O-sequences and *h*-vectors of matroid simplicial complexes

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals Bucharest Romania, September 5, 2014

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Definitions			

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Maximal faces (under inclusion) are called facets.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Maximal faces (under inclusion) are called facets.

If $F \in \Delta$ then the dimension of F is dim F = |F| - 1.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Maximal faces (under inclusion) are called facets.

If $F \in \Delta$ then the dimension of F is dim F = |F| - 1.

The dimension of Δ is defined to be dim $\Delta = \max\{\dim F | F \in \Delta\}$.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Maximal faces (under inclusion) are called facets.

If $F \in \Delta$ then the dimension of F is dim F = |F| - 1.

The dimension of Δ is defined to be dim $\Delta = \max\{\dim F | F \in \Delta\}$.

The complex Δ is said to be pure if all its facets have the same dimension.

- Definitions
 - Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
 - Elements of the simplicial complex Δ are called faces of Δ .
 - Maximal faces (under inclusion) are called facets.
 - If $F \in \Delta$ then the dimension of F is dim F = |F| 1.
 - The dimension of Δ is defined to be dim $\Delta = \max\{\dim F | F \in \Delta\}$.

The complex Δ is said to be pure if all its facets have the same dimension.

If $\{v\} \in \Delta$ then we call v a vertex of Δ .

O-sequences and h-vectors of matroid simplicial complexes

Basic definitions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Definitions			

Let $d - 1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Definitions			

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
D. C. HI			
Definitions			

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The *k*-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}.$

Let $d-1 = \dim \Delta$. The f-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \dots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The *k*-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}$.

• If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Λ

Let $d-1 = \dim \Delta$. The f-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \dots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Λ

Let Δ be a simplicial complex with vertex set V.

• The *k*-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}$.

• If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .

• If $W \subseteq V$ then $link_{\Delta}(W) = \{F \in \Delta | W \cap F = \emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.

O-sequences and h-vectors of matroid simplicial complexes

Let $d-1 = \dim \Delta$. The f-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \dots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The *k*-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}$.

• If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .

• If $W \subseteq V$ then $link_{\Delta}(W) = \{F \in \Delta | W \cap F = \emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.

• If $v \notin V$ then the cone over Δ is $C\Delta = \Delta \cup \{F \cup \{v\} | F \in \Delta\}$

Let $d-1 = \dim \Delta$. The f-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \dots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The *k*-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}$.

• If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .

• If $W \subseteq V$ then $link_{\Delta}(W) = \{F \in \Delta | W \cap F = \emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.

- If $v \notin V$ then the cone over Δ is $C\Delta = \Delta \cup \{F \cup \{v\} | F \in \Delta\}$
- v is called the apex of $C\Delta$.

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
D. C. W			

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ .

Definitions

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ .

• Typically, we will describe a simplicial complex by listing its facets.

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Economic			

Example

Simplicial complexe Δ of dimension 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

• $f(\Delta) = (1, 5, 8, 2).$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

• $f(\Delta) = (1, 5, 8, 2).$

• The $link_{\Delta}(3)$ is the complex with facets 15 and 24, while the $link_{\Delta}(5)$ has facets 13 and 4.

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Evample			

• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

- $f(\Delta) = (1, 5, 8, 2).$
- The $link_{\Delta}(3)$ is the complex with facets 15 and 24, while the $link_{\Delta}(5)$ has facets 13 and 4.
- The deletion of 3 has facets 12, 24, 45 and 15. The deletion of 5 has facets 234, 13 and 12.

J.L. Ramírez Alfonsín

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

The independent sets of M form a simplicial complex, called the independence complex of M.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

- The independent sets of M form a simplicial complex, called the independence complex of M.
- Axiom (13) can be replaced by the following one (13)' for every $A \subset E$ the restriction

 $\mathcal{I}|_A = \{I \in \mathcal{I} : I \subset A\}$

is a *pure* simplicial complex.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

- The independent sets of M form a simplicial complex, called the independence complex of M.
- Axiom (13) can be replaced by the following one (13)' for every $A \subset E$ the restriction

 $\mathcal{I}|_{A} = \{I \in \mathcal{I} : I \subset A\}$

is a *pure* simplicial complex. A simplicial complex Δ over the vertices V is called matroid complex if axiom (13)' is verified.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture

Examples

Two 1-dimensional simplicial complexes.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture

Examples

Two 1-dimensional simplicial complexes.

(a) Matroid complex (this can be checked by verifying that every $A \subseteq \{1, \ldots, 6\}$, Δ_A is pure).

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture

Examples

Two 1-dimensional simplicial complexes.

(a) Matroid complex (this can be checked by verifying that every $A \subseteq \{1, \ldots, 6\}, \Delta_A$ is pure).

(b) is not a matroid complex since it admits a restriction that is not pure, for instance, the facets of $\Delta_{1,3,4}$ are $\{1\}$ and $\{3,4\}$ as facets so the restriction is not pure.

J.L. Ramírez Alfonsín

Standard constructions

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

• $\Delta|_W$ for every $W \subseteq V$.

J.L. Ramírez Alfonsín

Standard constructions

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .

Standard constructions

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .

Standard constructions

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .
- $link_{\Delta}(F)$ for every $F \in \Delta$.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .
- $link_{\Delta}(F)$ for every $F \in \Delta$.

Remarks : Link and restriction are identical to the contraction and deletion constructions from matroids.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .
- $link_{\Delta}(F)$ for every $F \in \Delta$.

Remarks : Link and restriction are identical to the contraction and deletion constructions from matroids.

A matroid complex Δ_M is a cone if and only if M has a coloop (or isthme), which corresponds to the apex defined above.

O-sequences and h-vectors of matroid simplicial complexes
Standard constructions

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, $link_{\Delta}(v) \cap E \neq \emptyset$.

Standard constructions

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, $link_{\Delta}(v) \cap E \neq \emptyset$.

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex Δ , a square free monomial ideal in $S = k[x_1, \dots, x_n]$,

$$I_{\Delta} = \left(x_F = \prod_{i \in F} x_i | F \notin \Delta \right) \subseteq S.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex Δ , a square free monomial ideal in $S = k[x_1, \dots, x_n]$,

$$I_{\Delta} = \left(x_{F} = \prod_{i \in F} x_{i} | F \notin \Delta\right) \subseteq S.$$

The ideal I_{Δ} is called the Stanley-Reisner ideal of Δ and S/I_{Δ} the Stanley-Reisner ring of Δ .

Stanley-Reisner ideal

Facts

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Stanley-Reisner ideal

Facts

• Hilbert function

$$h_{S/I_{\Delta}}(h) = dim_k [S/I_{\Delta}]_h$$

where $[S/I_{\Delta}]$ is the vector space of degree *h* homogeneous polynomial outside of I_{Δ} .

Stanley-Reisner ideal

Facts

• Hilbert function

$$h_{S/I_{\Delta}}(h) = dim_k[S/I_{\Delta}]_h$$

where $[S/I_{\Delta}]$ is the vector space of degree *h* homogeneous polynomial outside of I_{Δ} .

• Hilbert series

$$H_{S/I_{\Delta}}(t) = \sum_{i=1}^{\infty} h_{S/I_{\Delta}}(i)t^{i} = \frac{h_{0} + h_{1}t + \dots + h_{d}t^{d}}{(1-t)^{d}}$$

where $d = \dim I_{\Delta}$.

Stanley-Reisner ideal

Facts

• Hilbert function

$$h_{S/I_{\Delta}}(h) = dim_k[S/I_{\Delta}]_h$$

where $[S/I_{\Delta}]$ is the vector space of degree *h* homogeneous polynomial outside of I_{Δ} .

• Hilbert series

$$H_{S/I_{\Delta}}(t) = \sum_{i=1}^{\infty} h_{S/I_{\Delta}}(i)t^{i} = \frac{h_{0} + h_{1}t + \dots + h_{d}t^{d}}{(1-t)^{d}}$$

where $d = \dim I_{\Delta}$.

 $h(\Delta) = (h_0, \ldots, h_d)$ is known as the *h*-vector of Δ .

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

h-vector of simplicial complexes

Assume that dim $\Delta = d - 1$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

h-vector of simplicial complexes

Assume that dim $\Delta = d - 1$.

We may study the *h*-vector of a simplicial complex of Δ $h(\Delta) = (h_0, \dots, h_d)$ from its *f*-vector via the relation $\sum_{i=0}^d f_{i-1}t^i(1-t)^{d-i} = \sum_{i=0}^d h_it^i$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

h-vector of simplicial complexes

Assume that dim $\Delta = d - 1$.

We may study the *h*-vector of a simplicial complex of Δ $h(\Delta) = (h_0, \dots, h_d)$ from its *f*-vector via the relation $\sum_{i=0}^d f_{i-1}t^i(1-t)^{d-i} = \sum_{i=0}^d h_it^i$

In particular, for any $j = 0, \ldots, d$, we have

$$f_{j-1} = \sum_{i=0}^{J} {\binom{d-i}{j-1}h_i}$$

$$h_j = \sum_{i=0}^{J} {(-1)^{j-i} \binom{d-i}{j-1}f_{i-1}}.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M. Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).

- The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
- Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).
- Given a bases B, an element $v_j \in B$ is internally passive in B if there is some $v_i \in E \setminus B$ such that $v_i < v_j$ and $(B \setminus v_j) \cup v_i$ is a bases of M.

- The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
- Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).
- Given a bases B, an element $v_j \in B$ is internally passive in B if there is some $v_i \in E \setminus B$ such that $v_i < v_j$ and $(B \setminus v_j) \cup v_i$ is a bases of M.
- Dually, $v_j \in E \setminus B$ is externally passive in B if there is some $v_i \in B$ such that $v_i < v_j$ and $(B \setminus v_i) \cup v_j$ is a bases of M.

- The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
- Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).
- Given a bases B, an element $v_j \in B$ is internally passive in B if there is some $v_i \in E \setminus B$ such that $v_i < v_j$ and $(B \setminus v_j) \cup v_i$ is a bases of M.
- Dually, $v_j \in E \setminus B$ is externally passive in B if there is some $v_i \in B$ such that $v_i < v_j$ and $(B \setminus v_i) \cup v_j$ is a bases of M.
- **Remark** v_j is externally passive in *B* if it is internally passive in $E \setminus B$ in M^* .

h-vector of simplicial complexes

Bjorner proved that

$$\sum_{i=0}^{d} h_j t^j = \sum_{B \in \mathcal{B}(M)} t^{ip(B)}$$

where ip(B) counts the number of internally passive elements in B.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Bjorner proved that

$$\sum_{i=0}^{d} h_j t^j = \sum_{B \in \mathcal{B}(M)} t^{ip(B)}$$

where ip(B) counts the number of internally passive elements in *B*. Remark This proves that the *h*-numbers of a matroid complex are nonnegative.

Bjorner proved that

$$\sum_{i=0}^{d} h_{j} t^{j} = \sum_{B \in \mathcal{B}(M)} t^{ip(B)}$$

where ip(B) counts the number of internally passive elements in *B*. Remark This proves that the *h*-numbers of a matroid complex are nonnegative.

Alternatively,

$$\sum_{i=0}^{d} h_j t^j = \sum_{B \in \mathcal{B}(M^*)} t^{ep(B)}$$

where ep(B) counts the number of externally passive elements in B.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Remarks

• Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.

h-vector of simplicial complexes

Remarks

• Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.

• *h*-vector of a matroid complex Δ_M is actually a specialization of the Tutte polynomial of the corresponding matroid; precisely we have $T(M; x, 1) = h_0 x^d + h_1 x^{d_1} + \cdots + h_d$

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

We consider the matroid complex $\Delta(U_{2,3})$

We consider the matroid complex $\Delta(U_{2,3})$ We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 3$ and $f_1 = 3$.

Example

We consider the matroid complex $\Delta(U_{2,3})$ We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 3$ and $f_1 = 3$. Therefore

$$\sum_{i=0}^{2} f_{i-1}t^{i}(1-t)^{2-i} = f_{-1}t^{0}(1-t)^{2} + f_{0}t(1-t) + f_{1}t^{2}(1-t)^{0}$$

= $(1-t)^{2} + 3t(1-t) + 3t^{2}$
= $1 - 2t + t^{2} + 3t - 3t - 3t^{2} + 3t^{2}$
= $t^{2} + t + 1 = \sum_{i=0}^{2} h_{i}t^{i}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example

We consider the matroid complex $\Delta(U_{2,3})$ We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 3$ and $f_1 = 3$. Therefore

$$\sum_{i=0}^{2} f_{i-1}t^{i}(1-t)^{2-i} = f_{-1}t^{0}(1-t)^{2} + f_{0}t(1-t) + f_{1}t^{2}(1-t)^{0}$$

= $(1-t)^{2} + 3t(1-t) + 3t^{2}$
= $1 - 2t + t^{2} + 3t - 3t - 3t^{2} + 3t^{2}$
= $t^{2} + t + 1 = \sum_{i=0}^{2} h_{i}t^{i}.$

Obtaining that $h(\Delta) = (1, 1, 1)$.

Example continuation

Let $\mathcal{B}(U_{2,3}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{2,3\}\}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example continuation

Let $\mathcal{B}(U_{2,3}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{2,3\}\}.$ We can check that

- there is not internally passive element in B_1
- 3 is internally passive element of B_2
- 2 and 3 are internally passive elements of B_3

Example continuation

Let $\mathcal{B}(U_{2,3}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{2,3\}\}.$ We can check that

- there is not internally passive element in B_1
- 3 is internally passive element of B_2
- 2 and 3 are internally passive elements of B_3

Thus

$$\sum_{i=0}^{2} h_{i}t^{i} = \sum_{B \in \mathcal{B}(U_{2,3})} t^{ip(B)} = 1 + t + t^{2}.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example continuation

Let $\mathcal{B}(U_{2,3}^* = U_{1,3}) = \{B_1 = \{1\}, B_2 = \{2\}, B_3 = \{3\}\}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example continuation

Let $\mathcal{B}(U_{2,3}^* = U_{1,3}) = \{B_1 = \{1\}, B_2 = \{2\}, B_3 = \{3\}\}.$ We can check that

- 2 and 3 are externally passive elements of B_1
- 3 is externally passive element of B_2
- there is not externally passive element in B_3

Example continuation

Let $\mathcal{B}(U_{2,3}^* = U_{1,3}) = \{B_1 = \{1\}, B_2 = \{2\}, B_3 = \{3\}\}.$ We can check that

- 2 and 3 are externally passive elements of B_1
- 3 is externally passive element of B_2
- there is not externally passive element in B_3

Thus

$$\sum_{i=0}^{2} h_i t^i = \sum_{B \in \mathcal{B}(U_{1,3})} t^{ep(B)} = t^2 + t + 1.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example continuation

We have that

 $T(U_{3,2}; x, y) = x^2 + x + y,$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example continuation

We have that $T(U_{3,2};x,y)=x^2+x+y,$ and thus $T(U_{3,2};t,1)=t^2+t+1=\sum_{i=0}^2h_it^i.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$.

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$. Let \mathcal{O}_i denote the collection of monomials in \mathcal{O} of degree i. Let $F_i(\mathcal{O}) := |\mathcal{O}_i|$ and $F(\mathcal{O}) = (F_0(\mathcal{O}), F_1(\mathcal{O}), \dots, F_r(\mathcal{O}))$.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$. Let \mathcal{O}_i denote the collection of monomials in \mathcal{O} of degree i. Let $F_i(\mathcal{O}) := |\mathcal{O}_i|$ and $F(\mathcal{O}) = (F_0(\mathcal{O}), F_1(\mathcal{O}), \dots, F_r(\mathcal{O}))$. We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.
Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$.

Let \mathcal{O}_i denote the collection of monomials in \mathcal{O} of degree *i*. Let $F_i(\mathcal{O}) := |\mathcal{O}_i|$ and $F(\mathcal{O}) = (F_0(\mathcal{O}), F_1(\mathcal{O}), \dots, F_r(\mathcal{O}))$.

We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.

A vector $\mathbf{h} = (h_0, \dots, h_d)$ is a pure *O*-sequence if there is a pure ideal \mathcal{O} such that $\mathbf{h} = F(\mathcal{O})$.

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

 $X = \{\mathbf{x}\mathbf{y}^{\mathbf{3}}\mathbf{z}, \mathbf{x}^{\mathbf{2}}\mathbf{z}^{\mathbf{3}};$

O-sequences and h-vectors of matroid simplicial complexes

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Evample			

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, xy^3, x^2z^2, y^2z, y^2z, xy^3, x^2z^2, y^2z, y^2z, xy^3, x^2z^2, xy^3, x^2z^2, y^2z, xy^3, x^2z^2, xy^3, x^2z^2, y^2z, xy^3, x^2z^2, xy^3, x^2z^2, xy^2, xy^3, x^2z^2, xy^2, xy^3, x^2z^2, xy^2, xy^3, x^2z^2, xy^3, x^2z^2, xy^2, xy^3, x^2z^2, x^2, x^2, x^2z^2, x^2z^2, x^2, x^2, x^2z^2, x^2z^2, x^2z^2,$$

O-sequences and h-vectors of matroid simplicial complexes

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

$$X = \{ \mathbf{xy^3z}, \mathbf{x^2z^3}; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z, x$$

O-sequences and h-vectors of matroid simplicial complexes

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

O-sequences and h-vectors of matroid simplicial complexes

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

O-sequences and h-vectors of matroid simplicial complexes

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

$$X = \{ \mathbf{xy^3z}, \mathbf{x^2z^3}; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z, yz, y^2, xz, xy, z^2, x^2, z, y, x, 1 \}.$$

O-sequences and h-vectors of matroid simplicial complexes

$$X = \{ \mathbf{xy^3z}, \mathbf{x^2z^3}; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z, yz, y^2, xz, xy, z^2, x^2, z, y, x, 1 \}.$$

Hence the *h*-vector of X is the pure O-sequence h = (1, 3, 6, 7, 5, 2).

J.L. Ramírez Alfonsín

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid *h*-vectors are highly structured

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure O-sequence.

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid *h*-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure O-sequence.

Conjecture hold for several families of matroid complexes :

Stanley's conjecture

- A longstanding conjecture of Stanley suggest that matroid *h*-vectors are highly structured
- Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure O-sequence.
- Conjecture hold for several families of matroid complexes :
- (Merino, Noble, Ramirez-Ibañez, Villarroel, 2010) Paving matroids
- (Merino, 2001) Cographic matroids
- (Oh, 2010) Cotranversal matroids
- (Schweig, 2010) Lattice path matroids
- (Stokes, 2009) Matroids of rank at most three
- (De Loera, Kemper, Klee, 2012) for all matroids on at most nine elements all matroids of corank two.

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph ${\it G}$

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph G

We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 4$ and $f_1 = 4$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Basic defintions	Matroid simplicial complexes	h-vector	Stanley's conjecture
Example			

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

- there is not internally passive element in \mathcal{B}_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

Thus, $\sum_{i=0}^{2} h_{i} t^{i} = \sum_{B \in \mathcal{B}(\mathcal{M}(G))} t^{ip(B)} = 1 + t + t + t^{2} = 1 + 2t + t^{2}.$

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

Thus, $\sum_{i=0}^{2} h_{i}t^{i} = \sum_{B \in \mathcal{B}(M(G))} t^{ip(B)} = 1 + t + t + t^{2} = 1 + 2t + t^{2}.$ Obtaining the *h*-vector *h*(1, 2, 1).

O-sequences and *h*-vectors of matroid simplicial complexes

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

Thus, $\sum_{i=0}^{2} h_i t^i = \sum_{B \in \mathcal{B}(\mathcal{M}(G))} t^{ip(B)} = 1 + t + t + t^2 = 1 + 2t + t^2.$ Obtaining the *h*-vector h(1, 2, 1). Since $\mathcal{O} = (1, x_1, x_2, x_1x_2)$ is an order ideal then h(1, 2, 1) is pure *O*-sequence.

O-sequences and h-vectors of matroid simplicial complexes