LECTURE ON 0-SEQUENCES AND h-VECTORS OF MATROID SIMPLICIAL COMPLEXES

JORGE RAMÍREZ ALFONSÍN

Abstract

In this notes, we give a basic introduction to matroids simplicial complexes.

1. Introduction

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ. Maximal faces (under inclusion) are called facets. If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$. The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$. The complex Δ is said to be pure if all its facets have the same dimension.
If $\{v\} \in \Delta$ then we call v a vertex of Δ. Throughout this notes Δ will denote a simplicial complex with $\{1, \ldots, n\}$.
Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set X.
(a) The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
(b) If $W \subseteq X$ then the restriction of Δ to W is $\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=X-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
(c) If $F \subseteq X$ then $\operatorname{link}_{\Delta}(F)=\{G \in \Delta \mid F \cap G=\emptyset, F \cup G \in \Delta\}$. We call this the link of Δ with respect to F.
(d) If $v \notin X$ then the cone over Δ is $C \Delta=\Delta \cup\{F \cup\{v\} \mid F \in \Delta\}$

That all of these are again simplicial complexes is easily checked using the definition. Since if $G \in \Delta$ and $F \subseteq G$ then $F \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ. Typically, we will describe a simplicial complex by listing its facets.

Example 1.1. Figure 1 illustrates a simplicial complexe Δ of dimension 2. Δ is not pure as it has facets with dimension $0(1,2,3,4$ and 5$)$, of dimension $1(12,13,15,23$, $24,34,35$ and 45) and of dimension 2 (234 and 135). $f(\Delta)=(5,8,2)$. The link of Δ with respect to the vertex 3 is the complex with 15 and 24 , while the link with respect to the vertex 5 has facets 13 and 4 . The deletion of 3 has facets $12,24,45$ and 15 . The deletion of 5 has facets 234,13 and 12 .

[^0]

Figure 1. Simplicial complexe Δ
Let k be a field. We can associate to a simplicial complex Δ, a square free monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$,

$$
I_{\Delta}=\left(x_{F}=\prod_{i \in F} x_{i} \mid F \notin \Delta\right) \subseteq S
$$

The ideal I_{Δ} is called the Stanley-Reisner ideal of Δ.

2. Matroid simplicial complexes

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on V are equivalent to \mathcal{I} being an abstract simplicial complex on V. The independent sets of M form a simplicial complexe, called the independence complex of M. One can replace the exchange axiom (I3) with various others. For example, it can be replaced by the following axiom.
$(I 3)^{\prime}$ for every $A \subset E$ the restriction

$$
\left.\mathcal{I}\right|_{A}=\{I \in \mathcal{I}: I \subset A\}
$$

is a pure simplicial complex.
A simplicial complexe Δ over the vertices V is called matroid complex if axiom (I3)' is verified. A facet of a Δ are the bases of the matroids, and a minimal non-face of the complexe (or missing face) is a circuit, which correspond bijectively to a minimal monomial generator of the ideal I_{Δ}. The rank of of the matroid is equal to dim $\Delta+1$. There are several equivalent definitions of a matroid complexe, for instance the one given by circuit exchange property : Δ is a matroid complex if and only if for any two minimal generators M and N of I_{Δ} their least common multiple divided by any variable in the support of both M and N is in I_{Δ} (see [9]).

Example 2.1. The complex depicted in Figure 2 (a) is matroid (this can be checked by verifying that every subset [6] is pure) while the one in Figure 2 (b) is not since it admits a restriction that is not pour, for instance, the facets of $\Delta_{1,3,4}$ are $\{1\}$ and $\{3,4\}$ as facets so the restriction is not pure.

We summarize some of the more standard constructions for a matroid complex in the next proposition.

Proposition 2.2. Let Δ be a matroid complex with vertex set $[n]$. Then the following complexes are also matroid.

Figure 2. (a) Matroid complexe with 6 vertices and (b) A non-matroid complex with 6 vertices.
(a) $\left.\Delta\right|_{W}$ for every $W \subseteq[n]$.
(b) $C \Delta$, the cone over Δ.
(c) $[\Delta]_{k}$, the k-skeleton of Δ.
(d) $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Proof. (a) Since $\left.\left(\left.\Delta\right|_{W}\right)\right|_{V}=\left.\Delta\right|_{W \cap V}$ and the left-hand side is, by definition, pure this follows immediately from the definition.
(b) Let v be the vertex of the cone. Clearly the cone over a pure complex is pure, so let $W \subset[n]$. If $v \notin W$ then $\left.(C \Delta)\right|_{W}=\left.\Delta\right|_{W}$, which is pure because Δ is matroid. If $v \in W$ then $\left.(C \Delta)\right|_{W}=C\left(\left.\Delta\right|_{W}\right)$. By part (a) $\left.\Delta\right|_{W}$ is matroid and so, by induction on the number of vertices, $C\left(\left.\Delta\right|_{W}\right)$ is matroid and in particular pure.
(c) Note that $\left[\left.\Delta\right|_{W}\right]_{k}=\left.[\Delta]_{k}\right|_{W}$. As in part (b), if W is a proper subset of $[n]$ then this is matroid, and thus pure, by induction on the number of vertices. It only remains to check that $[\Delta]_{k}$ is itself pure. Suppose that $[\Delta]_{k}$ has a face F with $\operatorname{dim} F<k$. Since $F \in \Delta$ it must be contained in some facet with dimension $\operatorname{dim} \Delta \geq k$. It then follows that F must be contained in some k-dimensional face of Δ, which is then a face of $[\Delta]_{k}$. Thus F is not a facet of $[\Delta]_{k}$ and the k-skeleton is therefor pure.
(d) This time, we check that $\left.\operatorname{link}_{\Delta}(F)\right|_{W}=\operatorname{link}_{\left.\Delta\right|_{W}}(F)$, which will then be pure by induction. We then only need to know that $\operatorname{link}_{\Delta}(F)$ is pure. Suppose that $G \in$ $\operatorname{link}_{\Delta}(F)$ is a facet. Then, $G \cup F \in \Delta$ must be a facet of Δ. So $\operatorname{dim}(G \cup F)=\operatorname{dim} \Delta$ and then $\operatorname{dim} G=\operatorname{dim} \Delta-\operatorname{dim} F-1=\operatorname{dim} \operatorname{link}_{\Delta}(F)$. So the link is pure and thus matroid.

Link and deletion are identical to the contraction and deletion constructions from matroids. Notice that a complex Γ is a cone with apex x if and only if x is contained in all the facets of Γ. A matroid is a cone if and only if it has a coloop, which corresponds to the apex defined above.

Lemma 2.3. Let Δ be a 1-dimensional simplicial complex. Then Δ is matroid if and only if for every vertex v and every edge $E, \operatorname{link}_{\Delta}(v) \cap E \neq \emptyset$.

Proof. Suppose there exists a vertex v and an edge E disjoint from the link of v. Let $L=[n]-\operatorname{link}_{\Delta}(v)$. Then Δ_{L} has $\{v\}$ and E as facets, and so is not matroid.
Conversely, suppose that there exists a subset $W \subseteq[n]$ such that Δ_{W} is not pure. So Δ_{W} must have a 0 -dimensional facet, say $\{v\}$. Let $v \neq w \in W$. Since v is a facet of
Δ_{W} we must have $\{v, w\} \notin \Delta$. Thus $W \cap \operatorname{link}_{W}(v)=\emptyset$ and so any edge, E, of Δ_{W} (there must be at least one since Δ_{W} is not pure) must also be disjoint from $\operatorname{link}_{\Delta}(v)$. Since E is also an edge of Δ the proof is complete.

3. h-VECTOR OF SIMPLICIAL COMPLEXES

Assume that $\operatorname{dim} \Delta=d-1$. We study the h-vector of a simplicial complexe of Δ $h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ from its f-vector via the relation

$$
\begin{equation*}
\sum_{i=0}^{d} f_{i-1} t^{i}(1-t)^{d-i}=\sum_{i=0}^{d} h_{i} t^{i} \tag{3.1}
\end{equation*}
$$

In particular, for any $j=0, \ldots, d$, we have

$$
f_{j-1}=\sum_{i=0}^{j}\binom{d-i}{j-1} h_{i}
$$

and

$$
h_{j}=\sum_{i=0}^{j}(-1)^{j-i}\binom{d-i}{j-1} f_{i-1} .
$$

It should not be expected that the h-numbers of an arbitrary simplicial complex are nonnegative; however, the h-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M. Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$. Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M. Dually, $v_{j} \in E \backslash B$ is externally passive in B if there is some $v_{i} \in B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{i}\right) \cup v_{j}$ is a bases of M. Alternatively, v_{j} is externally passive in B if it is internally passive in $E \backslash B$ in M^{*}. It is well known that [1]

$$
\begin{equation*}
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)} \tag{3.2}
\end{equation*}
$$

where $i p(B)$ counts the number of internally passive elements in B. This proves that the h-numbers of a matroid complex are nonnegative. Alternatively,

$$
\begin{equation*}
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}\left(M^{*}\right)} t^{e p(B)} \tag{3.3}
\end{equation*}
$$

where $e p(B)$ counts the number of externally passive elements in B. Since the f numbers (and hence the h-numbers) of a matroid depend only on its independent sets, equations (3.2) and (3.3) hold for any ordering of the ground set of M. We also remark that the h-vector of a matroid complex Δ_{M} is actually a specialization of the Tutte polynomial of the corresponding matroid; precisely we have $T(M ; x, 1)=$ $h_{0} x^{d}+h_{1} x^{d_{1}}+\cdots+h_{d}$, see [1].

Example 3.1. We consider the matroid complexe $\Delta\left(U_{2,3}\right)$ associated to the uniform matroid of rank 2 with 3 elements. We shall calculate the h-vector of Δ via relations (3.1) , (3.2), (3.3) and also via the Tutte polynomial associated to $U_{2,3}$. We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$. Therefore by relation (3.1), we have

$$
\begin{aligned}
\sum_{i=0}^{2} f_{i-1} t^{i}(1-t)^{2-i} & =f_{-1} t^{0}(1-t)^{2}+f_{0} t(1-t)+f_{1} t^{2}(1-t)^{0} \\
& =(1-t)^{2}+3 t(1-t)+3 t^{2} \\
& =1-2 t+t^{2}+3 t-3 t-3 t^{2}+3 t^{2}=t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
\end{aligned}
$$

Thus $h=(1,1,1)$.
Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$. We can check that - there is not internally passive element in B_{1}

- 3 is internally passive element of B_{2}
-2 and 3 are internally passive elements of B_{3}
Thus by (3.2) we have

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}\left(U_{2,3}\right)} t^{i p(B)}=1+t+t^{2}
$$

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$. We can check that - 2 and 3 are externally passive elements of B_{1}

- 3 is externally passive element of B_{2}
- there is not externally passive element in B_{3}

Thus by (3.3) we have

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}\left(U_{1,3}\right)} t^{e p(B)}=t^{2}+t+1
$$

Let us now calculate $T\left(U_{3,2} ; x, y\right)$. We recursively have

$$
\begin{aligned}
T\left(U_{3,2} ; x, y\right) & =T\left(U_{3,2} \backslash 3 ; x, y\right)+T\left(U_{3,2} / 3 ; x, y\right) \\
& =T\left(U_{2,2} ; x, y\right)+T\left(U_{2,1} ; x, y\right)
\end{aligned}
$$

Since $U_{k, k}, k \geq 1$ consiste of one base so all its elements are isthmes, so

$$
\begin{aligned}
T\left(U_{2,2} ; x, y\right) & =T\left(U_{2,2}(2) ; x, y\right) T\left(U_{2,2} \backslash 2 ; x, y\right) \\
& =T(I ; x, y) T\left(U_{1,1} ; x, y\right) \\
& =x T\left(U_{1,1} ; x, y\right) \\
& =x T(I ; x, y)=x^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
T\left(U_{2,1} ; x, y\right) & =T\left(U_{2,1} \backslash 2 ; x, y\right)+T\left(U_{2,1} / 2 ; x, y\right) \\
& =T\left(U_{1,1} ; x, y\right)+T\left(U_{1,0} ; x, y\right) \\
& =T(I ; x, y)+T(B ; x, y) \\
& =x+y
\end{aligned}
$$

Obtaining

$$
T\left(U_{3,2} ; x, y\right)=x^{2}+x+y
$$

and thus

$$
T\left(U_{3,2} ; t, 1\right)=t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
$$

4. Stanley's conjecture

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$. Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$. We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree. A vector $\mathbf{h}=\left(h_{0}, \ldots, h_{d}\right)$ is a pure O-sequence if there is a pure ideal \mathcal{O} such that $\mathbf{h}=F(\mathcal{O})$.

Example 4.1. The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $\mathbf{x y}^{3} \mathbf{z}$ and $\mathbf{x}^{2} \mathbf{z}^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathbf{x y}^{\mathbf{3}} \mathbf{z}, \mathbf{x}^{2} \mathbf{z}^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& \left.x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x, 1\right\} .
\end{aligned}
$$

Hence the h-vector of X is the pure O-sequence $h=(1,3,6,7,5,2)$.
A longstanding conjecture of Stanley [10] suggest that matroid h-vectors are highly structured

Conjecture 4.2. For any matroid $M, h(M)$ is a pure O-sequence.
Conjecture 4.2 is known to hold for several families of matroid complexes such as paving matroids [6], cographic matroids [5], cotraversal matroids [7], lattice path matroids [8], matroids of rank at most three $[2,3,11]$ and for all matroids on at most nine elements all matroids of corank two [2].
4.1. Rank-2 Case. Let M be a loopless matroid of rank 2. The independence complex of M is a complete graph whose partite sets E_{1}, \ldots, E_{t} are the parallelism classes of M. let $s_{i}:=\left|E_{i}\right|$. Choose one representative $e_{i} \in E_{i}$ from each parallelism calsses of M so that the simplification of M is a complete graph of $\left\{e_{1}, \ldots, e_{t}\right\}$, and let $\tilde{E}_{i}=E_{i} \backslash e_{i}$. Clearly,

$$
f_{0}(M)=\sum_{i=1}^{t}\left(s_{i}-1\right)+t
$$

and

$$
f_{1}(M)=\sum_{1 \leq i<j \leq t}\left(s_{i}-1\right)+\left(s_{j}-1\right)+(t-1) \sum_{i=1}^{t}\left(s_{i}-1\right)+\binom{t}{2}
$$

and hence,

$$
h_{1}(M)=\sum_{i=1}^{t}\left(s_{i}-1\right)+(t-2)
$$

and

$$
h_{2}(M)=\sum_{1 \leq i<j \leq t}\left(s_{i}-1\right)+\left(s_{j}-1\right)+(t-1) \sum_{i=1}^{t}\left(s_{i}-1\right)+\binom{t-1}{2} .
$$

Consider the pure O-sequence \mathcal{O} with

$$
\begin{aligned}
\mathcal{O}_{1} & =\left\{x_{1}, \ldots, x_{t-2}\right\} \cup\left\{x_{e}: e \in \tilde{E}_{i}, 1 \leq i \leq t\right\} \\
\mathcal{O}_{2} & =\left\{x_{e} x_{e^{\prime}}: e \in \tilde{E}_{i}, e^{\prime} \in \tilde{E}_{j}, 1 \leq i<j \leq t\right\} \\
& \cup\left\{x_{i} x_{e}: e \in \tilde{E}_{j}, 1 \leq i \leq t-2,1 \mid e j \leq t\right\} \\
& \cup\left\{\text { degree 2 monomials in } x_{1}, \ldots x_{t-2}\right\} .
\end{aligned}
$$

We see that $h(M)=f(\mathcal{O})$, which proves that $h(M)$ is a pure O-sequence.

Example 4.3. We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph G illustrated in figure 3 .

Figure 3. Graph G.
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=4$ and $f_{1}=4$. Let $\mathcal{B}(M(G))=\left\{B_{1}=\right.$ $\left.\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$. We can check that

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus by (3.2) we have

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}
$$

Obtaining the h-vector $h(1,2,1)$. Since $\mathcal{O}=\left(1, x_{1}, x_{2}, x_{1} x_{2}\right)$ is an order ideal then $h(1,2,1)$ is pure O-sequence.

References

[1] A. Björner, Homology and shell ability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Cambridge University Press, 226-283 (1992).
[2] J. De Loera, Y. Kemper, S. Klee, h-vectors of small matroid complexes, Elect. J. Comb. 19, \#P14, 2012.
[3] H.T. Há, E. Stokes and F. Zanello, Pure 0-sequences and matroid vectors, 2010, http://arxiv.org/abs/1006.0325
[4] D. Mayhew and G. Royle, Matroids with nine elements, J. Comb. Th. Ser. B (98) (2008), 415-431.
[5] C. Merino, The chip firing game and matroid complexes, In Discrete models: combinatorics, computation, and geometry (Paris 2001), Discete Math. Theor. Comput. Sci. Proc. AA, pages 245-255 (electronic).
[6] C. Merino, S. Noble, M. Ramirez-Ibañez and R. Villarroel, On the structure of the h-vector of a paving matroid, 2010, http://arxiv.org/abs/1008.2031
[7] S. Oh, Generalized permutohedra, h-vector of contransversal matroids and pure O-sequences, 2010, http://arxiv.org/abs/1005.5586
[8] J. Schweig, On the h-vector of a lattice path matroid, Elect. J. Comb. 17 (1), note 3, 2010.
[9] R. Stanley, Combinatorics and Commutative Algebra, Vol. 41, Birkhäuser Boston Inc., Boston MA (1996).
[10] R. Stanley, Cohen-Macaulay complexes, In Higher Combinatorics (Proc. NATO Advanced Study Inst. Berlin, 1976) pages 51-62. NATO Adv. Study Inst. Ser. C: Math and Phys. Sc. 31, Reidel Dordrecht, 1977.
[11] E. Stokes, The h-vector of 1-dimensional matroid complexes and a conjecture of Stanley, 2009, http://arxiv.org/abs/0903.3569

I3M, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France E-mail address: jramirez@univ-montp2.fr

[^0]: This notes were prepared for the 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals, Bucharest, Romania, September 2014.

