Toric ideals and matroids I

J.L. Ramírez Alfonsín
I3M, Université Montpellier 2

The 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals

Bucharest Romania, September 4, 2014

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.
Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k.

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.
Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k.

For each base $B \in \mathcal{B}$, we introduce a variable y_{B} and we denote by R the polynomial ring in the variables y_{B}, i.e., $R:=k\left[y_{B} \mid B \in \mathcal{B}\right]$.

Toric ideal associated to a matroid

Let M be a matroid on a finite ground set $E=\{1, \ldots, n\}$, we denote by \mathcal{B} the set of bases of M.
Let k be an arbitrary field and consider $k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k.

For each base $B \in \mathcal{B}$, we introduce a variable y_{B} and we denote by R the polynomial ring in the variables y_{B}, i.e., $R:=k\left[y_{B} \mid B \in \mathcal{B}\right]$. A binomial in R is a difference of two monomials, an ideal generated by binomials is called a binomial ideal.

Toric ideal associated to a matroid

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i} .
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}.

Toric ideal associated to a matroid

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i} .
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}. The kernel of φ, which is the presentation ideal of S_{M}, is called the toric ideal of M and is denoted by I_{M}.

Toric ideal associated to a matroid

We consider the homomorphism of k-algebras
$\varphi: R \longrightarrow k\left[x_{1}, \ldots, x_{n}\right]$ induced by

$$
y_{B} \mapsto \prod_{i \in B} x_{i} .
$$

The image of φ is a standard graded k-algebra, which is called the bases monomial ring of the matroid M and it is denoted by S_{M}. The kernel of φ, which is the presentation ideal of S_{M}, is called the toric ideal of M and is denoted by I_{M}.
Observation Let b be the number of bases of a matroid M on n elements. Then, I_{M} is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of M.

Example

Matroid $M(G)$ associated to graph G. We have $r(M(G))=3$.

Example

Matroid $M(G)$ associated to graph G. We have $r(M(G))=3$.

$\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right.$
$\left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}$

Example

$$
\begin{aligned}
& \mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right. \\
& \left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{cccccccl}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Example

$$
\begin{aligned}
& \mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right. \\
& \left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{cccccccl}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

By considering $\varphi: k\left[y_{B_{1}}, \ldots, y_{B_{8}}\right] \longrightarrow k\left[x_{1}, \ldots, x_{5}\right]$ we have that $y_{B_{1}} \mapsto x_{1} x_{2} x_{3}, \quad y_{B_{2}} \mapsto x_{1} x_{2} x_{5}, \quad y_{B_{3}} \mapsto x_{1} x_{3} x_{4}, \ldots$

Example

$$
\begin{aligned}
& \mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right. \\
& \left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

By considering $\varphi: k\left[y_{B_{1}}, \ldots, y_{B_{8}}\right] \longrightarrow k\left[x_{1}, \ldots, x_{5}\right]$ we have that
$y_{B_{1}} \mapsto x_{1} x_{2} x_{3}, \quad y_{B_{2}} \mapsto x_{1} x_{2} x_{5}, \quad y_{B_{3}} \mapsto x_{1} x_{3} x_{4}, \ldots$
An element of the kernel of φ (i.e., $\left.I_{M(G)}\right)$ is: $y_{B_{7}} y_{B_{4}}-y_{B_{2}} y_{B_{8}}$.

Toric ideal associated to a matroid

- It is well known that I_{M} is a prime, binomial and homogeneous ideal.

Toric ideal associated to a matroid

- It is well known that I_{M} is a prime, binomial and homogeneous ideal.

Observation Since $R / I_{M} \simeq S_{M}$, it follows that the height of I_{M} is $\operatorname{ht}\left(I_{M}\right)=|\mathcal{B}|-\operatorname{dim}\left(S_{M}\right)=|\mathcal{B}|-(n-c+1)$, where c is the number of connected components of M.

White's conjecture

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_{1}, B_{2} \in \mathcal{B}$ and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$.

White's conjecture

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_{1}, B_{2} \in \mathcal{B}$ and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$.

Brualdi proved that the exchange axiom is equivalent to the symmetric exchange axiom :

For every B_{1}, B_{2} in \mathcal{B} and for every $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that both $\left(B_{1} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$ and $\left(B_{2} \cup\{e\}\right) \backslash\{f\} \in \mathcal{B}$.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.
We say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to a symmetric exchange.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.
We say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_{M}.

White's conjecture

Suppose that a pair of bases D_{1}, D_{2} is obtained from a pair of bases B_{1}, B_{2} by a symmetric exchange. That is $D_{1}=\left(B_{1} \backslash e\right) \cup f$ and $D_{2}=\left(B_{2} \backslash f\right) \cup e$ for some $e \in B_{1}$ and $f \in B_{2}$.
We say that the quadratic binomial $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_{M}.
Conjecture (White 1980) For every matroid M its toric ideal I_{M} is generated by quadratic binomials corresponding to symmetric exchanges.

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.
Since I_{M} is a homogeneous binomial ideal, it follows that
$I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.

Since I_{M} is a homogeneous binomial ideal, it follows that
$I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$
White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

White's conjecture

Observation for $B_{1}, \ldots, B_{s}, D_{1}, \ldots, D_{s} \in \mathcal{B}$, the homogeneous binomial $y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}}$ belongs to I_{M} if and only if $B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}$ as multisets.

Since I_{M} is a homogeneous binomial ideal, it follows that
$I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right.\right.$ as multisets $\left.\}\right)$
White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.
Observation White's conjecture does not depend on the field k.

Example continued

We had $\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right.$ $\left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{245\}, B_{8}=\{345\}\right\}$.

We also had that $y_{B_{7}} y_{B_{4}}-y_{B_{2}} y_{B_{8}} \in I_{M(G)}$.
We can check that $B_{7} \cup B_{4}=\{2,4,5,1,3,5\}=B_{2} \cup B_{8}$.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids

Results of White's conjecture

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank ≤ 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids
- Lasoń, Michałek (2014) proved for strongly base orderables matroids.

Blasiak's reduction

Let M be a matroid on a ground set E with $|E|=\operatorname{nr}(M)$ where $r(M)$ is the rank of M.

Blasiak's reduction

Let M be a matroid on a ground set E with $|E|=n r(M)$ where $r(M)$ is the rank of M.
The n-base graph of M, which is denoted by $G_{n}(M)$, has as its vertex set the set of all sets of n disjoint bases (a set of n bases $\left\{B_{1}, \ldots, B_{n}\right\}$ of M is disjoint if and only if

$$
|E|=\bigcup_{i=1}^{n} B_{i}
$$

There is an edge between $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ if and only if $B_{i}=D_{j}$ for some i, j.

We have that $r\left(U_{2,6}\right)=2$, and let us take $n=3$.

$G_{2}\left(U_{2,6}\right)$

We have that $r\left(U_{2,6}\right)=2$, and let us take $n=3$. So

$M(G)$

$M(G)$

We have that $r(M(G))=2$ and we set $n=3$.

$M(G)$

We have that $r(M(G))=2$ and we set $n=3$.
$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{1,5\}, B_{4}=\right.$ $\{1,6\}, B_{5}=\{2,3\}, B_{6}=\{2,4\}, B_{7}=\{2,5\}, B_{8}=\{2,6\}, B_{9}=$ $\left.\{3,5\}, B_{10}=\{3,6\}, B_{11}=\{4,5\}, B_{12}=\{4,6\}\right\}$.

$G_{3}(M(G))$

$G_{3}(M(G))$

15,23,46

We notice that $y_{B_{4}} y_{B_{6}} y_{B_{9}}-y_{B_{1}} y_{B_{7}} y_{B_{12}} \in I_{M(G)}$

$G_{3}(M(G))$

15,23,46

We notice that $y_{B_{4}} y_{B_{6}} y_{B_{9}}-y_{B_{1}} y_{B_{7}} y_{B_{12}} \in I_{M(G)}$
since $B_{4} \cup B_{6} \cup B_{9}=\{1,2,3,4,5,6\}=B_{1} \cup B_{7} \cup B_{12}$.

$G_{3}(M(G))$

15,23,46

> We notice that $y_{B_{4}} y_{B_{6}} y_{B_{9}}-y_{B_{1}} y_{B_{7}} y_{B_{12}} \in I_{M(G)}$ since $B_{4} \cup B_{6} \cup B_{9}=\{1,2,3,4,5,6\}=B_{1} \cup B_{7} \cup B_{12}$.

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials.

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n :

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n : for every $M \in \mathfrak{C}$ and every binomial $b \in I_{M}$ of degree n, b is in the ideal generated by the quadratics of I_{M}.

Blasiak's reduction

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \geq 3$ and for every matroid M in \mathfrak{C} on a ground set of size $n r(M)$ the n-base graph of M is connected. Then, for every matroid M in \mathfrak{C}, I_{M} is generated by quadratics polynomials.
Proof (idea) The following statement is proved by induction on n : for every $M \in \mathfrak{C}$ and every binomial $b \in I_{M}$ of degree n, b is in the ideal generated by the quadratics of I_{M}.
This will prove the result because I_{M}, as a toric ideal, is generated by binomials.

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.
The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union.

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.
The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union.
It is proved that b is in the ideal generated by the degree $n-1$ binomials of I_{M} (this is done by constructing a new matroid M^{\prime} that depends on the binomial b).

Blasiak's reduction

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_{M}.
The binomial b is necessarily of the form $b=\prod_{i=1}^{n} y_{B_{i}}-\prod_{i=1}^{n} y_{D_{i}}$ for some bases $\left\{B_{1}, \ldots, B_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ of M such that the B_{i} and D_{i} have the same multiset union.
It is proved that b is in the ideal generated by the degree $n-1$ binomials of I_{M} (this is done by constructing a new matroid M^{\prime} that depends on the binomial b).
By induction the degree $n-1$ binomials are in the ideal generated by the quadratics of I_{M} so this will complete the proof.

Blasiak's reduction

$$
y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)} .
$$

Blasiak's reduction

$$
y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)} .
$$

Blasiak's reduction

By following the path we construct
$y_{16} y_{24} y_{35}-y_{16} y_{23} y_{45}+y_{16} y_{23} y_{45}-y_{13} y_{26} y_{45}+y_{13} y_{26} y_{55}-y_{13} y_{25} y_{46}=$ $y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)}$.

Toric ideals and matroids I

Blasiak's reduction

By following the path we construct
$y_{16} y_{24} y_{35}-y_{16} y_{23} y_{45}+y_{16} y_{23} y_{45}-y_{13} y_{26} y_{45}+y_{13} y_{26} y_{55}-y_{13} y_{25} y_{46}=$ $y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)}$.
Or equivalently
$y_{16}\left(y_{24} y_{35}-y_{23} y_{45}\right)+y_{45}\left(y_{16} y_{23}-y_{13} y_{26}\right)+y_{13}\left(y_{26} y_{55}-y_{25} y_{46}\right)=$ $y_{16} y_{24} y_{35}-y_{13} y_{25} y_{46} \in I_{M(G)}$.

Toric ideals and matroids I

Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B_{1} and B_{2} there is a bijection $\pi: B_{1} \longrightarrow B_{2}$ satisfying the multiple symmetric exchange property, that is : $\left(B_{1} \backslash A\right) \cup \pi(A)$ is a basis for every $A \subset B_{1}$.

Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B_{1} and B_{2} there is a bijection $\pi: B_{1} \longrightarrow B_{2}$ satisfying the multiple symmetric exchange property, that is : $\left(B_{1} \backslash A\right) \cup \pi(A)$ is a basis for every $A \subset B_{1}$.

- π restricted to the intersection $B_{1} \cap B_{2}$ is the identity.

Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B_{1} and B_{2} there is a bijection $\pi: B_{1} \longrightarrow B_{2}$ satisfying the multiple symmetric exchange property, that is : $\left(B_{1} \backslash A\right) \cup \pi(A)$ is a basis for every $A \subset B_{1}$.

- π restricted to the intersection $B_{1} \cap B_{2}$ is the identity.
- $\left(B_{2} \backslash \pi(A)\right) \cup A$ is a basis for every $A \subset B_{1}$ (by the multiple symmetric exchange property for $B_{1} \backslash A$).

Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B_{1} and B_{2} there is a bijection $\pi: B_{1} \longrightarrow B_{2}$ satisfying the multiple symmetric exchange property, that is : $\left(B_{1} \backslash A\right) \cup \pi(A)$ is a basis for every $A \subset B_{1}$.

- π restricted to the intersection $B_{1} \cap B_{2}$ is the identity.
- $\left(B_{2} \backslash \pi(A)\right) \cup A$ is a basis for every $A \subset B_{1}$ (by the multiple symmetric exchange property for $B_{1} \backslash A$).
- The class of strongly base orderable matroids is closed under taking minors.

Strongly base orderable matroid

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_{M} is generated by quadratics binomials corresponding to symmetric exchanges.

Strongly base orderable matroid

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_{M} is generated by quadratics binomials corresponding to symmetric exchanges.
Proof (idea) Since I_{M}, as a toric ideal, is generated by binomials then it is enough to prove that all binomials of I_{M} belong to the ideal J_{M} generated by quadratics binomials corresponding to symmetric exchanges.

Strongly base orderable matroid

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_{M} is generated by quadratics binomials corresponding to symmetric exchanges.
Proof (idea) Since I_{M}, as a toric ideal, is generated by binomials then it is enough to prove that all binomials of I_{M} belong to the ideal J_{M} generated by quadratics binomials corresponding to symmetric exchanges.

Fix $n \geq 2$. We shall prove by decreasing induction on the overlap function

$$
d\left(y_{B_{1}} \cdots y_{B_{n}}, y_{D_{1}} \cdots y_{D_{n}}\right):=\max _{\pi \in S_{n}} \sum_{i=1}^{n}\left|B_{i} \cap D_{\pi(i)}\right|
$$

that a binomial $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}} \in I_{M}$ belongs to J_{M}.

Strongly base orderable matroid

Proof (Cont...) If $d\left(y_{B_{1}} \cdots y_{B_{n}}, y_{D_{1}} \cdots y_{D_{n}}\right)=r(M) n$ then there exists a permutation $\pi \in S_{n}$ such that $B_{i}=D_{\pi(i)}$ for each i. Hence, $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}}=0 \in J_{M}$.

Strongly base orderable matroid

Proof (Cont...) If $d\left(y_{B_{1}} \cdots y_{B_{n}}, y_{D_{1}} \cdots y_{D_{n}}\right)=r(M) n$ then there exists a permutation $\pi \in S_{n}$ such that $B_{i}=D_{\pi(i)}$ for each i. Hence, $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}}=0 \in J_{M}$.
Suppose the assertion holds for all binomials with overlap function greater that $d<r(M) n$. Let $y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}}$ be a binomial of I_{M} with the overlap function equal to d.

Strongly base orderable matroid

Proof (Cont...) Since M is strongly base orderable matroid, there exist bijections $\pi_{B}: B_{1} \longrightarrow B_{2}$ and $\pi_{D}: D_{1} \longrightarrow D_{2}$ with the multiple symmetric exchange property.

Strongly base orderable matroid

Proof (Cont...) Since M is strongly base orderable matroid, there exist bijections $\pi_{B}: B_{1} \longrightarrow B_{2}$ and $\pi_{D}: D_{1} \longrightarrow D_{2}$ with the multiple symmetric exchange property.
Let G be a graph on a vertex set $B_{1} \cup B_{2} \cup D_{1} \cup D_{2}$ with edges $\left\{b, \pi_{B}(b)\right\}$ for all $b \in B_{1} \backslash B_{2}$ and $\left\{d, \pi_{B}(d)\right\}$ for all $d \in D_{1} \backslash D_{2}$.

Strongly base orderable matroid

Proof (Cont...) Since M is strongly base orderable matroid, there exist bijections $\pi_{B}: B_{1} \longrightarrow B_{2}$ and $\pi_{D}: D_{1} \longrightarrow D_{2}$ with the multiple symmetric exchange property.
Let G be a graph on a vertex set $B_{1} \cup B_{2} \cup D_{1} \cup D_{2}$ with edges $\left\{b, \pi_{B}(b)\right\}$ for all $b \in B_{1} \backslash B_{2}$ and $\left\{d, \pi_{B}(d)\right\}$ for all $d \in D_{1} \backslash D_{2}$.
G is bipartite since it is the sum of two matchings. Split the vertex set of G into two independent (in the graph sense) sets S and T.

Strongly base orderable matroid

Proof (Cont...) Since M is strongly base orderable matroid, there exist bijections $\pi_{B}: B_{1} \longrightarrow B_{2}$ and $\pi_{D}: D_{1} \longrightarrow D_{2}$ with the multiple symmetric exchange property.
Let G be a graph on a vertex set $B_{1} \cup B_{2} \cup D_{1} \cup D_{2}$ with edges $\left\{b, \pi_{B}(b)\right\}$ for all $b \in B_{1} \backslash B_{2}$ and $\left\{d, \pi_{B}(d)\right\}$ for all $d \in D_{1} \backslash D_{2}$.
G is bipartite since it is the sum of two matchings. Split the vertex set of G into two independent (in the graph sense) sets S and T.
We define

$$
\begin{aligned}
& B_{1}^{\prime}=\left(S \cap\left(B_{1} \cup B_{2}\right)\right) \cup\left(B_{1} \cap B_{2}\right), \quad B_{2}^{\prime}=\left(T \cap\left(B_{1} \cup B_{2}\right)\right) \cup\left(B_{1} \cap B_{2}\right) \\
& D_{1}^{\prime}=\left(S \cap\left(D_{1} \cup D_{2}\right)\right) \cup\left(D_{1} \cap D_{2}\right), \quad D_{2}^{\prime}=\left(T \cap\left(D_{1} \cup D_{2}\right)\right) \cup\left(D_{1} \cap D_{2}\right)
\end{aligned}
$$

Strongly base orderable matroid

Proof (Cont...) By the multiple symmetric exchange property of π_{B} sets $B_{1}^{\prime}, B_{2}^{\prime}$ are bases obtained from the pair B_{1}, B_{2} by a sequence of symmetric exchanges. Therefore the binomial

$$
\begin{equation*}
y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}-y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}} \tag{1}
\end{equation*}
$$

belongs to J_{M}.

Strongly base orderable matroid

Proof (Cont...) By the multiple symmetric exchange property of π_{B} sets $B_{1}^{\prime}, B_{2}^{\prime}$ are bases obtained from the pair B_{1}, B_{2} by a sequence of symmetric exchanges. Therefore the binomial

$$
\begin{equation*}
y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}-y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}} \tag{1}
\end{equation*}
$$

belongs to J_{M}.
Analogously, the binomial

$$
\begin{equation*}
y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}-y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}} \tag{2}
\end{equation*}
$$

belongs to J_{M}.

Strongly base orderable matroid

Proof (Cont...) By the multiple symmetric exchange property of π_{B} sets $B_{1}^{\prime}, B_{2}^{\prime}$ are bases obtained from the pair B_{1}, B_{2} by a sequence of symmetric exchanges. Therefore the binomial

$$
\begin{equation*}
y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}-y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}} \tag{1}
\end{equation*}
$$

belongs to J_{M}.
Analogously, the binomial

$$
\begin{equation*}
y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}-y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}} \tag{2}
\end{equation*}
$$

belongs to J_{M}.
Moreover since S and T are disjoint we have that

$$
d\left(y_{B_{1}^{\prime}} y_{B_{2}^{\prime}} y_{B_{3}} \cdots y_{B_{n}}, y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}}\right)>d\left(y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}, y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}\right)
$$

Strongly base orderable matroid

Proof (Cont...) By the inductive assumption

$$
\begin{equation*}
y_{B_{1}^{\prime}} y_{B_{2}^{\prime}}^{\prime} y_{B_{3}} \cdots y_{B_{n}}-y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}} \tag{3}
\end{equation*}
$$

also belongs to J_{M}.

Strongly base orderable matroid

Proof (Cont...) By the inductive assumption

$$
\begin{equation*}
y_{B_{1}^{\prime}} y_{B_{2}^{\prime}}^{\prime} y_{B_{3}} \cdots y_{B_{n}}-y_{D_{1}^{\prime}} y_{D_{2}^{\prime}} y_{D_{3}} \cdots y_{D_{n}} \tag{3}
\end{equation*}
$$

also belongs to J_{M}.
By adding (1) and (3) and subtracting (2) we have that

$$
y_{B_{1}} y_{B_{2}} y_{B_{3}} \cdots y_{B_{n}}-y_{D_{1}} y_{D_{2}} y_{D_{3}} \cdots y_{D_{n}}
$$

belongs to J_{M}, as desired.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} has a Gröbner basis consisting of quadratics binomials.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} has a Gröbner basis consisting of quadratics binomials.
Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} has a Gröbner basis consisting of quadratics binomials.
Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} has a Gröbner basis consisting of quadratics binomials.
Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.
Conjecture 3 For any matroid M, the quadratic binomials of I_{M} are in the ideal generated by the binomials $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ such that the pair of bases D_{1}, D_{2} can be obtained from the pair B_{1}, B_{2} by a symmetric exchange.

Variants of White's conjecture

Conjecture 1 For any matroid M, the toric ideal I_{M} has a Gröbner basis consisting of quadratics binomials.
Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_{M} is generated by quadratics binomials.
Conjecture 3 For any matroid M, the quadratic binomials of I_{M} are in the ideal generated by the binomials $y_{B_{1}} y_{B_{2}}-y_{D_{1}} y_{D_{2}}$ such that the pair of bases D_{1}, D_{2} can be obtained from the pair B_{1}, B_{2} by a symmetric exchange.
Remark: Conjectures 2 and 3 together imply White's conjecture.

