LECTURE ON MATROID TORIC IDEALS

JORGE RAMÍREZ ALFONSÍN

AbStract. In this notes, we give a basic introduction of the study of matroids toric ideals and some applications.

1. Introduction

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M. Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k. For each base $B \in \mathcal{B}$, we introduce a variable y_{B} and we denote by R the polynomial ring in the variables y_{B}, i.e., $R:=k\left[y_{B} \mid B \in \mathcal{B}\right]$. A binomial in R is a difference of two monomials, an ideal generated by binomials is called a binomial ideal.

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i}
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}. By a result due to White [17, Theorem 5], S_{M} has Krull dimension $\operatorname{dim}\left(S_{M}\right)=n-c+1$, where c is the number of connected components of M. The kernel of φ, which is the presentation ideal of S_{M}, is called the toric ideal of M and is denoted by I_{M}.

It is well known that I_{M} is a prime, binomial and homogeneous ideal, see, e.g., [15]. Since $R / I_{M} \simeq S_{M}$, it follows that the height of I_{M} is $\operatorname{ht}\left(I_{M}\right)=|\mathcal{B}|-\operatorname{dim}\left(S_{M}\right)$. Let b be the number of bases of M, given $\mathbf{u} \in \mathbb{Z}^{b}$ define \mathbf{u}_{+}(resp. \mathbf{u}_{-}to be \mathbf{u} (resp. - \mathbf{u}) with negative coordinates replaced by zeros; we then have $\mathbf{u}=\mathbf{u}_{+}-\mathbf{u}_{-}$. From the point of view of Sturmfels [16] toric ideals are generated by binomials $\mathbf{y}^{\mathbf{u}_{+}}-\mathbf{y}^{\mathbf{u}_{-}}$, where \mathbf{u}_{+} runs over integer vectors in the kernel of an integer matrix. For the toric ideal I_{M} the integer matrix is the $m \times b$ matrix whose columns are the zero-one incidence vectors of the bases of M.

Let M be a matroid on the ground set $E=\{1, \ldots, n\}$ and rank $r \geq 2$. Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom:

For every $B_{1}, B_{2} \in \mathcal{B}$ and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$.

Brualdi proved in [5] that the exchange axiom is equivalent to the symmetric exchange axiom:

For every B_{1}, B_{2} in \mathcal{B} and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that both $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$ and $\left(B_{2} \cup\{e\}\right) \backslash\{f\} \in \mathcal{B}$.

This notes were prepared for the 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals, Bucharest, Romania, September 2014.

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$. Then, we say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to symmetric exchange. It is clear that such binomial belong to the ideal I_{M}.
Conjecture 1.1. (White [18]) For every matroid M its toric ideal I_{M} is generated by quadratic binomials corresponding to symmetric exchanges.
We further observe that for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets. Since I_{M} is a homogeneous binomial ideal, it follows that
(1.1) $I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$.

Since every toric ideal is generated by binomials then we can rephrase the above conjecture in the combinatorial language. It asserts that if two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges. In fact this is the original formulation due to White. We immediately see that the conjecture does not depend on the field k.
Blasiak [2] has confirmed the conjecture for graphical matroids, Kashiwaba [10] checked the case of matroids of rank at most 3. Schweig [14] proved the case of lattice path matroids which are a subclass of transversal matroids. Recently Bonin [6] confirmed the conjecture for sparse paving matroids.
It is also natural to ask whether the following variant of White's conjecture holds (see for instance [7] and [15, Chapter 14])
Conjecture 1.2. For any matroid M, the toric ideal I_{M} has a Gröbner basis consisting of quadratics binomials.
Sturmfels [15, Chapter 14] show that Conjecture 1.2 holds for uniform matroids. White's conjecture can be posed as two separated conjectures. The following are both still open in their generality and together imply White's conjecture.
Conjecture 1.3. For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.
Conjecture 1.4. For any matroid M, the quadratic binomials of I_{M} are in the ideal generated by the binomials $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ such that the pair of bases D_{1}, D_{2} can be obtained from the pair B_{1}, B_{2} by a symmetric exchange.

2. BLASIAK'S REDUCTION

In [2] Blasiak showed that the algebraic formulation of White's conjecture is implied by the following combinatorial condition similar to White's original formulation. Let M be a matroid on a ground set E with $|E|=n r(M)$ where $r(M)$ is the rank of M. The n-base graph of M, which is denoted by $G_{n}(M)$, has as its vertex set the set of all sets of n disjoint bases (a set of n bases $\left\{B_{1}, \ldots, B_{n}\right\}$ of M is disjoint if and only if

$$
|E|=\bigcup_{i=1}^{n} B_{i}
$$

There is an edge between $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ if and only if $B_{i}=D_{j}$ for some i, j. Blasiak proved that Conjecture 1.3 is implied by the connectivity of the n-base graphs. Let us first proof the following lemma for a general class of matroids \mathfrak{C} that is closed under deletions and adding parallel elements.

Lemma 2.1. [2] Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials.

Proof. We will prove by induction on n the following statement: for every $M \in \mathfrak{C}$ and every binomial $b \in I_{M}$ of degree n, b is in the ideal generated by the quadratics of I_{M}. This will prove the result because as mentioned above I_{M} is spanned as a k-vector space by binomials. Suppose $n \geq 3$ and $M \in \mathfrak{C}$ on the ground set $\{1, \ldots, m\}$, and b is binomial of degree n in I_{M}. The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union. We will show that b is in the ideal generated by the degree $n-1$ binomials of I_{M}, we will do so by constructing a new matroid M^{\prime} that depends on the binomial b. By induction the degree $n-1$ binomials are in the ideal generated by the quadratics of I_{M} so this will complete the proof.

Put $\mathbf{x}^{\mathbf{S}}=\varphi\left(\prod_{i=1}^{n} y_{B_{i}}\right)$ and let $\mathbf{S}_{\mathbf{i}}$ denote the $i^{\text {th }}$ component of \mathbf{S}. We define M^{\prime} to be the matroid obtained from M by replacing i with $\mathbf{S}_{\mathbf{i}}$ parallel copies of i for each $i \in\{1, \ldots, m\}$; interprate 'replacing by zero parallel copies' to mean deleting this i for which $\mathbf{S}_{\mathbf{i}}=0$. There is a natural map α from the ground set of M^{\prime} to the ground set of M that takes each of the parallel copies of i to i. If X is an independent set of M^{\prime} then $\alpha(X)$ is an independent set of M. So there is a k-algebra homomorphism $\alpha_{*}: R_{M^{\prime}} \longrightarrow R_{M}$ defined by $\alpha_{*}\left(y_{B^{\prime}}\right)=y_{\alpha\left(B^{\prime}\right)}$ for every base B^{\prime} of M^{\prime}.

Since the collection \mathfrak{C} is closed under deletions and adding parallel elements, $M \in \mathfrak{C}$ implies $M^{\prime} \in \mathfrak{C}$. M^{\prime} has a ground set of size $\operatorname{nr}\left(M^{\prime}\right)=\operatorname{nr}(M)=\sum_{i} \mathbf{S}_{\mathbf{i}}$, and by assumption, the n-base graph of M^{\prime} is connected. Let \mathbf{u}_{B} be a vertex of $G_{n}\left(M^{\prime}\right)$ such that $\alpha\left(\mathbf{u}_{\mathbf{B}}\right)=\left\{B_{1}, \ldots, B_{n}\right\}$ (here α is the natural extension of α to sets of subsets of the ground set on $\left.M^{\prime}: \alpha\left(\mathbf{u}_{\mathbf{B}}\right)=\left\{\alpha(X) \mid X \in \mathbf{u}_{\mathbf{B}}\right\}\right)$. Such $\mathbf{u}_{\mathbf{B}}$ exists by construction of M^{\prime} : simply split up the parallel copies of i, giving one to each base in $\left\{B_{1}, \ldots, B_{n}\right\}$ containing i. Let $\mathbf{u}_{\mathbf{D}}$ be a vertex of $G_{n}(M)$ such that $\alpha\left(\mathbf{u}_{\mathbf{D}}\right)=\left\{D_{1}, \ldots, D_{n}\right\}$. Let

$$
\mathbf{y}^{\mathbf{u}}=\prod_{X \in \mathbf{u}} y_{X}
$$

as is customary when \mathbf{u} is identified with its zero-one incidence vector. Let $\mathbf{u}_{\mathbf{0}}, \mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{t}}$ be the vertices of a path between $\mathbf{u}_{\mathbf{B}}=\mathbf{u}_{\mathbf{0}}$ and $\mathbf{u}_{\mathbf{D}}=\mathbf{u}_{\mathbf{t}}$ in $G_{n}\left(M^{\prime}\right)$. then, we have

$$
\sum_{i=1}^{t} \mathbf{y}^{\mathbf{u}_{\mathrm{i}-1}}-\mathbf{y}^{\mathbf{u}_{\mathrm{i}}}=\mathbf{y}^{\mathbf{u}_{\mathbf{0}}}-\mathbf{y}^{\mathbf{u}_{\mathrm{t}}}
$$

and applying the map α_{*} we obtain

$$
\begin{equation*}
\sum_{i=1}^{t} \mathbf{y}^{\alpha\left(\mathbf{u}_{\mathbf{i}-\mathbf{1}}\right)}-\mathbf{y}^{\alpha\left(\mathbf{u}_{\mathbf{i}}\right)}=\mathbf{y}^{\alpha\left(\mathbf{u}_{\mathbf{0}}\right)}-\mathbf{y}^{\alpha\left(\mathbf{u}_{\mathbf{t}}\right)}=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}=b \tag{2.1}
\end{equation*}
$$

For $i=1, \ldots t$ there is a base $X \in \mathbf{u}_{\mathbf{i}_{\mathbf{1}}} \cap \mathbf{u}_{\mathbf{i}}$ which implies $\alpha(X) \in \alpha\left(\mathbf{u}_{\mathbf{i}_{1}}\right) \cap \alpha\left(\mathbf{u}_{\mathbf{i}}\right)$. This show that $y_{\alpha(X)}$ may be factored out of the binomial $\mathbf{y}^{\alpha\left(\mathbf{u}_{\mathbf{i}-1}\right)}-\mathbf{y}^{\alpha\left(\mathbf{u}_{\mathbf{i}}\right)}$, and therefore (2.1) shows that b is in the ideal generated by the degree $n-1$ binomials of I_{M}.

The reduction for Conjecture 1.4 is similar. Suppose M is a matroid on a ground set of size $2 r(M)$. The single exchange graph of M, denoted by $G(M)$, is the graph with vertex set the set of ordered 2-tuples of bases of $M,\left(B_{1}, B_{2}\right)$ such that B_{1} and B_{2} are disjoint. There is an edge between $\left(B_{1}, B_{2}\right)$ and $\left(D_{1}, D_{2}\right)$ if and only if $\left(D_{1}, D_{2}\right)$ can be obtained from $\left(B_{1}, B_{2}\right)$ by a symmetric exchange (the order of the bases matters, that is, it is required $\left.\left|B_{1} \cap D_{1}\right|=\left|B_{2} \cap D_{2}\right|=r(M)-1\right)$. The above lemma can be easily modified to show that : if for every $M \in \mathfrak{C}$ with a ground set of size $2 r(M)$ the single exchange graph of M is connected, then Conjecture 1.4 holds for all matroids in \mathfrak{C}.

3. Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B_{1} and B_{2} there is a bijection $\pi: B_{1} \longrightarrow B_{2}$ satisfying the multiple symmetric exchange property, that is : $\left(B_{1} \backslash A\right) \cup$ $\pi(A)$ is a basis for every $A \subset B_{1}$. This implies that π restricted to the intersection $B_{1} \cap B_{2}$ is the identity. Moreover, $\left(B_{2} \backslash \pi(A)\right) \cup A$ is a basis for every $A \subset B_{1}$ (by the multiple symmetric exchange property for $B_{1} \backslash A$). The class of strongly base orderable matroids is closed under taking minors.
In [11] Lasoń and Michałek proved White's conjecture for strongly base orderable matroids. As a consequence it is true for gammoids (every gammoid is strongly base orderable), and in particular for transversal matroids (every transversal matroid is a gammoid).

Theorem 3.1. [11] If M is a strong orderable base matroid, then the toric ideal I_{M} is generated by quadratics binomials corresponding to symmetric exchanges.

Proof. Let J_{M} be the ideal generated by quadratics binomials corresponding to symmetric exchanges. The ideal I_{M}, as a toric ideal, is generated by binomials. Thus it is enough to prove that all binomials of I_{M} belong to the ideal J_{M}.
Fix $n \geq 2$. We shall prove by decreasing induction on the overlap function

$$
d\left(y_{B_{1}} \cdots y_{B_{n}}, y_{D_{1}} \cdots y_{D_{n}}\right):=\max _{\pi \in S_{n}} \sum_{i=1}^{n}\left|B_{i} \cap D_{\pi(i)}\right|
$$

that a binomial $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}} \in I_{M}$ belongs to J_{M}. Clearly the biggest possible value of d is $r(M) n$ where $r(M)$ denotes the rank of M.
If $d\left(y_{B_{1}} \cdots y_{B_{n}}, y_{D_{1}} \cdots y_{D_{n}}\right)=r(M) n$ then there exists a permutation $\pi \in S_{n}$ such that $B_{i}=D_{\pi(i)}$ for each i. Hence, $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}}=0 \in J_{M}$.
Suppose the assertion holds for all binomials with overlap function greater that $d<$ $r(M) n$. Let $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}}$ be a binomial of I_{M} (and thus $B_{1} \cup \cdots \cup B_{n}=$ $D_{1} \cup \cdots \cup D_{n}$ as multisets) with the overlap function equal to d. Without loss of generality we can assume that the identity permutation realizes the maximum in the definition of the overlap function. Then for some i there exists $e \in B_{i} \backslash D_{i}$. Since $B_{1} \cup \cdots \cup B_{n}=D_{1} \cup \cdots D_{n}$ as multisets then there exist $j \neq i$ such that $e \in D_{j} \backslash B_{j}$. Without loss of generality we can assume that $i=1$ and $j=2$. Since M is strongly base orderable matroid, there exist bijections $\pi_{B}: B_{1} \longrightarrow B_{2}$ and $\pi_{D}: D_{1} \longrightarrow D_{2}$ with the multiple symmetric exchange property. Recall that π_{B} is the identity on $B_{1} \cap B_{2}$ and similarly that π_{D} is the identity on $D_{1} \cap D_{2}$.
Let G be a graph on a vertex set $B_{1} \cup B_{2} \cup D_{1} \cup D_{2}$ with edges $\left\{b, \pi_{B}(b)\right\}$ for all $b \in B_{1} \backslash B_{2}$ and $\left\{d, \pi_{B}(d)\right\}$ for all $d \in D_{1} \backslash D_{2}$. G is bipartite since it is the sum of two matchings. Split the vertex set of G into two independent (in the graph sense) sets S
and T. Define

$$
\begin{gathered}
B_{1}^{\prime}=\left(S \cap\left(B_{1} \cup B_{2}\right)\right) \cup\left(B_{1} \cap B_{2}\right), \quad B_{2}^{\prime}=\left(T \cap\left(B_{1} \cup B_{2}\right)\right) \cup\left(B_{1} \cap B_{2}\right) \\
D_{1}^{\prime}=\left(S \cap\left(D_{1} \cup D_{2}\right)\right) \cup\left(D_{1} \cap D_{2}\right), \quad D_{2}^{\prime}=\left(T \cap\left(D_{1} \cup D_{2}\right)\right) \cup\left(D_{1} \cap D_{2}\right)
\end{gathered}
$$

By the multiple symmetric exchange property of π_{B} sets $B_{1}^{\prime}, B_{2}^{\prime}$ are bases obtained from the pair B_{1}, B_{2} by a sequence of symmetric exchanges. Therefore the binomial

$$
\begin{equation*}
y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}-y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}} \tag{3.1}
\end{equation*}
$$

belongs to J_{M}. Analogously the binomial

$$
\begin{equation*}
y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}-y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}} \tag{3.2}
\end{equation*}
$$

belongs to J_{M}. Moreover since S and T are disjoint we have that

$$
d\left(y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}}, y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}}\right)>d\left(y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}, y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}\right) .
$$

By the inductive assumption

$$
\begin{equation*}
y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}}-y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}} \tag{3.3}
\end{equation*}
$$

also belongs to J_{M}. By adding (3.1) and (3.3) and subtracting (3.2) we have that

$$
y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}-y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}
$$

belongs to J_{M}, as desired.
The following three sections are based on the results given by García-Marco and Ramírez Alfonsín in [9].

4. Complete intersection

The toric ideal I_{M} is a complete intersection if $\mu\left(I_{M}\right)=\operatorname{ht}\left(I_{M}\right)$, where $\mu\left(I_{M}\right)$ denotes the minimal number of generators of I_{M}. Equivalently, I_{M} is a complete intersection if and only if there exists a set of homogeneous binomials $g_{1}, \ldots, g_{s} \in R$ such that $s=\operatorname{ht}\left(I_{M}\right)$ and $I_{M}=\left(g_{1}, \ldots, g_{s}\right)$.
From expression (1.1) one easily derives that whenever $r=n$ or $r=n-1$, then $I_{M}=(0)$ and I_{M} is a complete intersection. Thus, we only consider the case $r \leq n-2$.

It can be proved that the operations of taking duals, deletion, contraction and taking minors of M preserve the property of being a complete intersection on I_{M}. For more details on how these operations affect I_{M} we refer the reader to [3, Section 2].

We denote by M^{*} the dual matroid of M. It is straightforward to check that $\sigma\left(I_{M}\right)=$ $I_{M^{*}}$, where σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$. Thus, I_{M} is a complete intersection if and only if $I_{M^{*}}$ also is.

For every $A \subset E, M \backslash A$ denotes the deletion of A from M and M / A denotes the contraction of A from M. For $E^{\prime} \subset E$, the restriction of M to E^{\prime} is denoted by $\left.M\right|_{E^{\prime}}$.

Proposition 4.1. Let M^{\prime} be a minor of M. If I_{M} is a complete intersection, then $I_{M^{\prime}}$ also is.

It is not difficult to see that if e is a loop then $I_{M}=I_{M \backslash\{e\}}$. Moreover, if e is a coloop of M, then I_{M} is essentially equal to $I_{M \backslash\{e\}}$. Indeed, if one considers the isomorphism of k-algebras $\tau: R \longrightarrow k\left[y_{B \backslash\{e\}} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{B \backslash\{e\}}$, then $\tau\left(I_{M}\right)=I_{M \backslash\{e\}}$. For this reason we may assume without loss of generality that M has no loops or coloops.

Now we study the complete intersection property for I_{M} when M has rank 2 . In this case, we associate to M the graph \mathcal{H}_{M} with vertex set E and edge set \mathcal{B}. It turns out that I_{M} coincides with the toric ideal of the graph \mathcal{H}_{M} (see, e.g., [1]). In particular, from [1, Corollary 3.9], we have that whenever I_{M} is a complete intersection, then \mathcal{H}_{M} does not contain $\mathcal{K}_{2,3}$ as subgraph, where $\mathcal{K}_{2,3}$ denotes the complete bipartite graph with partitions of sizes 2 and 3 . The following result characterizes the complete intersection property for toric ideals of rank 2 matroids.

Proposition 4.2. Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.

Proof. (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection. Since M has no loops or coloops, we may assume that $B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=$ $\{1,5\} \in \mathcal{B}$. Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$. If $\{4,5\} \in \mathcal{B}$, then \mathcal{H}_{M} has a subgraph $\mathcal{K}_{2,3}$ and I_{M} is not a complete intersection. Let us suppose that $\{4,5\} \notin \mathcal{B}$. By the exchange axiom for B_{2} and B_{3} we have $B_{6}:=\{3,5\} \in \mathcal{B}$. Again by the exchange axiom for B_{5} and B_{6} we get that $B_{7}:=\{3,4\} \in \mathcal{B}$. Thus, \mathcal{H}_{M} has $\mathcal{K}_{2,3}$ as a subgraph and I_{M} is not a complete intersection.
(\Leftarrow) There are three non isomorphic rank 2 matroids without loops or coloops and $n=$ 4. Namely, M_{1} with set of bases $\mathcal{B}_{1}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\}\}, M_{2}$ with set of bases $\mathcal{B}_{2}=\mathcal{B}_{1} \cup\{\{1,4\}\}$ and $M_{3}=\mathcal{U}_{2,4}$. For $i=1,2$ one can easily check that ht $\left(I_{M_{i}}\right)=1$ and that $I_{M_{i}}=\left(y_{\{1,2\}} y_{\{3,4\}}-y_{\{1,3\}} y_{\{1,4\}}\right)$; thus both $I_{M_{1}}$ and $I_{M_{2}}$ are complete intersections. Moreover, $\operatorname{ht}\left(I_{M_{3}}\right)=2$ and a direct computation with Singular or CoCoA yields that $I_{M_{3}}=\left(y_{\{1,2\}} y_{\{3,4\}}-y_{\{1,3\}} y_{\{1,4\}}, y_{\{1,4\}} y_{\{2,3\}}-y_{\{1,3\}} y_{\{1,4\}}\right)$; thus $I_{M_{3}}$ is also a complete intersection.

One can apply Proposition 4.2 to give the list of all matroids M such that I_{M} is a complete intersection.

Theorem 4.3. Let M be a matroid without loops or coloops and with $n>r+1$. Then, I_{M} is a complete intersection if and only if $n=4$ and M is the matroid whose set of bases is:
(1) $\mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\}\}$,
(2) $\mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\}\}$, or
(3) $\mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\},\{2,3\}\}$, i.e., $M=\mathcal{U}_{2,4}$.

5. Finding minors

In this section we investigate a characterization for a matroid to contain certain minors in terms of a set of binomial generators of its corresponding toric ideal. In particular, we focus our attention to detect if a matroid M contains $\mathcal{U}_{d, 2 d}$ as a minor for $d \geq 2$. We consider the following binary equivalence relation \sim on the set of pairs of bases:

$$
\left\{B_{1}, B_{2}\right\} \sim\left\{B_{3}, B_{4}\right\} \Longleftrightarrow B_{1} \cup B_{2}=B_{3} \cup B_{4} \text { as multisets, }
$$

and we denote by $\Delta_{\left\{B_{1}, B_{2}\right\}}$ the cardinality of the equivalence class of $\left\{B_{1}, B_{2}\right\}$.
We now introduce two lemmas concerning the values $\Delta_{\left\{B_{1}, B_{2}\right\}}$. The first one provides some bounds on the values of $\Delta_{\left\{B_{1}, B_{2}\right\}}$. In the proof of this lemma we use the so called multiple symmetric exchange property (see [19]):

For every B_{1}, B_{2} in \mathcal{B} and for every $A_{1} \subset B_{1}$, there exists $A_{2} \subset B_{2}$ such that $\left(B_{1} \cup A_{2}\right) \backslash A_{1} \in \mathcal{B}$ and $\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are in \mathcal{B}.

Lemma 5.1. For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=$ $\left|B_{1} \backslash B_{2}\right|$.
Proof. Take $e \in B_{1} \backslash B_{2}$. By the multiple symmetric exchange property, for every A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, there exists $A_{2} \subset B_{2}$ such that both $B_{1}^{\prime}:=\left(B_{1} \cup A_{2}\right) \backslash A_{1}$ and $B_{2}^{\prime}:=\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are bases. Since $B_{1} \cup B_{2}=B_{1}^{\prime} \cup B_{2}^{\prime}$ as multisets, we derive that $\Delta_{\left\{B_{1}, B_{2}\right\}}$ is greater or equal to the number of sets A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, which is exactly 2^{d-1}.
We set $A:=B_{1} \cap B_{2}, C:=B_{1} \triangle B_{2}$ and take $e \in B_{1} \backslash B_{2}$. Take $B_{3}, B_{4} \in \mathcal{B}$ such that $B_{1} \cup B_{2}=B_{3} \cup B_{4}$ as multisets and assume that $e \in B_{4}$. Then, $B_{3} \backslash A \subset C \backslash\{e\}$ with $\left|B_{3}\right|=\left|B_{1} \backslash B_{2}\right|=d$ elements; thus, $\Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$.

Moreover, the bounds of Lemma 5.1 are sharp for every $d \geq 2$. Indeed, if one considers the transversal matroid on the set $\{1, \ldots, 2 d\}$ with presentation $(\{1, d+1\}, \ldots,\{d, 2 d\})$, and takes the bases $B_{1}=\{1, \ldots, d\}, B_{2}=\{d+1, \ldots, 2 d\}$, then $\left|B_{1} \backslash B_{2}\right|=d$ and $\Delta_{\left\{B_{1}, B_{2}\right\}}=2^{d-1}$. Also, if we consider the uniform matroid $\mathcal{U}_{d, 2 d}$ then for any base B we have that $\Delta_{\{B, E \backslash B\}}=\binom{2 d-1}{d}$.
The second lemma interprets the values of $\Delta_{\left\{B_{1}, B_{2}\right\}}$ in terms of the number of basescobases of a certain minor of M. Recall that a base $B \in \mathcal{B}$ is a base-cobase if $E \backslash B$ is also a base of M.

Lemma 5.2. Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left(M /\left(B_{1} \cap\right.\right.$ $\left.B_{2}\right)\left.\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.

The following result provides a necessary condition for a matroid to have a minor isomorphic to $\mathcal{U}_{d, 2 d}$.
Proposition 5.3. If M has a minor $M^{\prime} \simeq \mathcal{U}_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.
Proof. Let $A, C \subset E$ be disjoint sets such that $M^{\prime}:=(M \backslash A) / C \simeq \mathcal{U}_{d, 2 d}$ and denote $E^{\prime}:=E \backslash(A \cup C)$. Since $M^{\prime}=(M \backslash A) / C$, then there exist $e_{1}, \ldots, e_{r-d} \in A \cup C$ such that $B^{\prime} \cup\left\{e_{1}, \ldots, e_{r-d}\right\} \in \mathcal{B}$ for every B^{\prime} base of M^{\prime}. We take any $D \subset E^{\prime}$ with d-elements, we have that $B_{1}=D \cup\left\{e_{1}, \ldots, e_{r-d}\right\} \in \mathcal{B}, B_{2}=\left(E^{\prime} \backslash D\right) \cup\left\{e_{1}, \ldots, e_{r-d}\right\} \in \mathcal{B}$ and $B_{1} \cup B_{2}=E^{\prime} \cup\left\{e_{1}, \ldots, e_{r-d}\right\}$. Thus, $\Delta_{\left\{B_{1}, B_{2}\right\}} \geq\binom{ 2 d}{d} / 2=\binom{2 d-1}{d}$. Since $\left|B_{1} \backslash B_{2}\right|=d$, by Lemma 5.1 we are done.

Since $\mathcal{U}_{2,4}$ is the only forbidden minor for a matroid to be binary the following result gives a criterion for M to be binary by proving the converse of Proposition 5.3 for $d=2$.

Theorem 5.4. M is binary if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}} \neq 3$ for every $B_{1}, B_{2} \in \mathcal{B}$.

Proof. (\Rightarrow) Assume that there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=3$. Let us denote $d:=\left|B_{1} \backslash B_{2}\right|$. By Lemma 5.1 we observe that $d=2$. If we set $C:=B_{1} \cap B_{2}$ and $A=E \backslash\left(B_{1} \cup B_{2}\right)$, then $M^{\prime}:=(M \backslash A) / C$ is a rank 2 matroid on a ground set of 4 elements and, by Lemma 5.2, it has 6 bases-cobases, thus $M^{\prime} \simeq \mathcal{U}_{2,4}$ and M is not binary.
(\Leftarrow) Assume that M is not binary, then M has a minor $M^{\prime} \simeq \mathcal{U}_{2,4}$ and the result follows from Proposition 5.3.

It can also be proved that the converse of Proposition 5.3 also holds for $d=3$.
Theorem 5.5. M has a minor $M^{\prime} \simeq \mathcal{U}_{3,6}$ if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}}=10$ for some $B_{1}, B_{2} \in \mathcal{B}$.

6. Minimal system of generators

Minimal systems of binomial generators of toric ideals have been studied in several papers; see, e.g., $[4,8]$. In general, for a toric ideal it is possible to have more than one minimal system of generators formed by binomials. Given a toric ideal I, we denote by $\nu(I)$ the number of minimal sets of binomial generators of I, where the sign of a binomial does not count and we denote by $\mu\left(I_{M}\right)$ the minimal number of generators of I_{M}.
We first give some bounds for the values of $\mu\left(I_{M}\right)$ and $\nu\left(I_{M}\right)$ in terms of the values $\Delta_{\left\{B_{1}, B_{2}\right\}}$ for $B_{1}, B_{2} \in \mathcal{B}$. Moreover, this lower bounds turn out to be the exact values if I_{M} is generated by quadrics.

Theorem 6.1. Let $R=\left\{\left\{B_{1}, B_{2}\right\}, \ldots,\left\{B_{2 s-1}, B_{2 s}\right\}\right\}$ be a set of representatives of \sim and set $r_{i}:=\Delta_{\left\{B_{2 i-1}, B_{2 i}\right\}}$ for all $i \in\{1, \ldots, s\}$. Then,
(1) $\mu\left(I_{M}\right) \geq\left(b^{2}-b-2 s\right) / 2$, where $b:=|\mathcal{B}|$, and
(2) $\nu\left(I_{M}\right) \geq \prod_{i=1}^{s} r_{i}^{r_{i}-2}$.

Moreover, in both cases equality holds whenever I_{M} is generated by quadrics.
We end by characterizing all matroids whose toric ideal has a unique minimal binomial generating set. We recall that the basis graph of a matroid M is the undirected graph \mathcal{G}_{M} with vertex set \mathcal{B} and edges $\left\{B, B^{\prime}\right\}$ such that $\left|B \backslash B^{\prime}\right|=1$. We also recall that the diameter of a graph is the maximum distance between two vertices of the graph.

Theorem 6.2. Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of \mathcal{G}_{M} is at most 2.

Proof. (\Rightarrow) By Theorem 6.1, we have that $\Delta_{\left\{B_{1}, B_{2}\right\}} \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. By Lemma 5.1 and Theorem 5.4, this is equivalent to M is binary and $\left|B_{1} \backslash B_{2}\right| \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. Clearly this implies that the diameter of \mathcal{G}_{M} is less or equal to 2 .
(\Leftarrow) Assume that the diameter of \mathcal{G}_{M} is ≤ 2, we claim that M is strongly base orderable. Recall that a matroid is strongly base orderable if for any two bases B_{1} and B_{2} there is a bijection $\pi: B_{1} \rightarrow B_{2}$ such that $\left(B_{1} \backslash A\right) \cup \pi(A)$ is a basis for all $A \subset B_{1}$. We take $B_{1}, B_{2} \in \mathcal{B}$ and observe that $\left|B_{1} \backslash B_{2}\right| \in\{1,2\}$. If $B_{1} \backslash B_{2}=\{e\}$ and $B_{2} \backslash B_{1}=\{f\}$ if suffices to consider the bijection $\pi: B_{1} \rightarrow B_{2}$ which is the identity on $B_{1} \cap B_{2}$ and $\pi(e)=f$. Moreover, if $B_{1} \backslash B_{2}=\left\{e_{1}, e_{2}\right\}$ and $B_{2} \backslash B_{1}=\left\{f_{1}, f_{2}\right\}$, we denote $A:=B_{1} \cap B_{2}$ and, by the symmetric exchange axiom, we can assume that both $A \cup\left\{e_{1}, f_{1}\right\}$ and $A \cup\left\{e_{2}, f_{2}\right\}$ are basis of M; then it suffices to consider $\pi: B_{1} \rightarrow B_{2}$ the identity on $A, \pi\left(e_{1}\right)=f_{2}$ and $\pi\left(e_{2}\right)=f_{1}$ to conclude that M is strongly base orderable.

So, by [11, Theorem 2], I_{M} is generated by quadrics. Moreover, from Lemma 5.1 and Theorem 5.4 we deduce that $\Delta_{\left\{B_{1}, B_{2}\right\}} \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. Hence, the result follows by Theorem 6.1.

References

[1] I. Bermejo, I. García-Marco, E. Reyes, Graphs and complete intersection toric ideals, J. Algebra Appl. (2014), to appear.
[2] J. Blasiak, The toric ideal of a graphic matroid is generated by quadratics, Combinatorica 28 (2008), 283-297.
[3] S. Blum, Base-sortable matroids and Koszulness of semigroup rings, European J. Combin. 22(7) (2001), 937-951.
[4] E. Briales, A. Campillo, C. Marijuán, P. Pisón, Minimal systems of generators for ideals of semigroups. J. Pure Appl. Algebra 124 (1998), no. 1-3, 7-30.
[5] R. A. Brualdi, Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 (1969), 161-167.
[6] J. Bonin, Basis-exchange properties of sparse paving matroids, Adv. in Appl. Math. 50 (2013)(1), 6-15.
[7] A. Conca, Linear spaces, transversal polymatroids and ASL domains, J. Algebraic Comb. 25 (2007), 25-41.
[8] P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), no. 1, 363-397.
[9] I. García-Marco and J.L. Ramírez Alfonsín, Matroid toric ideal: complete intersection, minors and minimal systems of generators, arXiv:1408.0419.
[10] K. Kashiwabara, The toric ideal of a matroid of rank 3 is generated by quadratics, Electron. J. Comb. 17 (2010), RP28, 12 pp.
[11] M. Lasoń, M. Michałek, On the toric ideal of a matroid, Adv. Math. 259 (2014), 1-12.
[12] Y. Matsumoto, S. Moriyama, H. Imai, D. Bremner, Matroid enumeration for incidence geometry, Discrete and Computational Geometry, 47 (2012), issue 1, pp. 17-43.
[13] H. Ohsugi, J. Herzog, T. Hibi, Combinatorial pure subrings, Osaka J. Math. 37 (2000), 745-757.
[14] J. Schweig, Toric ideals of lattice path matroids and polymatroids, J. Pure Appl. Algebra 215 (2011), 2660-2665.
[15] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American Mathematical Society, Providence, RI, 1996.
[16] B. Sturmfels, Equations defining toric varieties, Proc. Sympos. Pure Math. 62 (1997), 437-449.
[17] N. White, The bases monomial rings of a matroid. Adv. Math. 24 (1977), 292-297.
[18] N. White, A Unique Exchange Property for Bases. Linear Algebra Appl. 31 (1980), 81-91.
[19] D. R. Woodall, An exchange theorem for bases of matroids, J. Combin. Theory Ser. B 16 (1974), 227-228.

I3M, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France E-mail address: jramirez@univ-montp2.fr

