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Abstract. In this notes, we give a basic introduction of the study of matroids toric
ideals and some applications.

1. Introduction

Let M be a matroid on a finite ground set E = {1, . . . , n}, we denote by B the set of
bases of M . Let k be an arbitrary field and consider k[x1, . . . , xn] a polynomial ring
over k. For each base B ∈ B, we introduce a variable yB and we denote by R the
polynomial ring in the variables yB, i.e., R := k[yB |B ∈ B]. A binomial in R is a
difference of two monomials, an ideal generated by binomials is called a binomial ideal.

We consider the homomorphism of k-algebras ϕ : R −→ k[x1, . . . , xn] induced by

yB 7→
∏
i∈B

xi.

The image of ϕ is a standard graded k-algebra, which is called the bases monomial ring
of the matroid M and it is denoted by SM . By a result due to White [17, Theorem
5], SM has Krull dimension dim(SM) = n− c+ 1, where c is the number of connected
components of M . The kernel of ϕ, which is the presentation ideal of SM , is called the
toric ideal of M and is denoted by IM .

It is well known that IM is a prime, binomial and homogeneous ideal, see, e.g., [15].
Since R/IM ' SM , it follows that the height of IM is ht(IM) = |B|−dim(SM). Let b be
the number of bases of M , given u ∈ Zb define u+ (resp. u− to be u (resp. −u) with
negative coordinates replaced by zeros; we then have u = u+ − u−. From the point
of view of Sturmfels [16] toric ideals are generated by binomials yu+ − yu− , where u+

runs over integer vectors in the kernel of an integer matrix. For the toric ideal IM the
integer matrix is the m × b matrix whose columns are the zero-one incidence vectors
of the bases of M .

Let M be a matroid on the ground set E = {1, . . . , n} and rank r ≥ 2. Let B denote
the set of bases ofM . By definition B is not empty and satisfies the following exchange
axiom:

For every B1, B2 ∈ B and for every e ∈ B1 \B2, there exists f ∈ B2 \B1

such that (B1 ∪ {f}) \ {e} ∈ B.

Brualdi proved in [5] that the exchange axiom is equivalent to the symmetric exchange
axiom:

For every B1, B2 in B and for every e ∈ B1 \B2, there exists f ∈ B2 \B1

such that both (B1 ∪ {f}) \ {e} ∈ B and (B2 ∪ {e}) \ {f} ∈ B.
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Suppose that a pair of bases D1, D2 is obtained from a pair of bases B1, B2 by a
symmetric exchange. That is D1 = (B1 \ e)∪ f and D2 = (B2 \ f)∪ e for some e ∈ B1

and f ∈ B2. Then, we say that the quadratic binomial yB1yB2 − yD1yD2 correspond to
symmetric exchange. It is clear that such binomial belong to the ideal IM .

Conjecture 1.1. (White [18]) For every matroid M its toric ideal IM is generated by
quadratic binomials corresponding to symmetric exchanges.

We further observe that for B1, . . . , Bs, D1, . . . , Ds ∈ B, the homogeneous binomial
yB1 · · · yBs − yD1 · · · yDs belongs to IM if and only if B1 ∪ · · · ∪ Bs = D1 ∪ · · · ∪Ds as
multisets. Since IM is a homogeneous binomial ideal, it follows that
(1.1) IM =

(
{yB1 · · · yBs − yD1 · · · yDs |B1 ∪ · · · ∪Bs = D1 ∪ · · · ∪Ds as multisets}

)
.

Since every toric ideal is generated by binomials then we can rephrase the above conjec-
ture in the combinatorial language. It asserts that if two sets of bases of a matroid have
equal union (as multiset), then one can pass between them by a sequence of symmetric
exchanges. In fact this is the original formulation due to White. We immediately see
that the conjecture does not depend on the field k.
Blasiak [2] has confirmed the conjecture for graphical matroids, Kashiwaba [10] checked
the case of matroids of rank at most 3. Schweig [14] proved the case of lattice path
matroids which are a subclass of transversal matroids. Recently Bonin [6] confirmed
the conjecture for sparse paving matroids.
It is also natural to ask whether the following variant of White’s conjecture holds (see
for instance [7] and [15, Chapter 14])

Conjecture 1.2. For any matroid M , the toric ideal IM has a Gröbner basis consisting
of quadratics binomials.

Sturmfels [15, Chapter 14] show that Conjecture 1.2 holds for uniform matroids.
White’s conjecture can be posed as two separated conjectures. The following are both
still open in their generality and together imply White’s conjecture.

Conjecture 1.3. For any matroid M , the toric ideal IM is generated by quadratics
binomials.

Conjecture 1.4. For any matroid M , the quadratic binomials of IM are in the ideal
generated by the binomials yB1yB2 − yD1yD2 such that the pair of bases D1, D2 can be
obtained from the pair B1, B2 by a symmetric exchange.

2. Blasiak’s reduction

In [2] Blasiak showed that the algebraic formulation of White’s conjecture is implied
by the following combinatorial condition similar to White’s original formulation. Let
M be a matroid on a ground set E with |E| = nr(M) where r(M) is the rank of M .
The n-base graph of M , which is denoted by Gn(M), has as its vertex set the set of all
sets of n disjoint bases (a set of n bases {B1, . . . , Bn} of M is disjoint if and only if

|E| =
n⋃
i=1

Bi.

There is an edge between {B1, . . . , Bn} and {D1, . . . , Dn} if and only if Bi = Dj for
some i, j. Blasiak proved that Conjecture 1.3 is implied by the connectivity of the
n-base graphs. Let us first proof the following lemma for a general class of matroids C
that is closed under deletions and adding parallel elements.
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Lemma 2.1. [2] Let C be a collection of matroids that is closed under deletions and
adding parallel elements. Suppose that for each n ≥ 3 and for every matroid M in C
on a ground set of size nr(M) the n-base graph of M is connected. Then, for every
matroid M in C, IM is generated by quadratics polynomials.

Proof. We will prove by induction on n the following statement: for every M ∈ C and
every binomial b ∈ IM of degree n, b is in the ideal generated by the quadratics of
IM . This will prove the result because as mentioned above IM is spanned as a k-vector
space by binomials. Suppose n ≥ 3 and M ∈ C on the ground set {1, . . . ,m}, and b is
binomial of degree n in IM . The binomial b is necessarily of the form b =

n∏
i=1

yBi
−

n∏
i=1

yDi

for some bases {B1, . . . , Bn} and {D1, . . . , Dn} of M such that the Bi and Di have the
same multiset union. We will show that b is in the ideal generated by the degree n− 1
binomials of IM , we will do so by constructing a new matroid M ′ that depends on the
binomial b. By induction the degree n− 1 binomials are in the ideal generated by the
quadratics of IM so this will complete the proof.

Put xS = ϕ(
n∏
i=1

yBi
) and let Si denote the ith component of S. We define M ′ to

be the matroid obtained from M by replacing i with Si parallel copies of i for each
i ∈ {1, . . . ,m}; interprate ‘replacing by zero parallel copies’ to mean deleting this i
for which Si = 0. There is a natural map α from the ground set of M ′ to the ground
set of M that takes each of the parallel copies of i to i. If X is an independent set
of M ′ then α(X) is an independent set of M . So there is a k-algebra homomorphism
α∗ : RM ′ −→ RM defined by α∗(yB′) = yα(B′) for every base B′ of M ′.

Since the collection C is closed under deletions and adding parallel elements, M ∈ C
implies M ′ ∈ C. M ′ has a ground set of size nr(M ′) = nr(M) =

∑
i

Si, and by

assumption, the n-base graph of M ′ is connected. Let uB be a vertex of Gn(M ′) such
that α(uB) = {B1, . . . , Bn} (here α is the natural extension of α to sets of subsets of
the ground set on M ′ : α(uB) = {α(X)|X ∈ uB}). Such uB exists by construction of
M ′: simply split up the parallel copies of i, giving one to each base in {B1, . . . , Bn}
containing i. Let uD be a vertex of Gn(M) such that α(uD) = {D1, . . . , Dn}. Let

yu =
∏
X∈u

yX

as is customary when u is identified with its zero-one incidence vector. Let u0,u1, . . . ,ut

be the vertices of a path between uB = u0 and uD = ut in Gn(M ′). then, we have
t∑
i=1

yui−1 − yui = yu0 − yut

and applying the map α∗ we obtain

(2.1)
t∑
i=1

yα(ui−1) − yα(ui) = yα(u0) − yα(ut) =
n∏
i=1

yBi
−

n∏
i=1

yDi
= b.

For i = 1, . . . t there is a base X ∈ ui1 ∩ ui which implies α(X) ∈ α(ui1) ∩ α(ui). This
show that yα(X) may be factored out of the binomial yα(ui−1) − yα(ui), and therefore
(2.1) shows that b is in the ideal generated by the degree n− 1 binomials of IM . �
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The reduction for Conjecture 1.4 is similar. Suppose M is a matroid on a ground set
of size 2r(M). The single exchange graph of M , denoted by G(M), is the graph with
vertex set the set of ordered 2-tuples of bases of M, (B1, B2) such that B1 and B2 are
disjoint. There is an edge between (B1, B2) and (D1, D2) if and only if (D1, D2) can be
obtained from (B1, B2) by a symmetric exchange (the order of the bases matters, that
is, it is required |B1 ∩D1| = |B2 ∩D2| = r(M) − 1). The above lemma can be easily
modified to show that : if for every M ∈ C with a ground set of size 2r(M) the single
exchange graph of M is connected, then Conjecture 1.4 holds for all matroids in C.

3. Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B1 and B2 there is a bijection
π : B1 −→ B2 satisfying the multiple symmetric exchange property, that is : (B1 \A)∪
π(A) is a basis for every A ⊂ B1. This implies that π restricted to the intersection
B1 ∩B2 is the identity. Moreover, (B2 \ π(A)) ∪A is a basis for every A ⊂ B1 (by the
multiple symmetric exchange property for B1 \A). The class of strongly base orderable
matroids is closed under taking minors.
In [11] Lasoń and Michałek proved White’s conjecture for strongly base orderable
matroids. As a consequence it is true for gammoids (every gammoid is strongly base
orderable), and in particular for transversal matroids (every transversal matroid is a
gammoid).

Theorem 3.1. [11] If M is a strong orderable base matroid, then the toric ideal IM is
generated by quadratics binomials corresponding to symmetric exchanges.

Proof. Let JM be the ideal generated by quadratics binomials corresponding to sym-
metric exchanges. The ideal IM , as a toric ideal, is generated by binomials. Thus it is
enough to prove that all binomials of IM belong to the ideal JM .
Fix n ≥ 2. We shall prove by decreasing induction on the overlap function

d(yB1 · · · yBn , yD1 · · · yDn) := max
π∈Sn

n∑
i=1

|Bi ∩Dπ(i)|

that a binomial yB1 · · · yBn − yD1 · · · yDn ∈ IM belongs to JM . Clearly the biggest
possible value of d is r(M)n where r(M) denotes the rank of M .
If d(yB1 · · · yBn , yD1 · · · yDn) = r(M)n then there exists a permutation π ∈ Sn such that
Bi = Dπ(i) for each i. Hence, yB1 · · · yBn − yD1 · · · yDn = 0 ∈ JM .
Suppose the assertion holds for all binomials with overlap function greater that d <
r(M)n. Let yB1 · · · yBn − yD1 · · · yDn be a binomial of IM (and thus B1 ∪ · · · ∪ Bn =
D1 ∪ · · · ∪ Dn as multisets) with the overlap function equal to d. Without loss of
generality we can assume that the identity permutation realizes the maximum in the
definition of the overlap function. Then for some i there exists e ∈ Bi \ Di. Since
B1 ∪ · · · ∪ Bn = D1 ∪ · · ·Dn as multisets then there exist j 6= i such that e ∈ Dj \ Bj.
Without loss of generality we can assume that i = 1 and j = 2. Since M is strongly
base orderable matroid, there exist bijections πB : B1 −→ B2 and πD : D1 −→ D2 with
the multiple symmetric exchange property. Recall that πB is the identity on B1 ∩ B2

and similarly that πD is the identity on D1 ∩D2.
Let G be a graph on a vertex set B1 ∪ B2 ∪ D1 ∪ D2 with edges {b, πB(b)} for all
b ∈ B1 \B2 and {d, πB(d)} for all d ∈ D1 \D2. G is bipartite since it is the sum of two
matchings. Split the vertex set of G into two independent (in the graph sense) sets S
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and T . Define

B′1 = (S ∩ (B1 ∪B2)) ∪ (B1 ∩B2), B
′
2 = (T ∩ (B1 ∪B2)) ∪ (B1 ∩B2)

D′1 = (S ∩ (D1 ∪D2)) ∪ (D1 ∩D2), D
′
2 = (T ∩ (D1 ∪D2)) ∪ (D1 ∩D2)

By the multiple symmetric exchange property of πB sets B′1, B′2 are bases obtained
from the pair B1, B2 by a sequence of symmetric exchanges. Therefore the binomial

(3.1) yB1yB2yB3 · · · yBn − yB′1yB′2yB3 · · · yBn

belongs to JM . Analogously the binomial

(3.2) yD1yD2yD3 · · · yDn − yD′1yD′2yD3 · · · yDn

belongs to JM . Moreover since S and T are disjoint we have that

d(yB′1yB′2yB3 · · · yBn , yD′1yD′2yD3 · · · yDn) > d(yB1yB2yB3 · · · yBn , yD1yD2yD3 · · · yDn).

By the inductive assumption

(3.3) yB′1yB′2yB3 · · · yBn − yD′1yD′2yD3 · · · yDn

also belongs to JM . By adding (3.1) and (3.3) and subtracting (3.2) we have that

yB1yB2yB3 · · · yBn − yD1yD2yD3 · · · yDn

belongs to JM , as desired. �

The following three sections are based on the results given by García-Marco and
Ramírez Alfonsín in [9].

4. Complete intersection

The toric ideal IM is a complete intersection if µ(IM) = ht(IM), where µ(IM) denotes
the minimal number of generators of IM . Equivalently, IM is a complete intersection
if and only if there exists a set of homogeneous binomials g1, . . . , gs ∈ R such that
s = ht(IM) and IM = (g1, . . . , gs).
From expression (1.1) one easily derives that whenever r = n or r = n − 1, then
IM = (0) and IM is a complete intersection. Thus, we only consider the case r ≤ n−2.

It can be proved that the operations of taking duals, deletion, contraction and taking
minors of M preserve the property of being a complete intersection on IM . For more
details on how these operations affect IM we refer the reader to [3, Section 2].

We denote by M∗ the dual matroid of M . It is straightforward to check that σ(IM) =
IM∗ , where σ is the isomorphism of k-algebras σ : R −→ k[yE\B |B ∈ B] induced by
yB 7→ yE\B. Thus, IM is a complete intersection if and only if IM∗ also is.

For every A ⊂ E, M \ A denotes the deletion of A from M and M/A denotes the
contraction of A from M . For E ′ ⊂ E, the restriction of M to E ′ is denoted by M |E′ .

Proposition 4.1. Let M ′ be a minor of M . If IM is a complete intersection, then IM ′
also is.
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It is not difficult to see that if e is a loop then IM = IM\{e}. Moreover, if e is a coloop
of M , then IM is essentially equal to IM\{e}. Indeed, if one considers the isomorphism
of k-algebras τ : R −→ k[yB\{e} |B ∈ B] induced by yB 7→ yB\{e}, then τ(IM) = IM\{e}.
For this reason we may assume without loss of generality that M has no loops or
coloops.

Now we study the complete intersection property for IM when M has rank 2. In this
case, we associate to M the graph HM with vertex set E and edge set B. It turns out
that IM coincides with the toric ideal of the graph HM (see, e.g., [1]). In particular,
from [1, Corollary 3.9], we have that whenever IM is a complete intersection, then
HM does not contain K2,3 as subgraph, where K2,3 denotes the complete bipartite
graph with partitions of sizes 2 and 3. The following result characterizes the complete
intersection property for toric ideals of rank 2 matroids.

Proposition 4.2. Let M be a rank 2 matroid on a ground set of n ≥ 4 elements
without loops or coloops. Then, IM is a complete intersection if and only if n = 4.

Proof. (⇒) Assume that n ≥ 5 and let us prove that IM is not a complete intersection.
Since M has no loops or coloops, we may assume that B1 = {1, 2}, B2 = {3, 4}, B3 =
{1, 5} ∈ B. Since B1, B2 ∈ B, by the symmetric exchange axiom, we can also assume
that B4 = {1, 3}, B5 = {2, 4} ∈ B. If {4, 5} ∈ B, then HM has a subgraph K2,3 and
IM is not a complete intersection. Let us suppose that {4, 5} /∈ B. By the exchange
axiom for B2 and B3 we have B6 := {3, 5} ∈ B. Again by the exchange axiom for B5

and B6 we get that B7 := {3, 4} ∈ B. Thus, HM has K2,3 as a subgraph and IM is not
a complete intersection.
(⇐) There are three non isomorphic rank 2 matroids without loops or coloops and n =
4. Namely,M1 with set of bases B1 = {{1, 2}, {3, 4}, {1, 3}, {2, 4}},M2 with set of bases
B2 = B1∪{{1, 4}} andM3 = U2,4. For i = 1, 2 one can easily check that ht(IMi

) = 1 and
that IMi

= (y{1,2}y{3,4}−y{1,3}y{1,4}); thus both IM1 and IM2 are complete intersections.
Moreover, ht(IM3) = 2 and a direct computation with Singular or CoCoA yields
that IM3 = (y{1,2}y{3,4}−y{1,3}y{1,4}, y{1,4}y{2,3}−y{1,3}y{1,4}); thus IM3 is also a complete
intersection. �

One can apply Proposition 4.2 to give the list of all matroids M such that IM is a
complete intersection.

Theorem 4.3. Let M be a matroid without loops or coloops and with n > r+1. Then,
IM is a complete intersection if and only if n = 4 and M is the matroid whose set of
bases is:

(1) B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}},
(2) B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}}, or
(3) B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}}, i.e., M = U2,4.

5. Finding minors

In this section we investigate a characterization for a matroid to contain certain minors
in terms of a set of binomial generators of its corresponding toric ideal. In particular,
we focus our attention to detect if a matroid M contains Ud,2d as a minor for d ≥ 2.
We consider the following binary equivalence relation ∼ on the set of pairs of bases:

{B1, B2} ∼ {B3, B4} ⇐⇒ B1 ∪B2 = B3 ∪B4 as multisets,
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and we denote by ∆{B1,B2} the cardinality of the equivalence class of {B1, B2}.
We now introduce two lemmas concerning the values ∆{B1,B2}. The first one provides
some bounds on the values of ∆{B1,B2}. In the proof of this lemma we use the so called
multiple symmetric exchange property (see [19]):

For every B1, B2 in B and for every A1 ⊂ B1, there exists A2 ⊂ B2 such
that (B1 ∪ A2) \ A1 ∈ B and (B2 ∪ A1) \ A2 are in B.

Lemma 5.1. For every B1, B2 ∈ B, then 2d−1 ≤ ∆{B1,B2} ≤
(
2d−1
d

)
, where d :=

|B1 \B2|.

Proof. Take e ∈ B1 \ B2. By the multiple symmetric exchange property, for every A1

such that e ∈ A1 ⊂ (B1 \B2), there exists A2 ⊂ B2 such that both B′1 := (B1∪A2)\A1

and B′2 := (B2 ∪ A1) \ A2 are bases. Since B1 ∪ B2 = B′1 ∪ B′2 as multisets, we derive
that ∆{B1,B2} is greater or equal to the number of sets A1 such that e ∈ A1 ⊂ (B1 \B2),
which is exactly 2d−1.
We set A := B1 ∩B2, C := B14B2 and take e ∈ B1 \B2. Take B3, B4 ∈ B such that
B1 ∪B2 = B3 ∪B4 as multisets and assume that e ∈ B4. Then, B3 \A ⊂ C \ {e} with
|B3| = |B1 \B2| = d elements; thus, ∆{B1,B2} ≤

(
2d−1
d

)
. �

Moreover, the bounds of Lemma 5.1 are sharp for every d ≥ 2. Indeed, if one considers
the transversal matroid on the set {1, . . . , 2d} with presentation ({1, d+1}, . . . , {d, 2d}),
and takes the bases B1 = {1, . . . , d}, B2 = {d + 1, . . . , 2d}, then |B1 \ B2| = d and
∆{B1,B2} = 2d−1. Also, if we consider the uniform matroid Ud,2d then for any base B
we have that ∆{B,E\B} =

(
2d−1
d

)
.

The second lemma interprets the values of ∆{B1,B2} in terms of the number of bases-
cobases of a certain minor of M . Recall that a base B ∈ B is a base-cobase if E \B is
also a base of M .

Lemma 5.2. Let B1, B2 ∈ B of a matroid M and consider the matroid M ′ := (M/(B1∩
B2))|(B14B2) on the ground set B1 4 B2. Then, the number of bases-cobases of M ′ is
equal to 2∆{B1,B2}.

The following result provides a necessary condition for a matroid to have a minor
isomorphic to Ud,2d.

Proposition 5.3. If M has a minor M ′ ' Ud,2d for some d ≥ 2, then there exist
B1, B2 ∈ B such that ∆{B1,B2} =

(
2d−1
d

)
.

Proof. Let A,C ⊂ E be disjoint sets such that M ′ := (M \ A)/C ' Ud,2d and denote
E ′ := E\(A∪C). SinceM ′ = (M\A)/C, then there exist e1, . . . , er−d ∈ A∪C such that
B′ ∪ {e1, . . . , er−d} ∈ B for every B′ base of M ′. We take any D ⊂ E ′ with d-elements,
we have that B1 = D ∪ {e1, . . . , er−d} ∈ B, B2 = (E ′ \ D) ∪ {e1, . . . , er−d} ∈ B and
B1 ∪ B2 = E ′ ∪ {e1, . . . , er−d}. Thus, ∆{B1,B2} ≥

(
2d
d

)
/2 =

(
2d−1
d

)
. Since |B1 \ B2| = d,

by Lemma 5.1 we are done. �

Since U2,4 is the only forbidden minor for a matroid to be binary the following result
gives a criterion for M to be binary by proving the converse of Proposition 5.3 for
d = 2.

Theorem 5.4. M is binary if and only if ∆{B1,B2} 6= 3 for every B1, B2 ∈ B.
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Proof. (⇒) Assume that there exist B1, B2 ∈ B such that ∆{B1,B2} = 3. Let us denote
d := |B1 \ B2|. By Lemma 5.1 we observe that d = 2. If we set C := B1 ∩ B2 and
A = E \ (B1 ∪ B2), then M ′ := (M \ A)/C is a rank 2 matroid on a ground set of
4 elements and, by Lemma 5.2, it has 6 bases-cobases, thus M ′ ' U2,4 and M is not
binary.
(⇐) Assume that M is not binary, then M has a minor M ′ ' U2,4 and the result
follows from Proposition 5.3. �

It can also be proved that the converse of Proposition 5.3 also holds for d = 3.

Theorem 5.5. M has a minor M ′ ' U3,6 if and only if ∆{B1,B2} = 10 for some
B1, B2 ∈ B.

6. Minimal system of generators

Minimal systems of binomial generators of toric ideals have been studied in several
papers; see, e.g., [4, 8]. In general, for a toric ideal it is possible to have more than one
minimal system of generators formed by binomials. Given a toric ideal I, we denote
by ν(I) the number of minimal sets of binomial generators of I, where the sign of a
binomial does not count and we denote by µ(IM) the minimal number of generators of
IM .
We first give some bounds for the values of µ(IM) and ν(IM) in terms of the values
∆{B1,B2} for B1, B2 ∈ B. Moreover, this lower bounds turn out to be the exact values
if IM is generated by quadrics.

Theorem 6.1. Let R = {{B1, B2}, . . . , {B2s−1, B2s}} be a set of representatives of ∼
and set ri := ∆{B2i−1,B2i} for all i ∈ {1, . . . , s}. Then,

(1) µ(IM) ≥ (b2 − b− 2s)/2, where b := |B|, and
(2) ν(IM) ≥

∏s
i=1 r

ri−2
i .

Moreover, in both cases equality holds whenever IM is generated by quadrics.

We end by characterizing all matroids whose toric ideal has a unique minimal binomial
generating set. We recall that the basis graph of a matroid M is the undirected graph
GM with vertex set B and edges {B,B′} such that |B \B′| = 1. We also recall that the
diameter of a graph is the maximum distance between two vertices of the graph.

Theorem 6.2. Let M be a rank r ≥ 2 matroid. Then, ν(IM) = 1 if and only if M is
binary and the diameter of GM is at most 2.

Proof. (⇒) By Theorem 6.1,we have that ∆{B1,B2} ∈ {1, 2} for all B1, B2 ∈ B. By
Lemma 5.1 and Theorem 5.4, this is equivalent to M is binary and |B1 \ B2| ∈ {1, 2}
for all B1, B2 ∈ B. Clearly this implies that the diameter of GM is less or equal to 2.
(⇐) Assume that the diameter of GM is≤ 2, we claim thatM is strongly base orderable.
Recall that a matroid is strongly base orderable if for any two bases B1 and B2 there
is a bijection π : B1 → B2 such that (B1 \ A) ∪ π(A) is a basis for all A ⊂ B1.
We take B1, B2 ∈ B and observe that |B1 \ B2| ∈ {1, 2}. If B1 \ B2 = {e} and
B2 \ B1 = {f} if suffices to consider the bijection π : B1 → B2 which is the identity
on B1 ∩ B2 and π(e) = f . Moreover, if B1 \ B2 = {e1, e2} and B2 \ B1 = {f1, f2}, we
denote A := B1∩B2 and, by the symmetric exchange axiom, we can assume that both
A∪{e1, f1} and A∪{e2, f2} are basis ofM ; then it suffices to consider π : B1 → B2 the
identity on A, π(e1) = f2 and π(e2) = f1 to conclude thatM is strongly base orderable.
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So, by [11, Theorem 2], IM is generated by quadrics. Moreover, from Lemma 5.1 and
Theorem 5.4 we deduce that ∆{B1,B2} ∈ {1, 2} for all B1, B2 ∈ B. Hence, the result
follows by Theorem 6.1. �
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