A canonical form of a factor of monomial ideals and related algorithms

Adrian Popescu

TU Kaiserslautern
1 September 2014

Contents

(1) The canonical form of a factor of monomial ideals
(2) An algorithm to compute the Hilbert depth of a \mathbb{Z}-graded module

A canonical form of a monomial ideal

Let \mathbb{K} be a field, $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Notation
For a monomial ideal $I \subset R$ denote by $G(I)$ the minimal (monomial) system of generators of I.

A canonical form of a monomial ideal

Let \mathbb{K} be a field, $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Notation

For a monomial ideal $I \subset R$ denote by $G(I)$ the minimal (monomial) system of generators of I.

Definition (The canonical form)

- The power x_{n}^{r} enters in a monomial u if $x_{n}^{r} \mid u$ but $x_{n}^{r+1} \nmid u$.

A canonical form of a monomial ideal

Let \mathbb{K} be a field, $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Notation

For a monomial ideal $I \subset R$ denote by $G(I)$ the minimal (monomial) system of generators of I.

Definition (The canonical form)

- The power x_{n}^{r} enters in a monomial u if $x_{n}^{r} \mid u$ but $x_{n}^{r+1} \nmid u$.
- We say that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n} if $x_{n}^{k_{i}}$ are all the powers of x_{n} which enter in a monomial of $G(I)$ for $i \in\{1, \ldots, s\}$ and $1 \leq k_{1}<\ldots<k_{s}$.

A canonical form of a monomial ideal

Let \mathbb{K} be a field, $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Notation

For a monomial ideal $I \subset R$ denote by $G(I)$ the minimal (monomial) system of generators of I.

Definition (The canonical form)

- The power x_{n}^{r} enters in a monomial u if $x_{n}^{r} \mid u$ but $x_{n}^{r+1} \nmid u$.
- We say that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n} if $x_{n}^{k_{i}}$ are all the powers of x_{n} which enter in a monomial of $G(I)$ for $i \in\{1, \ldots, s\}$ and $1 \leq k_{1}<\ldots<k_{s}$.
- I is in the canonical form with respect to x_{n} if it is of type $(1,2, \ldots, s)$ for some $s \in \mathbb{N}$.

A canonical form of a monomial ideal

Let \mathbb{K} be a field, $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Notation

For a monomial ideal $I \subset R$ denote by $G(I)$ the minimal (monomial) system of generators of I.

Definition (The canonical form)

- The power x_{n}^{r} enters in a monomial u if $x_{n}^{r} \mid u$ but $x_{n}^{r+1} \nmid u$.
- We say that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n} if $x_{n}^{k_{i}}$ are all the powers of x_{n} which enter in a monomial of $G(I)$ for $i \in\{1, \ldots, s\}$ and $1 \leq k_{1}<\ldots<k_{s}$.
- I is in the canonical form with respect to x_{n} if it is of type $(1,2, \ldots, s)$ for some $s \in \mathbb{N}$.
- We simply say that I is the canonical form if it is in the canonical form with respect to all variables x_{1}, \ldots, x_{n}.

A canonical form of a monomial ideal

Remark (How to obtain the canonical form of I)
Suppose that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n}.

A canonical form of a monomial ideal

Remark (How to obtain the canonical form of I)
Suppose that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n}. Replace $x_{n}^{k_{i}}$ by x_{n}^{i} whenever $x_{n}^{k_{i}}$ enters in a generator of $G(I)$.

Remark (How to obtain the canonical form of I)

Suppose that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n}. Replace $x_{n}^{k_{i}}$ by x_{n}^{i} whenever $x_{n}^{k_{i}}$ enters in a generator of $G(I)$. Applying this procedure by recurrence for the other variables we get the canonical form of I.

A canonical form of a monomial ideal

Remark (How to obtain the canonical form of I)

Suppose that I is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n}. Replace $x_{n}^{k_{i}}$ by x_{n}^{i} whenever $x_{n}^{k_{i}}$ enters in a generator of $G(I)$. Applying this procedure by recurrence for the other variables we get the canonical form of I.

Example

Consider $R=\mathbb{Q}[x, y]$ and the monomial ideal $I=\left(x^{6}, x^{3} y^{7}\right)$. Note that I is of type (7) wrt y (hence $y^{7} \mapsto y$) and of type $(3,6)$ wrt x (therefore $x^{3} \mapsto x$ and $x^{6} \mapsto x^{2}$).
Then the canonical form of I is $\bar{I}=\left(x^{2}, x y\right)$.

A canonical form of a factor of monomial ideals

Definition (factor case)

Let $J \subsetneq I \subset R$ be two monomial ideals. We say that I / J is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n} if $x_{n}^{k_{i}}$ are all the powers of x_{n} which enter in a monomial of $G(I) \cup G(J)$ for $i \in\{1, \ldots, s\}$ and $1 \leq k_{1}<\ldots<k_{s}$.
All the terminology from the monomial case will automatically extend to the factor case. Thus we may speak about the canonical form $\overline{1 / J}$ of I / J.

A canonical form of a factor of monomial ideals

Definition (factor case)

Let $J \subsetneq I \subset R$ be two monomial ideals. We say that I / J is of type $\left(k_{1}, \ldots, k_{s}\right)$ with respect to x_{n} if $x_{n}^{k_{i}}$ are all the powers of x_{n} which enter in a monomial of $G(I) \cup G(J)$ for $i \in\{1, \ldots, s\}$ and $1 \leq k_{1}<\ldots<k_{s}$.
All the terminology from the monomial case will automatically extend to the factor case. Thus we may speak about the canonical form $\overline{1 / J}$ of I / J.

Example

Consider $R=\mathbb{Q}[x, y, z], I=\left(x^{10} y^{5}, x^{4} y z^{7}, z^{7} y^{3}\right)$ and $J=\left(x^{10} y^{20} z^{2}, x^{3} y^{4} z^{13}, x^{9} y^{2} z^{7}\right)$.
The canonical form of I / J is $\overline{1 / J}=\frac{\left(x^{4} y^{5}, x^{2} y z^{2}, y^{3} z^{2}\right)}{\left(x^{4} y^{6} z, x y^{4} z^{3}, x^{3} y^{2} z^{2}\right)}$.

A canonical form of a factor of monomial ideals

Remark

Note that the canonical form of the factor of monomial ideals is not equal to the factor of the canonical forms of the ideals.

A canonical form of a factor of monomial ideals

Remark

Note that the canonical form of the factor of monomial ideals is not equal to the factor of the canonical forms of the ideals.

Example

Let $R=\mathbb{Q}[x, y], I=\left(x^{4}, y^{10}, x^{2} y^{7}\right)$ and $J=\left(x^{20}, y^{30}\right)$. The canonical form of I is $\bar{I}=\left(x^{2}, y^{2}, x y\right)$ and the canonical form of J is $\bar{J}=(x, y)$. Then $\bar{J} \not \subset \bar{I}$.
But the canonical form of the factor $1 / \rho$ is $\overline{1 / J}=\frac{\left(x^{2}, y^{2}, x y\right)}{\left(x^{3}, y^{3}\right)}$.

The Stanley Depth

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. On R consider the \mathbb{Z}^{n}-grading in which each x_{i} has degree the i-th vector of the canonical basis.

The Stanley Depth

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1} \ldots, x_{n}\right]$. On R consider the \mathbb{Z}^{n}-grading in which each x_{i} has degree the i-th vector of the canonical basis.
A Stanley decomposition of a \mathbb{Z}^{n}-graded R-module M is a finite family

$$
\mathcal{D}=\left(R_{i}, u_{i}\right)_{i \in I}
$$

in which u_{i} are homogeneous elements of M and R_{i} is a \mathbb{Z}^{n}-graded K-algebra retract of R for each $i \in I$ such that $R_{i} \cap \operatorname{Ann}\left(u_{i}\right)=0$ and

$$
M=\bigoplus_{i \in I} R_{i} u_{i}
$$

as a graded \mathbb{K}-vector space.

The Stanley Depth

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1} \ldots, x_{n}\right]$. On R consider the \mathbb{Z}^{n}-grading in which each x_{i} has degree the i-th vector of the canonical basis.
A Stanley decomposition of a \mathbb{Z}^{n}-graded R-module M is a finite family

$$
\mathcal{D}=\left(R_{i}, u_{i}\right)_{i \in I}
$$

in which u_{i} are homogeneous elements of M and R_{i} is a \mathbb{Z}^{n}-graded K-algebra retract of R for each $i \in I$ such that $R_{i} \cap \operatorname{Ann}\left(u_{i}\right)=0$ and

$$
M=\bigoplus_{i \in I} R_{i} u_{i}
$$

as a graded \mathbb{K}-vector space.
The Stanley depth of \mathcal{D} denoted by sdepth ${ }_{n} \mathcal{D}$ is the depth of the R-module $\bigoplus_{i \in I} R_{i} u_{i}$. The Stanley depth of M is defined as
$\operatorname{sdepth}_{n}(M)=\max \left\{\operatorname{sdepth}_{n} \mathcal{D} \mid \mathcal{D}\right.$ is a Stanley decomposition of $\left.M \underline{\underline{\Sigma}}\right\}$

Depth and Stanley Depth of $\overline{1 / J}$

Conjecture (Stanley, 1982)

sdepth $M \geq$ depth M.

Depth and Stanley Depth of $\overline{1 / J}$

Conjecture (Stanley, 1982)

$$
\text { sdepth } M \geq \text { depth } M \text {. }
$$

Theorem

Let I, J be monomial ideals in R and $\overline{I / J}$ the canonical form of the factor $1 / J$. Then

$$
\left.s^{s d e p t h} h_{n} I / J=\operatorname{sdepth}_{n} \bar{I} /\right\lrcorner
$$

Depth and Stanley Depth of $\overline{1 / J}$

Conjecture (Stanley, 1982)

$$
\text { sdepth } M \geq \text { depth } M \text {. }
$$

Theorem

Let I, J be monomial ideals in R and $\overline{I / J}$ the canonical form of the factor $1 / J$. Then

$$
\text { sdepth } \left.\left._{n} / /\right\lrcorner=\operatorname{sdepth}_{n} \overline{\bar{T}}\right\lrcorner .
$$

This follows easily from [B. Ichim, L. Katthän and J. J. Moyano-Fernández, The behaviour of Stanley depth under polarization, Proposition 5.1]

Depth and Stanley Depth of $\overline{1 / J}$

Conjecture (Stanley, 1982)

$$
\text { sdepth } M \geq \text { depth } M \text {. }
$$

Theorem

Let I, J be monomial ideals in R and $\overline{I / J}$ the canonical form of the factor $1 / J$. Then

$$
\text { sdepth } \left._{n} l / J=\operatorname{sdepth}_{n} \overline{\bar{T}}\right\lrcorner .
$$

Theorem

Let I, J be monomial ideals in R and I / J the canonical form of the factor $1 / J$. Then

$$
\text { depth } 1 / J=\text { depth } \overline{1 / J .}
$$

Depth and Stanley Depth of $\overline{1 / J}$

Conjecture (Stanley, 1982)

$$
\text { sdepth } M \geq \text { depth } M \text {. }
$$

Theorem

Let I, J be monomial ideals in R and $\overline{I / J}$ the canonical form of the factor $1 / J$. Then

$$
\text { sdepth } \left._{n} l / J=\operatorname{sdepth}_{n} \overline{\bar{T}}\right\lrcorner .
$$

Theorem

Let I, J be monomial ideals in R and $\overline{I / J}$ the canonical form of the factor $1 / J$. Then

$$
\text { depth } 1 / J=\text { depth } \overline{1 / J .}
$$

This was proved in [A. Popescu, Depth and Stanley Depth of the Canonical Form of a factor of monomial ideals, Theorem 2]

Depth and Stanley Depth of $\overline{I / J}$

Conjecture (Stanley, 1982)

$$
\text { sdepth } M \geq \text { depth } M \text {. }
$$

Theorem

Let I, J be monomial ideals in R and $\overline{I / J}$ the canonical form of the factor $1 / J$. Then

$$
s^{s d e p t h} h_{n} I / J=\operatorname{sdepth}_{n} \bar{I} / J .
$$

Theorem

Let I, J be monomial ideals in R and $\bar{I} J$ the canonical form of the factor $1 / J$. Then

$$
\text { depth } 1 / J=\text { depth } \overline{1 / J .}
$$

Theorem

The Stanley Conjecture holds for a factor of monomial ideals $1 / J$ if and only if it holds for its canonical form $\overline{I / J}$.

Timings on existing algorithms using the canonical form

We will use the canonical form in G. Rinaldo's algorithm introduced in An algorithm to compute the Stanley depth.

We will use the canonical form in G. Rinaldo's algorithm introduced in An algorithm to compute the Stanley depth.

Example

Consider $I:=\left(x^{100} y z, x^{50} y z^{50}, x^{50} y^{50} z\right) \subset \mathbb{Q}[x, y, z]$.

We will use the canonical form in G. Rinaldo's algorithm introduced in An algorithm to compute the Stanley depth.

Example

> Consider $I:=\left(x^{100} y z, x^{50} y z^{50}, x^{50} y^{50} z\right) \subset \mathbb{Q}[x, y, z]$. Using CoCoA and Rinaldo's algorithm for I, we obtain \quad sdepth $I=2$ in

We will use the canonical form in G. Rinaldo's algorithm introduced in An algorithm to compute the Stanley depth.

Example

Consider $I:=\left(x^{100} y z, x^{50} y z^{50}, x^{50} y^{50} z\right) \subset \mathbb{Q}[x, y, z]$.
Using CoCoA and Rinaldo's algorithm for I, we obtain sdepth $I=2$ in ≈ 13 minutes.
Using the same algorithm for \bar{l}, we obtain the result in a couple of milliseconds.

We will use the canonical form in G. Rinaldo's algorithm introduced in An algorithm to compute the Stanley depth.

Example

Consider $I:=\left(x^{100} y z, x^{50} y z^{50}, x^{50} y^{50} z\right) \subset \mathbb{Q}[x, y, z]$.
Using CoCoA and Rinaldo's algorithm for I, we obtain sdepth $I=2$ in ≈ 13 minutes.
Using the same algorithm for \bar{l}, we obtain the result in a couple of milliseconds.

One can also see some small improvements in the depth computation algorithm used in Singular.

Contents

(1) The canonical form of a factor of monomial ideals
(2) An algorithm to compute the Hilbert depth of a \mathbb{Z}-graded module

The Hilbert Depth
Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1} \ldots, x_{n}\right]$. On R consider the normal \mathbb{Z}-grading in which each x_{i} has degree 1 .

The Hilbert Depth

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1} \ldots, x_{n}\right]$. On R consider the normal \mathbb{Z}-grading in which each x_{i} has degree 1 .
After Bruns-Krattenthaler-Uliczka, a Hilbert decomposition of a \mathbb{Z}-graded R-module M is a finite family

$$
\mathcal{H}=\left(R_{i}, s_{i}\right)_{i \in I}
$$

in which $s_{i} \in \mathbb{Z}$ and R_{i} is a \mathbb{Z}-graded K-algebra retract of R for each $i \in I$ such that

$$
M \cong \bigoplus_{i \in I} R_{i}\left(-s_{i}\right)
$$

as a graded \mathbb{K}-vector space.

The Hilbert Depth

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1} \ldots, x_{n}\right]$. On R consider the normal \mathbb{Z}-grading in which each x_{i} has degree 1 .
After Bruns-Krattenthaler-Uliczka, a Hilbert decomposition of a \mathbb{Z}-graded R-module M is a finite family

$$
\mathcal{H}=\left(R_{i}, s_{i}\right)_{i \in I}
$$

in which $s_{i} \in \mathbb{Z}$ and R_{i} is a \mathbb{Z}-graded K-algebra retract of R for each $i \in I$ such that

$$
M \cong \bigoplus_{i \in I} R_{i}\left(-s_{i}\right)
$$

as a graded \mathbb{K}-vector space.
The Hilbert depth of \mathcal{H} denoted by hdepth $\mathcal{H}_{1} \mathcal{H}$ is the depth of the R-module $\bigoplus R_{i}\left(-s_{i}\right)$. The Hilbert depth of M is defined as

Difference between the Hilbert and Stanley depth

Example (Bruns, Krattenthaler and Uliczka, Stanley
Decompositions and Hilbert Depth in the Koszul Complex)

$$
\begin{aligned}
& \text { Consider } R:=\mathbb{K}[x, y] \text { and } M:=\mathbb{K} \oplus y \frac{R}{x} \oplus y R \text {. We get } \\
& \text { sdepth }_{1} M=\text { sdepth }_{2} M=0 \text { and } h d e p t h_{1} M=2 \text {. }
\end{aligned}
$$

An algorithm to compute the Hilbert Depth

Definition

A Laurent series in $\mathbb{Z} \llbracket t, t^{-1} \rrbracket$ is called positive if it has only nonnegative coefficients.

An algorithm to compute the Hilbert Depth

Definition

A Laurent series in $\mathbb{Z} \llbracket t, t^{-1} \rrbracket$ is called positive if it has only nonnegative coefficients.

Theorem (J. Uliczka, Remarks on Hilbert series of graded modules over polynomial rings)
hdepth $_{1}(M)=\max \left\{e \mid(1-t)^{e} \cdot H P_{M}(t)\right.$ is positive $\}$, where $H P_{M}(t)$ is the Hilbert-Poincaré series of M.

An algorithm to compute the Hilbert Depth

Definition

A Laurent series in $\mathbb{Z} \llbracket t, t^{-1} \rrbracket$ is called positive if it has only nonnegative coefficients.

Theorem (J. Uliczka, Remarks on Hilbert series of graded modules over polynomial rings)
hdepth $_{1}(M)=\max \left\{e \mid(1-t)^{e} \cdot H P_{M}(t)\right.$ is positive $\}$, where $H P_{M}(t)$ is the Hilbert-Poincaré series of M.
oBased on this Theorem, one can construct an algorithm which computes the hdepth $_{1}$ of a module M.
oThe only difficulty that arises is:

Question

How many coefficients of the infinite Laurent series one have to check in order to say that it is positive?

An algorithm to compute the Hilbert Depth

Definition

A Laurent series in $\mathbb{Z} \llbracket t, t^{-1} \rrbracket$ is called positive if it has only nonnegative coefficients.

Theorem (J. Uliczka, Remarks on Hilbert series of graded modules over polynomial rings)
hdepth $_{1}(M)=\max \left\{e \mid(1-t)^{e} \cdot H P_{M}(t)\right.$ is positive $\}$, where $H P_{M}(t)$ is the Hilbert-Poincaré series of M.

Question

How many coefficients of the infinite Laurent series one have to check in order to say that it is positive?

An easy trick was found in [A. Popescu, An Algorithm to compute the Hilbert Depth, Journal of Symbolic Computation Volume 66, January-February 2015, Pages 1-7].

The main idea of the algorithm and examples

The main idea of the algorithm and examples

Example

Consider $I=x \cap\left(y_{1}, \ldots, y_{5}\right)$ for which $\operatorname{dim} I=5$ and $G(t)=1+t-4 t^{2}+6 t^{3}-4 t^{4}+t^{5}$.

The main idea of the algorithm and examples

Example

Consider $I=x \cap\left(y_{1}, \ldots, y_{5}\right)$ for which $\operatorname{dim} I=5$ and $G(t)=1+t-4 t^{2}+6 t^{3}-4 t^{4}+t^{5}$.

Example

Consider $G(t)=2-3 t-2 t^{2}+2 t^{3}+4 t^{4}$.

The main idea of the algorithm and examples

Example

Consider $I=x \cap\left(y_{1}, \ldots, y_{5}\right)$ for which $\operatorname{dim} I=5$ and $G(t)=1+t-4 t^{2}+6 t^{3}-4 t^{4}+t^{5}$.

Example

Consider $G(t)=2-3 t-2 t^{2}+2 t^{3}+4 t^{4}$.

Example

Consider $G(t)=1-5 t+7 t^{2}$.

$$
\begin{aligned}
& G(t)=1-5 t+7 t^{2} \\
& G(t) /(1-t)^{1}=1-4 t+3 t^{2}+\ldots \\
& G(t) /(1-t)^{2}=1-3 t+\text {. } \\
& G(t) /(1-t)^{3}=1-2 t-2 t^{2}+\ldots \\
& G(t) /(1-t)^{4}=1-t-3 t^{2}+\ldots \\
& G(t) /(1-t)^{5}=1-3 t^{2}+\cdots \\
& G(t) /(1-t)^{6}=1+t-2 t^{2}+\ldots \\
& G(t) /(1-t)^{7}=1+2 t+\ldots \\
& G(t)=1-5 t+7 t 2 \\
& G(t) /(1-t)^{1}=1-4 t+3 t^{2}+\ldots \\
& G(t) /(1-t)^{2}=1-3 t+3 t^{3} \\
& G(t) /(1-t)^{3}=1-2 t-2 t^{2}+t^{3}+7 t^{4}+\ldots \\
& G(t) /(1-t)^{4}=1-t-3 t^{2}-2 t^{3}+5 t^{4}+\ldots \\
& G(t) /(1-t)^{5}=1-3 t^{2}-5 t^{3}+21 t^{5}+ \\
& G(t) /(1-t)^{6}=1+t-2 t^{2}-7 t^{3}-7 t^{4}+14 t^{5}+\ldots \\
& G(t) /(1-t)^{7}=1+2 t-7 t^{3}-14 t^{4}+84 t^{6}+. \\
& G(t) /(1-t)^{8}=1+3 t+3 t^{2}-4 t^{3}-18 t^{4}-18 t^{5}+66 t^{6}+\ldots \\
& G(t) /(1-t)^{9}=1+4 t+7 t^{2}+3 t^{3}-15 t^{4}-33 t^{5}+33 t^{6}+\ldots \\
& G(t) /(1-t)^{10}=1+5 t+12 t^{2}+15 t^{3}-33 t^{5}+\ldots \\
& \text { Adrian Popescu })^{11}=1+6 t+18 t^{2}+33 t^{3}+33 t^{4}+\ldots
\end{aligned}
$$

Herzog's Question

Question
Is $\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)$, where m is the maximal ideal?

Herzog's Question

Question

Is $\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)$, where m is the maximal ideal?
We have tested (with the algorithm) whether

$$
h_{d e p t h}^{1}(R \oplus m)=h d e p t h_{1}(m)
$$

and as a consequence, when

$$
\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)
$$

Herzog's Question

Question

Is $\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)$, where m is the maximal ideal?
We have tested (with the algorithm) whether

$$
h^{h} d e p t h_{1}(R \oplus m)=h d e p t h_{1}(m)
$$

and as a consequence, when

$$
\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)
$$

We found out that Herzog's question holds for

$$
n \in\{1, \ldots, 5,7,9,11\}
$$

Herzog's Question

Question

Is $\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)$, where m is the maximal ideal?

We have tested (with the algorithm) whether

$$
h^{h} d e p t h_{1}(R \oplus m)=h d e p t h_{1}(m)
$$

and as a consequence, when

$$
\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m) .
$$

We found out that Herzog's question holds for

$$
n \in\{1, \ldots, 5,7,9,11\} .
$$

For $n=6$, hdepth $_{1}(R \oplus m)>$ hdepth $_{1} m$, which is a sign that in this case sdepth ${ }_{n}(R \oplus m)>$ sdepth $_{n} m$ and so Herzog's question could have a negative answer for $n=6$.

Herzog's Question

Question

Is $\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m)$, where m is the maximal ideal?

We have tested (with the algorithm) whether

$$
h^{h} d e p t h_{1}(R \oplus m)=h d e p t h_{1}(m)
$$

and as a consequence, when

$$
\operatorname{sdepth}_{n}(R \oplus m)=\operatorname{sdepth}_{n}(m) .
$$

We found out that Herzog's question holds for

$$
n \in\{1, \ldots, 5,7,9,11\} .
$$

For $n=6$, hdepth $_{1}(R \oplus m)>$ hdepth $_{1} m$, which is a sign that in this case sdepth $_{n}(R \oplus m)>$ sdepth $_{n} m$ and so Herzog's question could have a negative answer for $n=6$.
This is indeed the case as it was shown later by B. Ichim and A. Zarojanu in An algorithm for computing the multigraded Hilbert depth of a module.

Thank you for your attention.

