Theory of matroids and Tutte polynomial

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2
The 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals

Bucharest Romania, September 3, 2014

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E=\{1, \ldots, n\})$ and \mathcal{I} is a family of subsets of E verifying the following conditions:
(I1) $\emptyset \in \mathcal{I}$,
(I2) If $I \in \mathcal{I}$ and $I^{\prime} \subset I$ then $I^{\prime} \in \mathcal{I}$,
(I3) If $I_{1}, I_{2} \in \mathcal{I}$ and $\left|I_{1}\right|<\left|I_{2}\right|$ then there exists $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.
The members in \mathcal{I} are called the independents of M. A subset in E not belonging to \mathcal{I} is called dependent.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof : (I1) et (I2) are trivial.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.
On one hand, $\operatorname{dim}(W) \geq\left|I_{2}\right|$,

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.
On one hand, $\operatorname{dim}(W) \geq\left|I_{2}\right|$, on the other hand W is contained in the space generated by I_{1}.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.
On one hand, $\operatorname{dim}(W) \geq\left|I_{2}\right|$, on the other hand W is contained in the space generated by I_{1}.

$$
\left|I_{2}\right| \leq \operatorname{dim}(W) \leq\left|I_{1}\right|<\left|I_{2}\right| \quad!!!
$$

Representable Matroids

Let A be the following matrix with coefficients in \mathbb{R}.

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\{\emptyset,\{1\},\{2\},\{4\},\{4\},\{5\},\{1,2\},\{1,5\},\{2,4\},\{2,5\},\{4,5\}\} \subseteq \mathcal{I}(M)$

A matroid obtained form a matrix A with coefficients in \mathbb{F} is denoted by $M(A)$ and is called representable over \mathbb{F} or \mathbb{F}-representable.

Circuits

A subset $X \subseteq E$ is said to be minimal dependent if any proper subset of X is independent. A minimal dependent set of matroid M is called circuit of M.
We denote by \mathcal{C} the set of circuits of a matroid.

Circuits

A subset $X \subseteq E$ is said to be minimal dependent if any proper subset of X is independent. A minimal dependent set of matroid M is called circuit of M.
We denote by \mathcal{C} the set of circuits of a matroid.
\mathcal{C} is the set of circuits of a matrid on E if and only if \mathcal{C} verifies the following properties:
(C1) $\emptyset \notin \mathcal{C}$,
(C2) $C_{1}, C_{2} \in \mathcal{C}$ and $C_{1} \subseteq C_{2}$ then $C_{1}=C_{2}$,
(C3) (elimination property) If $C_{1}, C_{2} \in \mathcal{C}, C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$ then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left\{C_{1} \cup C_{2}\right\} \backslash\{e\}$.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.
Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.
This matroid is denoted by $M(G)$ and called graphic.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.
This matroid is denoted by $M(G)$ and called graphic.
Proof : Verify (C1), (C2) and (C3).

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.

This matroid is denoted by $M(G)$ and called graphic.
Proof: Verify (C1), (C2) and (C3).
A subset of edges $I \subset\left\{e_{1}, \ldots, e_{n}\right\}$ of G is independent if the graph induced by I does not contain a cycle.

Graphic Matroid

Graphic Matroid

It can be checked that $M(G)$ is isomorphic to $M(A)$ (under the bijection $e_{i} \rightarrow i$).

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Graphic Matroid

Theorem A graphic matroid is always representable over \mathbb{R}.

Graphic Matroid

Theorem A graphic matroid is always representable over \mathbb{R}. Proof (idea) Let $G=(V, E)$ be an oriented graph and let $\left\{x_{i}, i \in V\right\}$ be the canonical base of \mathbb{R}.

Graphic Matroid

Theorem A graphic matroid is always representable over \mathbb{R}. Proof (idea) Let $G=(V, E)$ be an oriented graph and let $\left\{x_{i}, i \in V\right\}$ be the canonical base of \mathbb{R}.

Exercice : Verify that the graph $G=(V, E)$ gives the same matroid that the one given by the set of vectors $y_{e}=x_{i}-x_{j}$ where $e=(i, j) \in E$.

Graphic Matroid

$$
A=\left(\begin{array}{rrrr}
y_{a} & y_{b} & y_{c} & y_{d} \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Graphic Matroid

$$
A=\left(\begin{array}{rrrr}
y_{a} & y_{b} & y_{c} & y_{d} \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$M(G)$ is isomorphic to $M(A)\left(a \rightarrow y_{a}, b \rightarrow y_{b}, c \rightarrow y_{c}, d \rightarrow y_{d}\right)$.

Graphic Matroid

$$
A=\left(\begin{array}{rrrr}
y_{a} & y_{b} & y_{c} & y_{d} \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$M(G)$ is isomorphic to $M(A)\left(a \rightarrow y_{a}, b \rightarrow y_{b}, c \rightarrow y_{c}, d \rightarrow y_{d}\right)$.
The cycle formed by the edges $a=\{1,2\}, b=\{1,3\}$ et $c=\{2,3\}$ in the graph correspond to the linear dependency $y_{b}-y_{a}=y_{c}$.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.
Proof : exercices.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.
Proof: exercices.
The family \mathcal{B} verifies the following conditions:
(B1) $\mathcal{B} \neq \emptyset$,
(B2) (exchange propety) $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \backslash B_{2}$ then there exist $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash x\right) \cup y \in \mathcal{B}$.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.
Proof : exercices.
The family \mathcal{B} verifies the following conditions:
(B1) $\mathcal{B} \neq \emptyset$,
(B2) (exchange propety) $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \backslash B_{2}$ then there exist $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash x\right) \cup y \in \mathcal{B}$.

If \mathcal{I} is the family of subsets contained in a set of \mathcal{B} then (E, \mathcal{I}) is a matroid.

Bases

Theorem \mathcal{B} is the set of basis of a matroid if and only if it verifies $(B 1)$ and (B2).

Bases

Theorem \mathcal{B} is the set of basis of a matroid if and only if it verifies (B1) and (B2).

Bases

Bases

Bases

Bases

Bases

Rank

The rank of a set $X \subseteq E$ is defined by

$$
r_{M}(X)=\max \{|Y|: Y \subseteq X, Y \in \mathcal{I}\}
$$

Rank

The rank of a set $X \subseteq E$ is defined by

$$
r_{M}(X)=\max \{|Y|: Y \subseteq X, Y \in \mathcal{I}\}
$$

$r=r_{M}$ is the rank function of a matroid (E, \mathcal{I}) (where
$\mathcal{I}=\{I \subseteq E: r(I)=|I|\})$ if and only if r verifies the following conditions:
(R1) $0 \leq r(X) \leq|X|$, for all $X \subseteq E$,
$(R 2) r(X) \leq r(Y)$, for all $X \subseteq Y$,
(R3) (sub-modulairity) $r(X \cup Y)+r(X \cap Y) \leq r(X)+r(Y)$ for all $X, Y \subset E$.

Rank

Let M be a graphic matroid obtained from G

Rank

Let M be a graphic matroid obtained from G

It can be verified that:

$$
\begin{aligned}
& r_{M}(\{a, b, c\})=r_{M}(\{c, d\})=r_{M}(\{a, d\})=2 \text { et } \\
& r(M(G))=r_{M}(\{a, b, c, d\})=3 .
\end{aligned}
$$

Duality

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\}
$$

is the set of bases of a matroid on E.

Duality

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\}
$$

is the set of bases of a matroid on E.
The matroid on E having \mathcal{B}^{*} as set of bases, denoted by M^{*}, is called the dual of M.
A base of M^{*} is also called cobase of M.

Duality

We have that

- $r\left(M^{*}\right)=|E|-r_{M}$ and $M^{* *}=M$.

Duality

We have that

- $r\left(M^{*}\right)=|E|-r_{M}$ and $M^{* *}=M$.
- The set \mathcal{I}^{*} of independents of M^{*} is given by
$\mathcal{I}^{*}=\{X \mid X \subset E$ such that there exists $B \in \mathcal{B}(M)$ with $X \cap B=\emptyset\}$.

Duality

We have that

- $r\left(M^{*}\right)=|E|-r_{M}$ and $M^{* *}=M$.
- The set \mathcal{I}^{*} of independents of M^{*} is given by
$\mathcal{I}^{*}=\{X \mid X \subset E$ such that there exists $B \in \mathcal{B}(M)$ with $X \cap B=\emptyset\}$.
- The rank function of M^{*} is given by

$$
r_{M^{*}}(X)=|X|+r_{M}(E \backslash X)-r_{M}
$$

for $X \subset E$.

Cocycle Matroid

Let $G=(V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Cocycle Matroid

Let $G=(V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.
Theorem Let $\mathcal{C}(G)^{*}$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^{*}$ is the set of circuits of a matroid on E.

Cocycle Matroid

Let $G=(V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.
Theorem Let $\mathcal{C}(G)^{*}$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^{*}$ is the set of circuits of a matroid on E. The matroid obtained on this way is called the matroid of cocycle of G or bond matroid, denoted by $B(G)$.

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$$
\mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}
$$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$$
\begin{aligned}
& \mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\
& \mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\}
\end{aligned}
$$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$$
\begin{aligned}
& \mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\
& \mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\} \\
& \mathcal{I}\left(M^{*}(G)\right)=\{\emptyset,\{1\},\{2\},\{3\}\}
\end{aligned}
$$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$\mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$
$\mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\}$
$\mathcal{I}\left(M^{*}(G)\right)=\{\emptyset,\{1\},\{2\},\{3\}\}$
The dependents of $M^{*}(G)$ are $\mathcal{P}(\{1,2,3,4\}) \backslash\{\emptyset,\{1\},\{2\},\{3\}\}$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$\mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$
$\mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\}$
$\mathcal{I}\left(M^{*}(G)\right)=\{\emptyset,\{1\},\{2\},\{3\}\}$
The dependents of $M^{*}(G)$ are $\mathcal{P}(\{1,2,3,4\}) \backslash\{\emptyset,\{1\},\{2\},\{3\}\}$ $\mathcal{C}\left(M^{*}(G)\right)=\{\{4\},\{1,2\},\{1,3\},\{2,3\}\}$ that are precisely the cocycles of G.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Remark The dual of a graphic matroid is not necessarly graphic.

Duality - representable matroid

Theorem The dual of a \mathbb{F}-representable matroid is \mathbb{F}-representable.

Duality - representable matroid

Theorem The dual of a \mathbb{F}-representable matroid is \mathbb{F}-representable. Proof. The matrix representing M can always be written as
$\left(I_{r} \mid A\right)$
where I_{r} is the identity $r \times r$ and A is a matrix of size $r \times(n-r)$.

Duality - representable matroid

Theorem The dual of a \mathbb{F}-representable matroid is \mathbb{F}-representable. Proof. The matrix representing M can always be written as

$$
\left(I_{r} \mid A\right)
$$

where I_{r} is the identity $r \times r$ and A is a matrix of size $r \times(n-r)$.
(Exercise) M^{*} can be obtained from the set of columns of the matrix

$$
\left(-{ }^{t} A \mid I_{n-r}\right)
$$

where I_{n-r} is the identity $(n-r) \times(n-r)$ and ${ }^{t} A$ is the transpose of A.

Duality - representable matroid

The matroid M^{*} is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Duality - representable matroid

The matroid M^{*} is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.
Let V be a subspace of \mathbb{F}^{n} where $n=|E|$. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v\rangle=\sum_{e \in E} u(e) v(e)$ by

$$
V^{\perp}=\left\{v \in \mathbb{F}^{n} \mid\langle u, v\rangle=0 \text { for any } u \in V\right\} .
$$

Duality - representable matroid

The matroid M^{*} is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.
Let V be a subspace of \mathbb{F}^{n} where $n=|E|$. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v\rangle=\sum_{e \in E} u(e) v(e)$ by

$$
V^{\perp}=\left\{v \in \mathbb{F}^{n} \mid\langle u, v\rangle=0 \text { for any } u \in V\right\} .
$$

The orthogonal space of the space generated by the columns of $(I \mid A)$ is given by the space generated by the columns of $\left(-{ }^{t} A \mid I_{n-r}\right)$.

Operation : deletion

Let M be a matroid on the set E and let $A \subset E$. Then,

$$
\{X \subset E \backslash A \mid X \text { is independent in } M\}
$$

is a set of independent of a matroid on $E \backslash A$.

Operation : deletion

Let M be a matroid on the set E and let $A \subset E$. Then,

$$
\{X \subset E \backslash A \mid X \text { is independent in } M\}
$$

is a set of independent of a matroid on $E \backslash A$.
This matroid is obtained from M by deleting the elements of A and it is denoted by $M \backslash A$.

Operation : contraction

Let M be a matroid on the set E and let $A \subset E$. Let $\left.M\right|_{A}=\{X \subseteq A \mid X \in \mathcal{I}(M)\}$ and $X \subseteq E \backslash A$. Then,
$\left\{X \subseteq E \backslash A \mid\right.$ there exists a base B of $\left.M\right|_{A}$ such that $\left.X \cup B \in \mathcal{I}(M)\right\}$ is the set of independents of a matroid in $E \backslash A$.

Operation : contraction

Let M be a matroid on the set E and let $A \subset E$. Let $\left.M\right|_{A}=\{X \subseteq A \mid X \in \mathcal{I}(M)\}$ and $X \subseteq E \backslash A$. Then,
$\left\{X \subseteq E \backslash A \mid\right.$ there exists a base B of $\left.M\right|_{A}$ such that $\left.X \cup B \in \mathcal{I}(M)\right\}$
is the set of independents of a matroid in $E \backslash A$.
This matroid is obtained from M by contracting the elements of A and it is denoted by M / A.

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

and thus $M / A=\left(M^{*} \backslash A\right)^{*}$

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

and thus $M / A=\left(M^{*} \backslash A\right)^{*}$
A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

and thus $M / A=\left(M^{*} \backslash A\right)^{*}$
A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Question: Is it true that any family of matroids is closed under deletions/contractions operations?

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.
Proof Deletion : let $T \subseteq E$ with $|T|=t$. Then,

$$
U_{n, r} \backslash T= \begin{cases}U_{n-t, n-t} & \text { if } n \geq t \geq n-r \\ U_{n-t, r} & \text { if } t<n-r .\end{cases}
$$

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.
Proof Deletion : let $T \subseteq E$ with $|T|=t$. Then,

$$
U_{n, r} \backslash T= \begin{cases}U_{n-t, n-t} & \text { if } n \geq t \geq n-r \\ U_{n-t, r} & \text { if } t<n-r .\end{cases}
$$

Contraction : it follows by using duality.

Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Contracting element 6

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.
Contracting: M / a is the matroid obtained from the vectors $\left(v_{e}^{\prime}\right)_{e \in E \backslash a}$ where v_{e}^{\prime} is the vector obtained from v_{e} by deleting the non zero entry of v_{a}.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.
Contracting : M / a is the matroid obtained from the vectors $\left(v_{e}^{\prime}\right)_{e \in E \backslash a}$ where v_{e}^{\prime} is the vector obtained from v_{e} by deleting the non zero entry of v_{a}.

- If we change the nonzero component we obtain another representation of M / a.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.
Contracting : M / a is the matroid obtained from the vectors $\left(v_{e}^{\prime}\right)_{e \in E \backslash a}$ where v_{e}^{\prime} is the vector obtained from v_{e} by deleting the non zero entry of v_{a}.

- If we change the nonzero component we obtain another representation of M / a.
- If $v_{a}=\overline{0}$ then a is a loop of M and thus $M / a=M \backslash a$.

Minors - representable matroids

Excluded Minors

For any field \mathbb{F}, there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F}.

Excluded Minors

For any field \mathbb{F}, there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F}.
Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representables over \mathbb{F}.

Excluded Minors

For any field \mathbb{F}, there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F}.
Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representables over \mathbb{F}.
For $\mathbb{F}=G F(2)=\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ (binary matroids) : the list has only one matroid $U_{2,4}$ (3 pages proof)

$$
\mathcal{B}\left(U_{2,4}\right)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)
Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)=B\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)=B\left(K_{3,3}\right)$ as minors.

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)
Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)=B\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)=B\left(K_{3,3}\right)$ as minors.
Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M\left(K_{5}\right)$ nor $M\left(K_{3,3}\right)$ as minors.

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)
Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)=B\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)=B\left(K_{3,3}\right)$ as minors.
Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M\left(K_{5}\right)$ nor $M\left(K_{3,3}\right)$ as minors.
Theorem A matroid is regular if and only if has neither $U_{2,4}, F_{7}$ nor F_{7}^{*} as minors.

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)} .
$$

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

Let $U_{2,3}$ be the matroid of rank 2 on 3 elements with $\mathcal{B}\left(U_{2,3}\right)=\{\{1,2\},\{1,3\},\{2,3\}\}$

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

Let $U_{2,3}$ be the matroid of rank 2 on 3 elements with $\mathcal{B}\left(U_{2,3}\right)=\{\{1,2\},\{1,3\},\{2,3\}\}$

$$
\begin{aligned}
t\left(U_{2,3} ; x, y\right) & =\sum_{x \subseteq E,|X|=0}(x-1)^{2-0}(y-1)^{0-0}+\sum_{X \subseteq E,|X|=1}(x-1)^{2-1}(y-1)^{1-1} \\
& +\sum_{x \subseteq E,|X|=2}(x-1)^{2-2}(y-1)^{2-2}+\sum_{x \subseteq E,|X|=3}(x-1)^{2-2}(y-1)^{3-2} \\
& =(x-1)^{2}+3(x-1)+3(1)+y-1 \\
& =x^{2}-2 x+1+3 x-3+3+y-1=x^{2}+x+y .
\end{aligned}
$$

Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one. An isthmus of M is an element that is contained in all the bases.

Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one. An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows
$t(M ; x, y)= \begin{cases}t(M \backslash e ; x, y)+t(M / e ; x, y) & \text { if } e \neq \text { isthmus, loop, } \\ x \cdot t(M \backslash e ; x, y) & \text { if } e \text { is an isthmus }, \\ y \cdot t(M / e ; x, y) & \text { if } e \text { is a loop. }\end{cases}$

Acyclic Orientations

Let $G=(V, E)$ be a connected graph. An orientation of G is an orientation of the edges of G.
We say that the orientation is acyclic if the oriented graph do not contain an oriented cycle (i.e., a cycle where all its edges are oriented clockwise or anti-clockwise).

Acyclic Orientations

Let $G=(V, E)$ be a connected graph. An orientation of G is an orientation of the edges of G.
We say that the orientation is acyclic if the oriented graph do not contain an oriented cycle (i.e., a cycle where all its edges are oriented clockwise or anti-clockwise).
Theorem The number of acyclic orientations of G is equals to

$$
t(M(G) ; 2,0)
$$

Acyclic Orientations

Example : There are 6 acyclic orientations of C_{3}

Notice that $M\left(C_{3}\right)$ is isomorphic to $U_{2,3}$.

Acyclic Orientations

Example : There are 6 acyclic orientations of C_{3}

Notice that $M\left(C_{3}\right)$ is isomorphic to $U_{2,3}$.
Since $t\left(U_{2,3} ; x, y\right)=x^{2}+x+y$ then the number of acyclic orientations of C_{3} is $t\left(U_{2,3} ; 2,0\right)=2^{2}+2+0=6$.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer. A λ-coloring of G is a map $\phi: V \longrightarrow\{1, \ldots, \lambda\}$.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer. A λ-coloring of G is a map $\phi: V \longrightarrow\{1, \ldots, \lambda\}$.

The coloring is called good if for any edge $\{u, v\} \in E(G)$, $\phi(u) \neq \phi(v)$.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer. A λ-coloring of G is a map $\phi: V \longrightarrow\{1, \ldots, \lambda\}$.

The coloring is called good if for any edge $\{u, v\} \in E(G)$, $\phi(u) \neq \phi(v)$.

Chromatic Polynomial

Let $\chi(G, \lambda)$ be the number of good λ-colorings of G.

Chromatic Polynomial

Let $\chi(G, \lambda)$ be the number of good λ-colorings of G.
Theorem $\chi(G, \lambda)$ is a polynomial on λ. Moreover

$$
\chi(G, \lambda)=\sum_{X \subseteq E}(-1)^{|X|} \lambda^{\omega(G[X])}
$$

where $\omega(G[X])$ denote the number of connected components of the subgraph generated by X.

Proof (idea) By using the inclusion-exclusion formula.

Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4)>0$ then G admits a good 4-coloring.

Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4)>0$ then G admits a good 4-coloring.

Theorem If G is a graph with $\omega(G)$ connected components. Then,

$$
\chi(G, \lambda)=\lambda^{\omega(G)}(-1)^{|V(G)|-\omega(G)} t(M(G) ; 1-\lambda, 0) .
$$

Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4)>0$ then G admits a good 4-coloring.

Theorem If G is a graph with $\omega(G)$ connected components. Then,

$$
\chi(G, \lambda)=\lambda^{\omega(G)}(-1)^{|V(G)|-\omega(G)} t(M(G) ; 1-\lambda, 0) .
$$

Exemple : $\chi\left(K_{3}, 3\right)=3^{1}(-1)^{3-1} t\left(K_{3} ; 1-3,0\right)$

$$
=3 \cdot 1 \cdot t\left(U_{2,3} ;-2,0\right)=3\left((-2)^{2}-2+0\right)=6
$$

Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points with integer coordinates lying in a polytope.

Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points with integer coordinates lying in a polytope.
A polytope is called integer if all its vertices have integer coordinates.
Ehrhart studied the function i_{P} that counts the number of integer points in the polytope P dilated by a factor of t

$$
\begin{aligned}
i_{P}: & \mathbb{N} \longrightarrow \mathbb{N}^{*} \\
& t \mapsto\left|t P \cap \mathbb{Z}^{d}\right|
\end{aligned}
$$

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),
- c_{d-1} is equals to $\operatorname{Vol}(\partial(P) / 2)$ where $\partial(P)$ is the surface of P,

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),
- c_{d-1} is equals to $\operatorname{Vol}(\partial(P) / 2)$ where $\partial(P)$ is the surface of P,
- $c_{0}=1$ is the Euler's characteristic of P.

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),
- c_{d-1} is equals to $\operatorname{Vol}(\partial(P) / 2)$ where $\partial(P)$ is the surface of P,
- $c_{0}=1$ is the Euler's characteristic of P.

All others coefficients remain a mystery!!

Ehrhart Polynomial

The Minkowski's sum of two sets A and B of \mathbb{R}^{d} is

$$
A+B=\{a+b \mid a \in A, b \in B\} .
$$

Ehrhart Polynomial

The Minkowski's sum of two sets A and B of \mathbb{R}^{d} is

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Let $A=\left\{v_{1}, \ldots, v_{k}\right\}$ be a finite set of elements of \mathbb{R}^{d}.
A zonotope generated by A, denoted by $Z(A)$, is a polytope formed by the Minkowski's sum of line segments

$$
Z(A)=\left\{\alpha_{1}+\cdots+\alpha_{k} \mid \alpha_{i} \in\left[-v_{i}, v_{i}\right]\right\} .
$$

Ehrhart Polynomial

Ehrhart Polynomial

Permutahedron

Ehrhart Polynomial

A matroid is regular if it is representable over any field.

Ehrhart Polynomial

A matroid is regular if it is representable over any field.
Theorem Let M be a regular matroid and let A be one of its representation matrix. Then, the Ehrhart polynomial associated to the zonotope $Z(A)$ is given by

$$
i_{Z(A)}(q)=q^{r(M)} t\left(M ; 1+\frac{1}{q}, 1\right) .
$$

Knots

Knots

Reidemeister moves

Knots

Knots

Knots

Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial $\langle D>$ in one variable A which obeys the following three rules where U denotes the unknot :

Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial $\langle D>$ in one variable A which obeys the following three rules where U denotes the unknot:

$$
\text { i) }\langle U\rangle=1
$$

$$
\text { ii) }\langle U+D\rangle=-\left(A^{2}+A^{-2}\right)\langle D\rangle
$$

Knots

Theorem For any link L the bracket polynomial is independent of the order in which rules (i) - (iii) are applied to the crossings. Further, it is invariant under the Reidemeister moves II and III but it is not invariant under Reidemeister move I! !

Knots

Theorem For any link L the bracket polynomial is independent of the order in which rules (i) - (iii) are applied to the crossings. Further, it is invariant under the Reidemeister moves II and III but it is not invariant under Reidemeister move I! !
The writhe of an oriented link diagram D is the sum of the signs at the crossings of D (denoted by $\omega(D)$).

Knots

Knots

Theorem For any link L define the Laurent polynomial

$$
f_{D}(A)=\left(-A^{3}\right)^{\omega(D)}<L>
$$

Then, $f_{D}(A)$ is an invariant of ambient isotopy.

Knots

Theorem For any link L define the Laurent polynomial

$$
f_{D}(A)=\left(-A^{3}\right)^{\omega(D)}<L>
$$

Then, $f_{D}(A)$ is an invariant of ambient isotopy.
Now, define for any link L

$$
V_{L}(z)=f_{D}\left(z^{-1 / 4}\right)
$$

where D is any diagram representing L. Then $V_{L}(z)$ is the Jones polynomial of the oriented link L.

Knots

Knots

Knots

Knots

$+$

Theory of matroids and Tutte polynomial

Knots

A link diagram is alternating if the crossings alternate under-over-under-over ... as the link is traversed.

Knots

A link diagram is alternating if the crossings alternate under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram representing L.

Knots

A link diagram is alternating if the crossings alternate under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link diagram then

$$
V_{L}(z)=\left(z^{-1 / 4}\right)^{3 \omega(D)-2} t\left(M(G) ;-z,-z^{-1}\right)
$$

where G is the graph associated to the knot diagram.

More applications

- Code theory
- Flow polynomial
- Bicycle space of a graph
- Statistical mechanics
- Arrangements of hyperplanes

