Toric ideals and matroids II

J.L. Ramírez Alfonsín
I3M, Université Montpellier 2

The 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals

Bucharest Romania, September 4, 2014

Complete Intersection

The toric ideal I_{M} is a complete intersection if and only if there exists a set of homogeneous binomials $g_{1}, \ldots, g_{s} \in R$ such that $s=\operatorname{ht}\left(I_{M}\right)$ and $I_{M}=\left(g_{1}, \ldots, g_{s}\right)$.

Complete Intersection

The toric ideal I_{M} is a complete intersection if and only if there exists a set of homogeneous binomials $g_{1}, \ldots, g_{s} \in R$ such that $s=\operatorname{ht}\left(I_{M}\right)$ and $I_{M}=\left(g_{1}, \ldots, g_{s}\right)$.
Equivalently, I_{M} is a complete intersection if

$$
\mu\left(I_{M}\right)=\operatorname{ht}\left(I_{M}\right)=|\mathcal{B}|-(n-c+1)
$$

where $\mu\left(I_{M}\right)$ denotes the minimal number of generators of I_{M} and c the number of connected components of M.

Complete Intersection

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a \mathcal{R} b$ if and only if there exist a circuit of M containing both $a, b \in M$.

Complete Intersection

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a \mathcal{R} b$ if and only if there exist a circuit of M containing both $a, b \in M$.

Complete Intersection

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a \mathcal{R} b$ if and only if there exist a circuit of M containing both $a, b \in M$.

We have $\mathcal{B}(M(G))=\{123,124,134,234\}$. There is one equivalent classe, and thus ht $\left(I_{M}\right)=4-(4-1+1)=0$.

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

- If $r=n$ then $\operatorname{ht}\left(I_{M}\right)=1-(n-n+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is complete intersection.

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

- If $r=n$ then $\operatorname{ht}\left(I_{M}\right)=1-(n-n+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is complete intersection.
- If $r=n-1$ then $h t\left(I_{M}\right)=n-(n-1+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is also complete intersection.

Complete Intersection

Recall that

$$
\begin{equation*}
I_{M}=\left(\left\{y_{B_{1}} \cdots y_{B_{s}}-y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s}=D_{1} \cup \cdots \cup D_{s}\right\}\right) \tag{1}
\end{equation*}
$$

- If $r=n$ then $\operatorname{ht}\left(I_{M}\right)=1-(n-n+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is complete intersection.
- If $r=n-1$ then $h t\left(I_{M}\right)=n-(n-1+1)=0$, and clearly by (1), we have $I_{M}=(0)$. So, in this case I_{M} is also complete intersection.
Thus, we only consider the case $r \leq n-2$.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M. σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.
It is straightforward to check that $\sigma\left(I_{M}\right)=I_{M^{*}}$

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.
It is straightforward to check that $\sigma\left(I_{M}\right)=I_{M^{*}}$
Thus, I_{M} is a complete intersection if and only if $I_{M^{*}}$ also is.

Complete Intersection : duality and minors

We denote by M^{*} the dual matroid of M.
σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k\left[y_{E \backslash B} \mid B \in \mathcal{B}\right]$ induced by $y_{B} \mapsto y_{E \backslash B}$.
It is straightforward to check that $\sigma\left(I_{M}\right)=I_{M^{*}}$
Thus, I_{M} is a complete intersection if and only if $I_{M^{*}}$ also is. Proposition Let M^{\prime} be a minor of M. If I_{M} is a complete intersection, then $I_{M^{\prime}}$ also is.

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.
Example :
$\mathcal{B}\left(U_{2,4}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{1,4\}, B_{4}=\right.$ $\left.\{2,3\}, B_{5}=\{2,4\}, B_{6}=\{3,4\}\right\}$

$$
\left(\begin{array}{cccccc}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Complete Intersection : rank 2 case

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.

- It turns out that I_{M} coincides with the toric ideal of the graph H_{M}.

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph H_{M} with vertex set E and edge set \mathcal{B}.

- It turns out that I_{M} coincides with the toric ideal of the graph H_{M}.
Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever $I_{H(M)}$ is a complete intersection, then H_{M} does not contain $K_{2,3}$ as subgraph.

Complete Intersection : rank 2 case

Complete Intersection : rank 2 case

Complete Intersection : rank 2 case

Therefore I_{G} is not complete intersection.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that

$$
B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B} .
$$

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$. If $\{4,5\} \in \mathcal{B}$, then H_{M} has a subgraph $K_{2,3}$ and I_{M} is not a complete intersection.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$.
If $\{4,5\} \in \mathcal{B}$, then H_{M} has a subgraph $K_{2,3}$ and I_{M} is not a complete intersection.
If $\{4,5\} \notin \mathcal{B}$ also implies that H_{M} has a subgraph $K_{2,3}$.

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_{M} is a complete intersection if and only if $n=4$.
Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_{M} is not a complete intersection.
Since M has no loops or coloops, we may assume that
$B_{1}=\{1,2\}, B_{2}=\{3,4\}, B_{3}=\{1,5\} \in \mathcal{B}$.
Since $B_{1}, B_{2} \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_{4}=\{1,3\}, B_{5}=\{2,4\} \in \mathcal{B}$.
If $\{4,5\} \in \mathcal{B}$, then H_{M} has a subgraph $K_{2,3}$ and I_{M} is not a complete intersection.
If $\{4,5\} \notin \mathcal{B}$ also implies that H_{M} has a subgraph $K_{2,3}$.
(\Leftarrow) By computer.

Complete Intersection : general case

Theorem Let M be a matroid without loops or coloops and with $n>r+1$. Then, I_{M} is a complete intersection if and only if $n=4$ and M is the matroid whose set of bases is :
$\boldsymbol{1} \mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\}\}$,
$2 \mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\}\}$, or
$3 \mathcal{B}=\{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\},\{2,3\}\}$, i.e., $M=U_{2,4}$.

Detecting minors

We consider the following binary equivalence relation \sim on the set of pairs of bases :
$\left\{B_{1}, B_{2}\right\} \sim\left\{B_{3}, B_{4}\right\} \Longleftrightarrow B_{1} \cup B_{2}=B_{3} \cup B_{4}$ as multisets, and we denote by $\Delta_{\left\{B_{1}, B_{2}\right\}}$ the cardinality of the equivalence class of $\left\{B_{1}, B_{2}\right\}$.

Detecting minors

We consider the graph

Detecting minors

We consider the graph

Therefore, $\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{124\}, B_{3}=\{134\}, B_{4}=\{234\}\right\}$.

Detecting minors

We consider the graph

Therefore, $\mathcal{B}(M(G))=\left\{B_{1}=\{123\}, B_{2}=\{124\}, B_{3}=\{134\}, B_{4}=\{234\}\right\}$. It can be checked that the equivalent class of $\left\{B_{i}, B_{j}\right\}$ is $\left\{B_{i}, B_{j}\right\}$, that is, $\Delta_{\left\{B_{i}, B_{j}\right\}}=1$ for any pair $1 \leq i \neq j \leq 4$.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.
Proof Take $e \in B_{1} \backslash B_{2}$. By the multiple symmetric exchange property, for every A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, there exists $A_{2} \subset B_{2}$ such that both $B_{1}^{\prime}:=\left(B_{1} \cup A_{2}\right) \backslash A_{1}$ and $B_{2}^{\prime}:=\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are bases.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.
Proof Take $e \in B_{1} \backslash B_{2}$. By the multiple symmetric exchange property, for every A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, there exists $A_{2} \subset B_{2}$ such that both $B_{1}^{\prime}:=\left(B_{1} \cup A_{2}\right) \backslash A_{1}$ and $B_{2}^{\prime}:=\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are bases.
Since $B_{1} \cup B_{2}=B_{1}^{\prime} \cup B_{2}^{\prime}$ as multisets, we derive that $\Delta_{\left\{B_{1}, B_{2}\right\}}$ is greater or equal to the number of sets A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, which is exactly 2^{d-1}.

Detecting minors

Lemma (bounds) For every $B_{1}, B_{2} \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$, where $d:=\left|B_{1} \backslash B_{2}\right|$.
Proof Take $e \in B_{1} \backslash B_{2}$. By the multiple symmetric exchange property, for every A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, there exists $A_{2} \subset B_{2}$ such that both $B_{1}^{\prime}:=\left(B_{1} \cup A_{2}\right) \backslash A_{1}$ and $B_{2}^{\prime}:=\left(B_{2} \cup A_{1}\right) \backslash A_{2}$ are bases.
Since $B_{1} \cup B_{2}=B_{1}^{\prime} \cup B_{2}^{\prime}$ as multisets, we derive that $\Delta_{\left\{B_{1}, B_{2}\right\}}$ is greater or equal to the number of sets A_{1} such that $e \in A_{1} \subset\left(B_{1} \backslash B_{2}\right)$, which is exactly 2^{d-1}.
We set $A:=B_{1} \cap B_{2}, C:=B_{1} \triangle B_{2}$ and take $e \in B_{1} \backslash B_{2}$. Take $B_{3}, B_{4} \in \mathcal{B}$ such that $B_{1} \cup B_{2}=B_{3} \cup B_{4}$ as multisets and assume that $e \in B_{4}$. Then, $B_{3} \backslash A \subset C \backslash\{e\}$ with $\left|B_{3}\right|=\left|B_{1} \backslash B_{2}\right|=d$ elements; thus, $\Delta_{\left\{B_{1}, B_{2}\right\}} \leq\binom{ 2 d-1}{d}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.
Theorem (binary) M is binary if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}} \neq 3$ for every $B_{1}, B_{2} \in \mathcal{B}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.
Theorem (binary) M is binary if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}} \neq 3$ for every $B_{1}, B_{2} \in \mathcal{B}$.
Theorem M has a minor $M^{\prime} \simeq U_{3,6}$ if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}}=10$ for some $B_{1}, B_{2} \in \mathcal{B}$.

Detecting minors

Lemma Let $B_{1}, B_{2} \in \mathcal{B}$ of a matroid M and consider the matroid $M^{\prime}:=\left.\left(M /\left(B_{1} \cap B_{2}\right)\right)\right|_{\left(B_{1} \triangle B_{2}\right)}$ on the ground set $B_{1} \triangle B_{2}$. Then, the number of bases-cobases of M^{\prime} is equal to $2 \Delta_{\left\{B_{1}, B_{2}\right\}}$.
Theorem If M has a minor $M^{\prime} \simeq U_{d, 2 d}$ for some $d \geq 2$, then there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\Delta_{\left\{B_{1}, B_{2}\right\}}=\binom{2 d-1}{d}$.
Theorem (binary) M is binary if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}} \neq 3$ for every $B_{1}, B_{2} \in \mathcal{B}$.
Theorem M has a minor $M^{\prime} \simeq U_{3,6}$ if and only if $\Delta_{\left\{B_{1}, B_{2}\right\}}=10$ for some $B_{1}, B_{2} \in \mathcal{B}$.
Proposition Let $\left\{g_{1}, \ldots, g_{s}\right\}$ be a minimal set of binomial generators of I_{M}. Then, $\Delta_{\left\{B_{1}, B_{2}\right\}}=1+\mid\left\{g_{i}=y_{B_{i_{1}}} y_{B_{i_{2}}}-y_{B_{1}} y_{B_{2}} \mid B_{i_{1}} \cup B_{i_{2}}=B_{1} \cup B_{2}\right.$ as a multiset $\} \mid$ for every $B_{1}, B_{2} \in \mathcal{B}$.

System of generators

$\nu\left(I_{M}\right)=$ the number of minimal sets of binomial generators of I_{M}, where the sign of a binomial does not count $\mu\left(I_{M}\right)=$ the minimal number of generators of I_{M}.

System of generators

$\nu\left(I_{M}\right)=$ the number of minimal sets of binomial generators of I_{M}, where the sign of a binomial does not count
$\mu\left(I_{M}\right)=$ the minimal number of generators of I_{M}.
Theorem Let $R=\left\{\left\{B_{1}, B_{2}\right\}, \ldots,\left\{B_{2 s-1}, B_{2 s}\right\}\right\}$ be a set of representatives of \sim and set $r_{i}:=\Delta_{\left\{B_{2 i-1}, B_{2 i}\right\}}$ for all $i \in\{1, \ldots, s\}$. Then,

$$
\begin{aligned}
& 1 \mu\left(I_{M}\right) \geq\left(b^{2}-b-2 s\right) / 2 \text {, where } b:=|\mathcal{B}| \text {, and } \\
& \text { 2 } \nu\left(I_{M}\right) \geq \prod_{i=1}^{s} r_{i}^{r_{i}-2} \text {. }
\end{aligned}
$$

Moreover, in both cases equality holds whenever I_{M} is generated by quadratics.

System of generators

$\nu\left(I_{M}\right)=$ the number of minimal sets of binomial generators of I_{M}, where the sign of a binomial does not count
$\mu\left(I_{M}\right)=$ the minimal number of generators of I_{M}.
Theorem Let $R=\left\{\left\{B_{1}, B_{2}\right\}, \ldots,\left\{B_{2 s-1}, B_{2 s}\right\}\right\}$ be a set of representatives of \sim and set $r_{i}:=\Delta_{\left\{B_{2 i-1}, B_{2 i}\right\}}$ for all $i \in\{1, \ldots, s\}$. Then,

$$
\begin{aligned}
& 1 \mu\left(I_{M}\right) \geq\left(b^{2}-b-2 s\right) / 2 \text {, where } b:=|\mathcal{B}| \text {, and } \\
& \text { 2 } \nu\left(I_{M}\right) \geq \prod_{i=1}^{s} r_{i}^{r_{i}-2} \text {. }
\end{aligned}
$$

Moreover, in both cases equality holds whenever I_{M} is generated by quadratics.
Question Can we characterize those matroids M with $\nu\left(I_{M}\right)=1$?

The basis graph of a matroid M is the undirected graph G_{M} with vertex set \mathcal{B} and edges $\left\{B, B^{\prime}\right\}$ such that $\left|B \backslash B^{\prime}\right|=1$. The diameter of a graph is the maximum distance between two vertices of the graph.

The basis graph of a matroid M is the undirected graph G_{M} with vertex set \mathcal{B} and edges $\left\{B, B^{\prime}\right\}$ such that $\left|B \backslash B^{\prime}\right|=1$. The diameter of a graph is the maximum distance between two vertices of the graph.

Basis graph $G_{U_{2,4}}$

$\{3,4\}$

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

Proof (idea) (\Rightarrow) By the previous theorem, we have that
$\Delta_{\left\{B_{1}, B_{2}\right\}}=1$ or 2 for all $B_{1}, B_{2} \in \mathcal{B}$.

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\left\{B_{1}, B_{2}\right\}}=1$ or 2 for all $B_{1}, B_{2} \in \mathcal{B}$.
By Lemma bounds and Theorem binary, this is equivalent to M is binary and $\left|B_{1} \backslash B_{2}\right| \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. Clearly this implies that the diameter of G_{M} is less or equal to 2 .

System of generators

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu\left(I_{M}\right)=1$ if and only if M is binary and the diameter of G_{M} is at most 2 .

Proof (idea) (\Rightarrow) By the previous theorem, we have that
$\Delta_{\left\{B_{1}, B_{2}\right\}}=1$ or 2 for all $B_{1}, B_{2} \in \mathcal{B}$.
By Lemma bounds and Theorem binary, this is equivalent to M is binary and $\left|B_{1} \backslash B_{2}\right| \in\{1,2\}$ for all $B_{1}, B_{2} \in \mathcal{B}$. Clearly this implies that the diameter of G_{M} is less or equal to 2 .
(\Leftarrow) More complicated.

Example

Matroid $M(G)$ associated to graph G.

Example

Matroid $M(G)$ associated to graph G.

$\mathcal{B}(M(G))=\left\{B_{1}=\{124\}, B_{2}=\{125\}, B_{3}=\{134\}, B_{4}=\right.$
$\left.\{135\}, B_{5}=\{145\}, B_{6}=\{234\}, B_{7}=\{235\}, B_{8}=\{345\}\right\}$

Example

The base graph $G_{M(G)}$

Example

The base graph $G_{M(G)}$

Since diameter of $G_{M(G)}$ is at most two, and $M(G)$ is binary then $\nu\left(I_{M}\right)=1$.

