graded K−vector space.
The Stanley depth of D denoted by sdepthn D is the depth of the

R−module
⊕
i∈I

Riui . The Stanley depth of M is defined as

sdepthn(M) = max{sdepthn D | D is a Stanley decomposition of M}.
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Depth and Stanley Depth of I/J

Conjecture (Stanley, 1982)

sdepth M ≥ depth M.

Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then

sdepthnI/J = sdepthnI/J.

Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then

depth I/J = depth I/J.

Theorem

The Stanley Conjecture holds for a factor of monomial ideals I/J if
and only if it holds for its canonical form I/J.
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This follows easily from [B. Ichim, L. Katthän and J. J.
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Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then

depth I/J = depth I/J.

Theorem

The Stanley Conjecture holds for a factor of monomial ideals I/J if
and only if it holds for its canonical form I/J.

Adrian Popescu 8/16



Depth and Stanley Depth of I/J

Conjecture (Stanley, 1982)

sdepth M ≥ depth M.

Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then

sdepthnI/J = sdepthnI/J.

Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then

depth I/J = depth I/J.

Theorem

The Stanley Conjecture holds for a factor of monomial ideals I/J if
and only if it holds for its canonical form I/J.

Adrian Popescu 8/16



Depth and Stanley Depth of I/J

Conjecture (Stanley, 1982)

sdepth M ≥ depth M.

Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then
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Theorem

Let I , J be monomial ideals in R and I/J the canonical form of the
factor I/J. Then

depth I/J = depth I/J.

This was proved in [A. Popescu, Depth and Stanley Depth of the
Canonical Form of a factor of monomial ideals, Theorem 2]
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Timings on existing algorithms using the canonical form

We will use the canonical form in G. Rinaldo’s algorithm
introduced in An algorithm to compute the Stanley depth.

Example

Consider I := (x100yz , x50yz50, x50y50z) ⊂ Q[x , y , z ].

Using CoCoA and Rinaldo’s algorithm for I , we obtain
sdepth I = 2 in ≈ 13 minutes.

Using the same algorithm for I , we obtain the result in a couple of
milliseconds.

One can also see some small improvements in the depth
computation algorithm used in Singular.
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The Hilbert Depth

Let K be a field and R = K[x1 . . . , xn]. On R consider the normal
Z−grading in which each xi has degree 1.

After Bruns-Krattenthaler-Uliczka, a Hilbert decomposition of a
Z−graded R−module M is a finite family

H = (Ri , si )i∈I

in which si ∈ Z and Ri is a Z−graded K−algebra retract of R for
each i ∈ I such that

M ∼=
⊕
i∈I

Ri (−si )

as a graded K−vector space.
The Hilbert depth of H denoted by hdepth1 H is the depth of the

R−module
⊕
i∈I

Ri (−si ). The Hilbert depth of M is defined as

hdepth1(M) = max{hdepth1 H | H is a Hilbert decomposition of M}.
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Difference between the Hilbert and Stanley depth

Example (Bruns, Krattenthaler and Uliczka, Stanley
Decompositions and Hilbert Depth in the Koszul Complex)

Consider R := K[x , y ] and M := K⊕ y R
x ⊕ yR. We get

sdepth1 M = sdepth2 M = 0 and hdepth1 M = 2.

Adrian Popescu 12/16



An algorithm to compute the Hilbert Depth

Definition

A Laurent series in ZJt, t−1K is called positive if it has only
nonnegative coefficients.

Theorem (J. Uliczka, Remarks on Hilbert series of graded modules
over polynomial rings)

hdepth1(M) = max{e | (1− t)e · HPM(t) is positive}, where
HPM(t) is the Hilbert−Poincaré series of M.

Question

How many coefficients of the infinite Laurent series one have to
check in order to say that it is positive?

An easy trick was found in [A. Popescu, An Algorithm to compute
the Hilbert Depth, Journal of Symbolic Computation Volume 66,
January-February 2015, Pages 1-7].
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The main idea of the algorithm and examples

Example

Consider I = x ∩ (y1, . . . , y5) for which dim I = 5 and
G (t) = 1 + t − 4t2 + 6t3 − 4t4 + t5.

Example

Consider G (t) = 2− 3t − 2t2 + 2t3 + 4t4.

Example

Consider G (t) = 1− 5t + 7t2.

G(t) = 1 − 5t + 7t2 G(t) = 1 − 5t + 7t2

G(t)/(1 − t)1 = 1 − 4t + 3t2 + ... G(t)/(1 − t)1 = 1 − 4t + 3t2 + ...

G(t)/(1 − t)2 = 1 − 3t + ... G(t)/(1 − t)2 = 1 − 3t + 3t3 + ...

G(t)/(1 − t)3 = 1 − 2t − 2t2 + ... G(t)/(1 − t)3 = 1 − 2t − 2t2 + t3 + 7t4 + ...

G(t)/(1 − t)4 = 1 − t − 3t2 + ... G(t)/(1 − t)4 = 1 − t − 3t2 − 2t3 + 5t4 + ...

G(t)/(1 − t)5 = 1 − 3t2 + ... G(t)/(1 − t)5 = 1 − 3t2 − 5t3 + 21t5 + ...

G(t)/(1 − t)6 = 1 + t − 2t2 + ... G(t)/(1 − t)6 = 1 + t − 2t2 − 7t3 − 7t4 + 14t5 + ...

G(t)/(1 − t)7 = 1 + 2t + ... G(t)/(1 − t)7 = 1 + 2t − 7t3 − 14t4 + 84t6 + ...

G(t)/(1 − t)8 = 1 + 3t + 3t2 − 4t3 − 18t4 − 18t5 + 66t6 + ...

G(t)/(1 − t)9 = 1 + 4t + 7t2 + 3t3 − 15t4 − 33t5 + 33t6 + ...

G(t)/(1 − t)10 = 1 + 5t + 12t2 + 15t3 − 33t5 + ...

G(t)/(1 − t)11 = 1 + 6t + 18t2 + 33t3 + 33t4 + ...

Adrian Popescu 14/16
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Herzog’s Question

Question

Is sdepthn(R ⊕m) = sdepthn(m), where m is the maximal ideal?

We have tested (with the algorithm) whether

hdepth1(R ⊕m) = hdepth1(m),

and as a consequence, when

sdepthn(R ⊕m) = sdepthn(m).

We found out that Herzog’s question holds for

n ∈ {1, . . . , 5, 7, 9, 11}.
For n = 6, hdepth1(R ⊕m) > hdepth1m, which is a sign that in

this case sdepthn(R ⊕m) > sdepthnm and so Herzog’s question
could have a negative answer for n = 6.
This is indeed the case as it was shown later by B. Ichim and A.
Zarojanu in An algorithm for computing the multigraded Hilbert
depth of a module.
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Thank you for your attention.
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