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Complete intersection Detecting minors Systems of generators

Complete Intersection

The toric ideal IM is a complete intersection if and only if there
exists a set of homogeneous binomials g1, . . . , gs ∈ R such that
s = ht(IM) and IM = (g1, . . . , gs).

Equivalently, IM is a complete intersection if

µ(IM) = ht(IM) = |B| − (n − c + 1)

where µ(IM) denotes the minimal number of generators of IM and
c the number of connected components of M.
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Complete intersection Detecting minors Systems of generators

Complete Intersection

The number of connected components of a matroid M is given by
the number of equivalent classes induced by the relation R defined
as follows : aRb if and only if there exist a circuit of M containing
both a, b ∈ M.

1

2

3

4

We have B(M(G )) = {123, 124, 134, 234}. There is one equivalent
classe, and thus ht(IM) = 4− (4− 1 + 1) = 0.
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Complete intersection Detecting minors Systems of generators

Complete Intersection

Recall that

IM =
(
{yB1 · · · yBs−yD1 · · · yDs |B1∪· · ·∪Bs = D1∪· · ·∪Ds}

)
(1)

• If r = n then ht(IM) = 1− (n − n + 1) = 0, and clearly by (1),
we have IM = (0). So, in this case IM is complete intersection.

• If r = n−1 then ht(IM) = n− (n−1 + 1) = 0, and clearly by (1),
we have IM = (0). So, in this case IM is also complete intersection.

Thus, we only consider the case r ≤ n − 2.
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Complete intersection Detecting minors Systems of generators

Complete Intersection : duality and minors

We denote by M∗ the dual matroid of M.

σ is the isomorphism of k-algebras σ : R −→ k[yE\B |B ∈ B]
induced by yB 7→ yE\B .

It is straightforward to check that σ(IM) = IM∗

Thus, IM is a complete intersection if and only if IM∗ also is.

Proposition Let M ′ be a minor of M. If IM is a complete
intersection, then IM′ also is.
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Toric ideals and matroids II



Complete intersection Detecting minors Systems of generators

Complete Intersection : duality and minors

We denote by M∗ the dual matroid of M.

σ is the isomorphism of k-algebras σ : R −→ k[yE\B |B ∈ B]
induced by yB 7→ yE\B .

It is straightforward to check that σ(IM) = IM∗

Thus, IM is a complete intersection if and only if IM∗ also is.

Proposition Let M ′ be a minor of M. If IM is a complete
intersection, then IM′ also is.
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Complete intersection Detecting minors Systems of generators

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph HM with vertex
set E and edge set B.

Example :
B(U2,4) = {B1 = {1, 2},B2 = {1, 3},B3 = {1, 4},B4 =
{2, 3},B5 = {2, 4},B6 = {3, 4}}

B1 B2 B3 B4 B5 B6
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
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Complete Intersection : rank 2 case

HU2,4
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e1 e2 e3 e4 e5 e6
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
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Complete intersection Detecting minors Systems of generators

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph HM with vertex
set E and edge set B.
• It turns out that IM coincides with the toric ideal of the graph
HM .

Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever IH(M)

is a complete intersection, then HM does not contain K2,3 as
subgraph.
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Complete Intersection : rank 2 case

K2,3

G
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K2,3

G

Therefore IG is not complete intersection.
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Toric ideals and matroids II



Complete intersection Detecting minors Systems of generators

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of n ≥ 4
elements without loops or coloops. Then, IM is a complete
intersection if and only if n = 4.

Proof (idea) (⇒) Assume that n ≥ 5 and let us prove that IM is
not a complete intersection.

Since M has no loops or coloops, we may assume that
B1 = {1, 2},B2 = {3, 4},B3 = {1, 5} ∈ B.

Since B1,B2 ∈ B, by the symmetric exchange axiom, we can also
assume that B4 = {1, 3},B5 = {2, 4} ∈ B.

If {4, 5} ∈ B, then HM has a subgraph K2,3 and IM is not a
complete intersection.

If {4, 5} /∈ B also implies that HM has a subgraph K2,3.

(⇐) By computer.
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J.L. Raḿırez Alfonśın I3M, Université Montpellier 2

Toric ideals and matroids II



Complete intersection Detecting minors Systems of generators

Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of n ≥ 4
elements without loops or coloops. Then, IM is a complete
intersection if and only if n = 4.

Proof (idea) (⇒) Assume that n ≥ 5 and let us prove that IM is
not a complete intersection.

Since M has no loops or coloops, we may assume that
B1 = {1, 2},B2 = {3, 4},B3 = {1, 5} ∈ B.

Since B1,B2 ∈ B, by the symmetric exchange axiom, we can also
assume that B4 = {1, 3},B5 = {2, 4} ∈ B.

If {4, 5} ∈ B, then HM has a subgraph K2,3 and IM is not a
complete intersection.

If {4, 5} /∈ B also implies that HM has a subgraph K2,3.

(⇐) By computer.
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Complete Intersection : general case

Theorem Let M be a matroid without loops or coloops and with
n > r + 1. Then, IM is a complete intersection if and only if n = 4
and M is the matroid whose set of bases is :

1 B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}},
2 B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}}, or

3 B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}}, i.e.,
M = U2,4.
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Detecting minors

We consider the following binary equivalence relation ∼ on the set
of pairs of bases :

{B1,B2} ∼ {B3,B4} ⇐⇒ B1 ∪ B2 = B3 ∪ B4 as multisets,

and we denote by ∆{B1,B2} the cardinality of the equivalence class
of {B1,B2}.
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Complete intersection Detecting minors Systems of generators

Detecting minors

We consider the graph

1

2

3

4

Therefore,
B(M(G )) = {B1 = {123},B2 = {124},B3 = {134},B4 = {234}}.
It can be checked that the equivalent class of {Bi ,Bj} is {Bi ,Bj},
that is, ∆{Bi ,Bj} = 1 for any pair 1 ≤ i 6= j ≤ 4.
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Detecting minors

Lemma (bounds) For every B1,B2 ∈ B, then
2d−1 ≤ ∆{B1,B2} ≤

(2d−1
d

)
, where d := |B1 \ B2|.

Proof Take e ∈ B1 \ B2. By the multiple symmetric exchange
property, for every A1 such that e ∈ A1 ⊂ (B1 \ B2), there exists
A2 ⊂ B2 such that both B ′1 := (B1 ∪ A2) \ A1 and
B ′2 := (B2 ∪ A1) \ A2 are bases.

Since B1 ∪ B2 = B ′1 ∪ B ′2 as multisets, we derive that ∆{B1,B2} is
greater or equal to the number of sets A1 such that
e ∈ A1 ⊂ (B1 \ B2), which is exactly 2d−1.

We set A := B1 ∩ B2, C := B1 4 B2 and take e ∈ B1 \ B2. Take
B3,B4 ∈ B such that B1 ∪ B2 = B3 ∪ B4 as multisets and assume
that e ∈ B4. Then, B3 \ A ⊂ C \ {e} with |B3| = |B1 \ B2| = d
elements ; thus, ∆{B1,B2} ≤

(2d−1
d

)
.
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that e ∈ B4. Then, B3 \ A ⊂ C \ {e} with |B3| = |B1 \ B2| = d
elements ; thus, ∆{B1,B2} ≤

(2d−1
d

)
.
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Detecting minors

Lemma Let B1,B2 ∈ B of a matroid M and consider the matroid
M ′ := (M/(B1 ∩ B2))|(B14B2) on the ground set B1 4 B2. Then,
the number of bases-cobases of M ′ is equal to 2∆{B1,B2}.

Theorem If M has a minor M ′ ' Ud ,2d for some d ≥ 2, then there

exist B1,B2 ∈ B such that ∆{B1,B2} =
(2d−1

d

)
.

Theorem (binary) M is binary if and only if ∆{B1,B2} 6= 3 for every
B1,B2 ∈ B.

Theorem M has a minor M ′ ' U3,6 if and only if ∆{B1,B2} = 10 for
some B1,B2 ∈ B.

Proposition Let {g1, . . . , gs} be a minimal set of binomial
generators of IM . Then,
∆{B1,B2} = 1 + |{gi = yBi1

yBi2
− yB1yB2 | Bi1 ∪ Bi2 = B1 ∪ B2 as a

multiset }| for every B1,B2 ∈ B.
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System of generators

ν(IM) = the number of minimal sets of binomial generators of IM ,
where the sign of a binomial does not count

µ(IM) = the minimal number of generators of IM .

Theorem Let R = {{B1,B2}, . . . , {B2s−1,B2s}} be a set of
representatives of ∼ and set ri := ∆{B2i−1,B2i} for all
i ∈ {1, . . . , s}. Then,

1 µ(IM) ≥ (b2 − b − 2s)/2, where b := |B|, and

2 ν(IM) ≥
∏s

i=1 r
ri−2
i .

Moreover, in both cases equality holds whenever IM is generated by
quadratics.

Question Can we characterize those matroids M with ν(IM) = 1 ?
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The basis graph of a matroid M is the undirected graph GM with
vertex set B and edges {B,B ′} such that |B \ B ′| = 1. The
diameter of a graph is the maximum distance between two vertices
of the graph.

Basis graph GU2,4

{1,3} {1,4}

{3,4}

{2,4}

{2,3}

{1,2}
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System of generators

Theorem Let M be a rank r ≥ 2 matroid. Then, ν(IM) = 1 if and
only if M is binary and the diameter of GM is at most 2.

Proof (idea) (⇒) By the previous theorem,we have that
∆{B1,B2} = 1 or 2 for all B1,B2 ∈ B.
By Lemma bounds and Theorem binary, this is equivalent to M is
binary and |B1 \ B2| ∈ {1, 2} for all B1,B2 ∈ B. Clearly this implies
that the diameter of GM is less or equal to 2.

(⇐) More complicated.
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Example

Matroid M(G ) associated to graph G .

1

2

3
45

B(M(G )) = {B1 = {124},B2 = {125},B3 = {134},B4 =
{135},B5 = {145},B6 = {234},B7 = {235},B8 = {345}}
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Example

The base graph GM(G)

124 125

134

135

145234

145

345

Since diameter of GM(G) is at most two, and M(G ) is binary then
ν(IM) = 1.
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