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Abstract. In this notes, we give a basic introduction to matroids simplicial com-
plexes.

1. Introduction

Let V = {v1, . . . , vn} be a set of distincts elements. A collection ∆ of subsets of V is
called a simplicial complex if for every F ∈ ∆ and G ⊆ F,G ∈ ∆.
Elements of the simplicial complex ∆ are called faces of ∆. Maximal faces (under
inclusion) are called facets. If F ∈ ∆ then the dimension of F is dim F = |F |− 1. The
dimension of ∆ is defined to be dim ∆ = max{dim F |F ∈ ∆}. The complex ∆ is said
to be pure if all its facets have the same dimension.
If {v} ∈ ∆ then we call v a vertex of ∆. Throughout this notes ∆ will denote a
simplicial complex with {1, . . . , n}.
Let d− 1 = dim∆. The f -vector of ∆ is the vector f(∆) := (f−1, f0, . . . , fd−1), where
fi = |{F ∈ ∆| dim F = i}| is the number of i-dimensional faces in ∆.
Let ∆ be a simplicial complex with vertex set X.
(a) The k-skeleton of ∆ is [∆k] = {F ∈ ∆|dim F ≤ k}.
(b) If W ⊆ X then the restriction of ∆ to W is ∆|W = {F ∈ ∆|F ⊆ W}. If
W = X − {v} then we will write ∆−v = ∆|W and call ∆−v the deletion of ∆ with
respect to v or the deletion of v from ∆.
(c) If F ⊆ X then link∆(F ) = {G ∈ ∆|F ∩ G = ∅, F ∪ G ∈ ∆}. We call this the link
of ∆ with respect to F .
(d) If v 6∈ X then the cone over ∆ is C∆ = ∆ ∪ {F ∪ {v}|F ∈ ∆}
That all of these are again simplicial complexes is easily checked using the definition.
Since if G ∈ ∆ and F ⊆ G then F ∈ ∆, the complex ∆ is determined completely by
those faces that are not contained in any other face, that is the facets of ∆. Typically,
we will describe a simplicial complex by listing its facets.

Example 1.1. Figure 1 illustrates a simplicial complexe ∆ of dimension 2. ∆ is not
pure as it has facets with dimension 0 (1, 2, 3, 4 and 5), of dimension 1 (12, 13,15, 23,
24, 34, 35 and 45) and of dimension 2 (234 and 135). f(∆) = (5, 8, 2). The link of ∆
with respect to the vertex 3 is the complex with 15 and 24, while the link with respect
to the vertex 5 has facets 13 and 4. The deletion of 3 has facets 12, 24, 45 and 15. The
deletion of 5 has facets 234, 13 and 12.
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Figure 1. Simplicial complexe ∆

Let k be a field. We can associate to a simplicial complex ∆, a square free monomial
ideal in S = k[x1, . . . , xn],

I∆ =

(
xF =

∏
i∈F

xi|F 6∈ ∆

)
⊆ S.

The ideal I∆ is called the Stanley-Reisner ideal of ∆.

2. Matroid simplicial complexes

Recall that axioms (I1), (I2) for the independent set I(M) of a matroid M on V are
equivalent to I being an abstract simplicial complex on V . The independent sets of
M form a simplicial complexe, called the independence complex of M . One can replace
the exchange axiom (I3) with various others. For example, it can be replaced by the
following axiom.
(I3)′ for every A ⊂ E the restriction

I|A = {I ∈ I : I ⊂ A}
is a pure simplicial complex.
A simplicial complexe ∆ over the vertices V is called matroid complex if axiom (I3)′

is verified. A facet of a ∆ are the bases of the matroids, and a minimal non-face of
the complexe (or missing face) is a circuit, which correspond bijectively to a minimal
monomial generator of the ideal I∆. The rank of of the matroid is equal to dim ∆ + 1.
There are several equivalent definitions of a matroid complexe, for instance the one
given by circuit exchange property : ∆ is a matroid complex if and only if for any
two minimal generators M and N of I∆ their least common multiple divided by any
variable in the support of both M and N is in I∆ (see [9]).

Example 2.1. The complex depicted in Figure 2 (a) is matroid (this can be checked
by verifying that every subset [6] is pure) while the one in Figure 2 (b) is not since
it admits a restriction that is not pour, for instance, the facets of ∆1,3,4 are {1} and
{3, 4} as facets so the restriction is not pure.

We summarize some of the more standard constructions for a matroid complex in the
next proposition.

Proposition 2.2. Let ∆ be a matroid complex with vertex set [n]. Then the following
complexes are also matroid.
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Figure 2. (a) Matroid complexe with 6 vertices and (b) A non-matroid
complex with 6 vertices.

(a) ∆|W for every W ⊆ [n].
(b) C∆, the cone over ∆.
(c) [∆]k, the k-skeleton of ∆.
(d) link∆(F ) for every F ∈ ∆.

Proof. (a) Since (∆|W )|V = ∆|W∩V and the left-hand side is, by definition, pure this
follows immediately from the definition.

(b) Let v be the vertex of the cone. Clearly the cone over a pure complex is pure, so
let W ⊂ [n]. If v 6∈ W then (C∆)|W = ∆|W , which is pure because ∆ is matroid. If
v ∈ W then (C∆)|W = C(∆|W ). By part (a) ∆|W is matroid and so, by induction on
the number of vertices, C(∆|W ) is matroid and in particular pure.

(c) Note that [∆|W ]k = [∆]k|W . As in part (b), if W is a proper subset of [n] then this
is matroid, and thus pure, by induction on the number of vertices. It only remains to
check that [∆]k is itself pure. Suppose that [∆]k has a face F with dim F < k. Since
F ∈ ∆ it must be contained in some facet with dimension dim ∆ ≥ k. It then follows
that F must be contained in some k-dimensional face of ∆, which is then a face of
[∆]k. Thus F is not a facet of [∆]k and the k-skeleton is therefor pure.

(d) This time, we check that link∆(F )|W = link∆|W (F ), which will then be pure by
induction. We then only need to know that link∆(F ) is pure. Suppose that G ∈
link∆(F ) is a facet. Then, G ∪ F ∈ ∆ must be a facet of ∆. So dim (G ∪ F ) =dim∆
and then dim G =dim ∆− dimF − 1 =dim link∆(F ). So the link is pure and thus
matroid. �

Link and deletion are identical to the contraction and deletion constructions from
matroids. Notice that a complex Γ is a cone with apex x if and only if x is contained in
all the facets of Γ. A matroid is a cone if and only if it has a coloop, which corresponds
to the apex defined above.

Lemma 2.3. Let ∆ be a 1-dimensional simplicial complex. Then ∆ is matroid if and
only if for every vertex v and every edge E, link∆(v) ∩ E 6= ∅.

Proof. Suppose there exists a vertex v and an edge E disjoint from the link of v. Let
L = [n]− link∆(v). Then ∆L has {v} and E as facets, and so is not matroid.
Conversely, suppose that there exists a subset W ⊆ [n] such that ∆W is not pure. So
∆W must have a 0-dimensional facet, say {v}. Let v 6= w ∈ W . Since v is a facet of
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∆W we must have {v, w} 6∈ ∆. Thus W ∩ linkW (v) = ∅ and so any edge, E, of ∆W

(there must be at least one since ∆W is not pure) must also be disjoint from link∆(v).
Since E is also an edge of ∆ the proof is complete. �

3. h-vector of simplicial complexes

Assume that dim ∆ = d − 1. We study the h-vector of a simplicial complexe of ∆
h(∆) = (h0, . . . , hd) from its f -vector via the relation

(3.1)
d∑

i=0

fi−1t
i(1− t)d−i =

d∑
i=0

hit
i

In particular, for any j = 0, . . . , d, we have

fj−1 =

j∑
i=0

(
d− i
j − 1

)
hi

and

hj =

j∑
i=0

(−1)j−i
(
d− i
j − 1

)
fi−1.

It should not be expected that the h-numbers of an arbitrary simplicial complex are
nonnegative; however, the h-number of a matroid M may be interpreted combinatori-
ally in terms of certain invariants of M . Fix a total ordering {v1, < v2 < · · · < vn} on
E(M). Given a bases B, an element vj ∈ B is internally passive in B if there is some
vi ∈ E \ B such that vi < vj and (B \ vj) ∪ vi is a bases of M . Dually, vj ∈ E \ B is
externally passive in B if there is some vi ∈ B such that vi < vj and (B \ vi) ∪ vj is
a bases of M . Alternatively, vj is externally passive in B if it is internally passive in
E \B in M∗. It is well known that [1]

(3.2)
d∑

i=0

hjt
j =

∑
B∈B(M)

tip(B)

where ip(B) counts the number of internally passive elements in B. This proves that
the h-numbers of a matroid complex are nonnegative. Alternatively,

(3.3)
d∑

i=0

hjt
j =

∑
B∈B(M∗)

tep(B)

where ep(B) counts the number of externally passive elements in B. Since the f -
numbers (and hence the h-numbers) of a matroid depend only on its independent
sets, equations (3.2) and (3.3) hold for any ordering of the ground set of M . We
also remark that the h-vector of a matroid complex ∆M is actually a specialization of
the Tutte polynomial of the corresponding matroid; precisely we have T (M ;x, 1) =
h0x

d + h1x
d1 + · · ·+ hd, see [1].

Example 3.1. We consider the matroid complexe ∆(U2,3) associated to the uniform
matroid of rank 2 with 3 elements. We shall calculate the h-vector of ∆ via relations
(3.1) , (3.2), (3.3) and also via the Tutte polynomial associated to U2,3 .
We have that dim ∆ = 1 and f−1 = 1, f0 = 3 and f1 = 3. Therefore by relation (3.1),
we have
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2∑
i=0

fi−1t
i(1− t)2−i = f−1t

0(1− t)2 + f0t(1− t) + f1t
2(1− t)0

= (1− t)2 + 3t(1− t) + 3t2

= 1− 2t+ t2 + 3t− 3t− 3t2 + 3t2 = t2 + t+ 1 =
2∑

i=0

hit
i.

Thus h = (1, 1, 1).

Let B(U2,3) = {B1 = {1, 2}, B2 = {1, 3}, B3 = {2, 3}}. We can check that
- there is not internally passive element in B1

- 3 is internally passive element of B2

- 2 and 3 are internally passive elements of B3

Thus by (3.2) we have

2∑
i=0

hit
i =

∑
B∈B(U2,3)

tip(B) = 1 + t+ t2.

Let B(U∗2,3 = U1,3) = {B1 = {1}, B2 = {2}, B3 = {3}}. We can check that
- 2 and 3 are externally passive elements of B1

- 3 is externally passive element of B2

- there is not externally passive element in B3

Thus by (3.3) we have

2∑
i=0

hit
i =

∑
B∈B(U1,3)

tep(B) = t2 + t+ 1.

Let us now calculate T (U3,2;x, y). We recursively have

T (U3,2;x, y) = T (U3,2 \ 3;x, y) + T (U3,2/3;x, y)
= T (U2,2;x, y) + T (U2,1;x, y).

Since Uk,k, k ≥ 1 consiste of one base so all its elements are isthmes, so

T (U2,2;x, y) = T (U2,2(2);x, y)T (U2,2 \ 2;x, y)
= T (I;x, y)T (U1,1;x, y)
= xT (U1,1;x, y)
= xT (I;x, y) = x2

and
T (U2,1;x, y) = T (U2,1 \ 2;x, y) + T (U2,1/2;x, y)

= T (U1,1;x, y) + T (U1,0;x, y)
= T (I;x, y) + T (B;x, y)
= x+ y.

Obtaining
T (U3,2;x, y) = x2 + x+ y,

and thus

T (U3,2; t, 1) = t2 + t+ 1 =
2∑

i=0

hit
i.
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4. Stanley’s conjecture

An order ideal O is a family of monomials (say of degree at most r) with the property
that if µ ∈ O and ν|µ then ν ∈ O. Let Oi denote the collection of monomials in O of
degree i. Let Fi(O) := |Oi| and F (O) = (F0(O), F1(O), . . . , Fr(O)). We say that O is
pure if all its maximal monomials (under divisibility) have the same degree. A vector
h = (h0, . . . , hd) is a pure O-sequence if there is a pure ideal O such that h = F (O).

Example 4.1. The pure monomial order ideal (inside k[x, y, z] with maximal mono-
mials xy3z and x2z3 is :

X = {xy3z,x2z3; y3z, xy2z, xy3, xz3, x2z2, y2z, y3, xyz,
xy2, xz2, z3, x2z, yz, y2, xz, xy, z2, x2, z, y, x, 1}.

Hence the h-vector of X is the pure O-sequence h = (1, 3, 6, 7, 5, 2).

A longstanding conjecture of Stanley [10] suggest that matroid h-vectors are highly
structured

Conjecture 4.2. For any matroid M , h(M) is a pure O-sequence.

Conjecture 4.2 is known to hold for several families of matroid complexes such as paving
matroids [6], cographic matroids [5], cotraversal matroids [7], lattice path matroids [8],
matroids of rank at most three [2, 3, 11] and for all matroids on at most nine elements
all matroids of corank two [2].

4.1. Rank-2 Case. LetM be a loopless matroid of rank 2. The independence complex
of M is a complete graph whose partite sets E1, . . . , Et are the parallelism classes of
M . let si := |Ei|. Choose one representative ei ∈ Ei from each parallelism calsses ofM
so that the simplification of M is a complete graph of {e1, . . . , et}, and let Ẽi = Ei \ ei.
Clearly,

f0(M) =
t∑

i=1

(si − 1) + t

and

f1(M) =
∑

1≤i<j≤t

(si − 1) + (sj − 1) + (t− 1)
t∑

i=1

(si − 1) +

(
t

2

)
,

and hence,

h1(M) =
t∑

i=1

(si − 1) + (t− 2)

and

h2(M) =
∑

1≤i<j≤t

(si − 1) + (sj − 1) + (t− 1)
t∑

i=1

(si − 1) +

(
t− 1

2

)
.

Consider the pure O-sequence O with

O1 = {x1, . . . , xt−2} ∪ {xe : e ∈ Ẽi, 1 ≤ i ≤ t}
O2 = {xexe′ : e ∈ Ẽi, e

′ ∈ Ẽj, 1 ≤ i < j ≤ t}
∪{xixe : e ∈ Ẽj, 1 ≤ i ≤ t− 2, 1|ej ≤ t}
∪{ degree 2 monomials in x1, . . . xt−2}.

We see that h(M) = f(O), which proves that h(M) is a pure O-sequence.
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Example 4.3. We consider the matroid complexe ∆ associated to the rank 2 matroid
induced by the graph G illustrated in figure 3.

1

2

3

4

Figure 3. Graph G.

We have that dim ∆ = 1 and f−1 = 1, f0 = 4 and f1 = 4. Let B(M(G)) = {B1 =
{1, 3}, B2 = {1, 4}, B3 = {2, 3}, B4 = {2, 4}}. We can check that
- there is not internally passive element in B1

- 4 is internally passive element of B2

- 2 is internally passive element of B3

- 2 and 4 are internally passive elements of B4

Thus by (3.2) we have

2∑
i=0

hit
i =

∑
B∈B(M(G))

tip(B) = 1 + t+ t+ t2 = 1 + 2t+ t2.

Obtaining the h-vector h(1, 2, 1). Since O = (1, x1, x2, x1x2) is an order ideal then
h(1, 2, 1) is pure O-sequence.
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