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Polyominoes

Polyominoes are, roughly speaking, plane figures obtained by
joining squares of equal size (cells) edge to edge. Their
appearance origins in recreational mathematics but also has
been a subject of many combinatorial investigations including
tiling problems.
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Polyominoes

A connection of polyominoes to commutative algebra has been
established first in (-, 2012) by assigning to each polyomino its
ideal of inner minors (also called Polyomino ideals).

This class of ideals widely generalizes the ideal of 2-minors of a
matrix of indeterminates, and even that of the ideal of 2-minors
of two-sided ladders. It also includes the meet-join ideals (Hibi
ideals) of planar distributive lattices.
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Polyominoes

For any integer 1  t  min{m,n}, the ideal generated by all
t-minors of X is well understood and discussed in several
papers, for example, [Hochster, Eagon (1971)] and [Bruns,
Vetter (1988)], and more generally the ideals generated by all
t-minors of a one and two sided ladders, see for example [Conca
(1995)].

Motivated by applications in algebraic statistics, ideals
generated by even more general sets of minors have been
investigated, including ideals generated by adjacent 2-minors,
see [Hoşten, Sullivant (2004)], [Hibi, Ohsugi (2006)] and
[Herzog, Hibi (2010)], and ideals generated by an arbitrary set
of 2-minors in a 2⇥ n-matrix [Herzog, Hibi, Hreinsdóttir,
Kahle, Rauh, (2010)].
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Polyominoes

Typically one determines for such ideals their Gröbner bases,
determines their resolution and computes their regularity,
checks whether the rings defined by them are normal,
Cohen-Macaulay or Gorenstein.
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Polyominoes

In order to define the polyominoes and polyomino ideals, we
introduce some terminology.

We denote by < the natural partial order on N2, i.e.
(i, j)  (k, l) if and only if i  k and j  l.
Let a = (i, j) and b = (k, l) in N2. Then

(1) the set [a, b] = {c 2 N2 : a  c  b} is called an interval,

(2) the interval of the form C = [a, a+ (1, 1)] is called a cell.
(with lower left corner a),

(3) the elements of C are called the vertices of C, and the sets
{a, a+ (1, 0)}, {a, a+ (0, 1)}, {a+ (1, 0), a+ (1, 1)} and
{a+ (0, 1), a+ (1, 1)} the edges of C.
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Polyominoes

Let P be a finite collection of cells of N2, and let C and D be
two cells of P. Then C and D are said to be connected, if there
is a sequence of cells C : C

1

, . . . , Cm = D of P such that
Ci \Ci+1

is an edge of Ci for i = 1, . . . ,m� 1. The collection of
cells P is called a polyomino if any two cells of P are connected.

Figure : A polyomino
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Polyomino ideals

Let P be a polyomino, and let K be a field. We denote by S

the polynomial over K with variables xij with (i, j) 2 V (P). A
2-minor xijxkl � xilxkj 2 S is called an inner minor of P if all
the cells [(r, s), (r + 1, s+ 1)] with i  r  k � 1 and
j  s  l � 1 belong to P. In that case the interval [(i, j), (k, l)]
is called an inner interval of P. The ideal IP ⇢ S generated by
all inner minors of P is called the polyomino ideal of P. We also
set K[P] = S/IP .
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Polyomino ideals

Our main objective is to classify all polyominoes such that
associated polyomino ideals are prime.
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Convex Polyominoes

As a first step in this direction, we studied the convex

polyominoes.

Figure : Not covnex

i
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Convex Polyominoes

Theorem

Let P be a convex collection of cells. Then K[P] is a normal

Cohen–Macaulay domain of dimension |V (P)|� |P|.
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Simple Polyominoes

For simple polyominoes, in (-, 2012), it was conjectured that IP
is a prime ideal.

Let P be a polyomino and let [a, b] an interval with the
property that P ⇢ [a, b]. A polyomino P is called simple, if for
any cell C not belonging to P there exists a path
C = C

1

, C

2

, . . . , Cm = D with Ci 62 P for i = 1, . . . ,m and such
that D is not a cell of [a, b].
Roughly speaking, a polyomono is called simple if it has no
holes.

Figure : Not simple
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Admissibe labeling

Let P be a polyomino. An interval [a, b] with a = (i, j) and
b = (k, l) is called a horizontal edge interval of P if j = l and
the sets {r, r + 1} for r = i, . . . , k � 1 are edges of cells of P.
Similarly one defines vertical edge intervals of P. We call, an
integer value function ↵ : V (P) ! Z is called admissible, if for
all maximal horizontal or vertical edge intervals I of P one has

X

a2I
↵(a) = 0.
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Admissibe labeling
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Figure : An admissible labeling
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Balanced polyominoes

Given an admissible labeling ↵, we define the binomial

f↵ =
Y

a2V (P)

↵(a)>0

x

↵(a)
a �

Y

a2V (P)

↵(a)<0

x

�↵(a)
a ,

Let JP be the ideal generated by the binomials f↵ where ↵ is an
admissible labeling of P. It is obvious that IP ⇢ JP . We call a
polyomino balanced if for any admissible labeling ↵, the
binomial f↵ 2 IP . This is the case if and only if IP = JP .
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Balanced polyominoes

Consider the free abelian group G =
L

(i,j)2V (P)

Zeij with basis
elements eij . To any cell C = [(i, j), (i+ 1, j + 1)] of P we
attach the element bC = eij + ei+1,j+1

� ei+1,j � ei,j+1

in G and
let ⇤ ⇢ G be the lattice spanned by these elements.
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Balanced polyominoes

Lemma

The elements bC form a K-basis of ⇤ and hence rankZ ⇤ = |P|.
Moreover, ⇤ is saturated. In other words, G/⇤ is torsionfree.
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Balanced polyominoes

The lattice ideal I
⇤

attached to the lattice ⇤ is the ideal
generated by all binomials

fv =
Y

a2V (P)

va>0

x

va
a �

Y

a2V (P)

va<0

x

�va
a

with v 2 ⇤.

Proposition

Let P be a balanced polyomino. Then IP = I

⇤

and has height

|P|.
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Gröbner basis of balanced polyominoes

The primitive binomials in P are determined by cycles.

A sequence of vertices C = a

1

, a

2

, . . . , am in V (P) with am = a

1

and such that ai 6= aj for all 1  i < j  m� 1 is a called a
cycle in P if the following conditions hold:

(i) [ai, ai+1

] is a horizonal or vertical edge interval of P for all
i = 1, . . . ,m� 1;

(ii) for i = 1, . . . ,m one has: if [ai, ai+1

] is a horizonal interval
of P, then [ai+1

, ai+2

] is a vertical edge interval of P and
vice versa. Here, am+1

= a

2

.
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Gröbner basis of balanced polyominoes
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Figure : A cycle and a non-cycle in P
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Gröbner basis of balanced polyominoes

It follows immediately from the definition of a cycle that m� 1
is even. Given a cycle C, we attach to C the binomial

fC =

(m�1)/2Y

i=1

xa
2i�1

�
(m�1)/2Y

i=1

xa
2i
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Gröbner basis of balanced polyominoes

Theorem

Let P be a balanced polyomino.

(a) Let C be a cycle in P. Then fC 2 IP .

(b) Let f 2 IP be a primitive binomial. Then there exists a

cycle C in P such that each maximal interval of P contains

at most two vertices of C and f = ±fC.

Corollary

Let P be a balanced polyomino. Then IP admits a squarefree

initial ideal for any monomial order.
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Classes of balanced polyominoes

The polyomino P is called tree-like if each subpolyomino of P
has a leaf.

Figure : A tree-like polyomino
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Classes of Balanced polyominoes

Figure : Not a tree-like polyomino

Ayesha Asloob Qureshi Polyomino Ideals



Classes of balanced polyominoes

Figure : Column convex but not row convex
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Classes of balanced polyominoes

Theorem

Let P be a row or column convex, or a tree-like polyomino.

Then P is balanced and simple.
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Classes of Balanced polyominoes

Theorem

A polyomino is simple if and only if it is balanced.
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Polyominoes

Very recently those convex polyominoes have been classified in
[Ene, Herzog, Hibi (2014) ] whose ideal of inner minors is
linearly related or has a linear resolution. For some special
polyominoes also the regularity of the ideal of inner minors is
studied by [Ene, Rauf, - (2013)].
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Questions

What is the complete characterization of prime polyominoes.

Can we find another class of prime polyominoes di↵erent than
simple polyominoes?

What can we say about the ideal generated by inner t-minors of
a polyomino?

Does there exist a monomial order such that polyomino ideals
(or any particular class of polyominoe ideals) have quadratic
Gröbner basis?

When convex polyominoes are Gorenstien?
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Thank you!
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