O-sequences and h-vectors of matroid simplicial complexes

J.L. Ramírez Alfonsín
I3M, Université Montpellier 2

The 22nd National School on Algebra, Algebraic and Combinatorial Applications of Toric Ideals Bucharest Romania, September 5, 2014

Definitions

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Definitions

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.

Definitions

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ. Maximal faces (under inclusion) are called facets.

Definitions

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.

Definitions

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.
The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$.

Definitions

> Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
> Elements of the simplicial complex Δ are called faces of Δ. Maximal faces (under inclusion) are called facets.
> If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.
> The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$.
> The complex Δ is said to be pure if all its facets have the same dimension.

Definitions

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.
Elements of the simplicial complex Δ are called faces of Δ.
Maximal faces (under inclusion) are called facets.
If $F \in \Delta$ then the dimension of F is $\operatorname{dim} F=|F|-1$.
The dimension of Δ is defined to be $\operatorname{dim} \Delta=\max \{\operatorname{dim} F \mid F \in \Delta\}$.
The complex Δ is said to be pure if all its facets have the same dimension.
If $\{v\} \in \Delta$ then we call v a vertex of Δ.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set V.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.
Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
- If $W \subseteq V$ then $\operatorname{link}_{\Delta}(W)=\{F \in \Delta \mid W \cap F=\emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
- If $W \subseteq V$ then $\operatorname{link}_{\Delta}(W)=\{F \in \Delta \mid W \cap F=\emptyset, W \cup F \in \Delta\}$.

We call this the link of Δ with respect to W.

- If $v \notin V$ then the cone over Δ is $C \Delta=\Delta \cup\{F \cup\{v\} \mid F \in \Delta\}$

Definitions

Let $d-1=\operatorname{dim} \Delta$. The f-vector of Δ is the vector $f(\Delta):=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$, where $f_{i}=|\{F \in \Delta \mid \operatorname{dim} F=i\}|$ is the number of i-dimensional faces in Δ.

Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $\left[\Delta_{k}\right]=\{F \in \Delta \mid \operatorname{dim} F \leq k\}$.
- If $W \subseteq V$ then the restriction of Δ to W is
$\left.\Delta\right|_{W}=\{F \in \Delta \mid F \subseteq W\}$. If $W=V-\{v\}$ then we will write $\Delta_{-v}=\left.\Delta\right|_{W}$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ.
- If $W \subseteq V$ then $\operatorname{link}_{\Delta}(W)=\{F \in \Delta \mid W \cap F=\emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.
- If $v \notin V$ then the cone over Δ is $C \Delta=\Delta \cup\{F \cup\{v\} \mid F \in \Delta\}$
v is called the apex of $C \Delta$.

Definitions

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ.

Definitions

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ.

- Typically, we will describe a simplicial complex by listing its facets.

Example

Simplicial complexe Δ of dimension 2

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).
- $f(\Delta)=(1,5,8,2)$.

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).
- $f(\Delta)=(1,5,8,2)$.
- The link ${ }_{\Delta}(3)$ is the complex with facets 15 and 24 , while the link $_{\Delta}(5)$ has facets 13 and 4.

Example

Simplicial complexe Δ of dimension 2

- Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).
- $f(\Delta)=(1,5,8,2)$.
- The link ${ }_{\Delta}(3)$ is the complex with facets 15 and 24 , while the link $_{\Delta}(5)$ has facets 13 and 4.
- The deletion of 3 has facets $12,24,45$ and 15 . The deletion of 5 has facets 234,13 and 12.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.
The independent sets of M form a simplicial complex, called the independence complex of M.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.
The independent sets of M form a simplicial complex, called the independence complex of M.
Axiom (13) can be replaced by the following one $(I 3)^{\prime}$ for every $A \subset E$ the restriction

$$
\left.\mathcal{I}\right|_{A}=\{I \in \mathcal{I}: I \subset A\}
$$

is a pure simplicial complex.

Matroid complex

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.
The independent sets of M form a simplicial complex, called the independence complex of M.
Axiom (13) can be replaced by the following one $(I 3)^{\prime}$ for every $A \subset E$ the restriction

$$
\left.\mathcal{I}\right|_{A}=\{I \in \mathcal{I}: I \subset A\}
$$

is a pure simplicial complex. A simplicial complex Δ over the vertices V is called matroid complex if axiom (I3)' is verified.

Examples

Two 1-dimensional simplicial complexes.

(a)

(b)

Examples

Two 1-dimensional simplicial complexes.

(a)

(b)
(a) Matroid complex (this can be checked by verifying that every $A \subseteq\{1, \ldots, 6\}, \Delta_{A}$ is pure).

Examples

Two 1-dimensional simplicial complexes.

(a)

(b)
(a) Matroid complex (this can be checked by verifying that every $A \subseteq\{1, \ldots, 6\}, \Delta_{A}$ is pure).
(b) is not a matroid complex since it admits a restriction that is not pure, for instance, the facets of $\Delta_{1,3,4}$ are $\{1\}$ and $\{3,4\}$ as facets so the restriction is not pure.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.
- $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.
- $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Remarks: Link and restriction are identical to the contraction and deletion constructions from matroids.

Standard constructions

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\left.\Delta\right|_{W}$ for every $W \subseteq V$.
- $C \Delta$, the cone over Δ.
- $[\Delta]_{k}$, the k-skeleton of Δ.
- $\operatorname{link}_{\Delta}(F)$ for every $F \in \Delta$.

Remarks: Link and restriction are identical to the contraction and deletion constructions from matroids.
A matroid complex Δ_{M} is a cone if and only if M has a coloop (or isthme), which corresponds to the apex defined above.

Standard constructions

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, link $_{\Delta}(v) \cap E \neq \emptyset$.

Standard constructions

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, link $_{\Delta}(v) \cap E \neq \emptyset$.

(a)

(b)

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex Δ, a square free monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$,

$$
I_{\Delta}=\left(x_{F}=\prod_{i \in F} x_{i} \mid F \notin \Delta\right) \subseteq S
$$

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex Δ, a square free monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$,

$$
I_{\Delta}=\left(x_{F}=\prod_{i \in F} x_{i} \mid F \notin \Delta\right) \subseteq S
$$

The ideal I_{Δ} is called the Stanley-Reisner ideal of Δ and S / I_{Δ} the Stanley-Reisner ring of Δ.

Stanley-Reisner ideal

Facts

Stanley-Reisner ideal

Facts

- Hilbert function

$$
h_{S / I_{\Delta}}(h)=\operatorname{dim}_{k}\left[S / I_{\Delta}\right]_{h}
$$

where $\left[S / I_{\Delta}\right]$ is the vector space of degree h homogeneous polynomial outside of I_{Δ}.

Stanley-Reisner ideal

Facts

- Hilbert function

$$
h_{S / I_{\Delta}}(h)=\operatorname{dim}_{k}\left[S / I_{\Delta}\right]_{h}
$$

where $\left[S / I_{\Delta}\right]$ is the vector space of degree h homogeneous polynomial outside of I_{Δ}.

- Hilbert series

$$
H_{S / I_{\Delta}}(t)=\sum_{i=1}^{\infty} h_{S / I_{\Delta}}(i) t^{i}=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{d}}
$$

where $d=\operatorname{dim} I_{\Delta}$.

Stanley-Reisner ideal

Facts

- Hilbert function

$$
h_{S / I_{\Delta}}(h)=\operatorname{dim}_{k}\left[S / I_{\Delta}\right]_{h}
$$

where $\left[S / I_{\Delta}\right]$ is the vector space of degree h homogeneous polynomial outside of I_{Δ}.

- Hilbert series

$$
H_{S / I_{\Delta}}(t)=\sum_{i=1}^{\infty} h_{S / I_{\Delta}}(i) t^{i}=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{d}}
$$

where $d=\operatorname{dim} I_{\Delta}$.
$h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ is known as the h-vector of Δ.

h-vector of simplicial complexes

Assume that $\operatorname{dim} \Delta=d-1$.

h-vector of simplicial complexes

Assume that $\operatorname{dim} \Delta=d-1$.
We may study the h-vector of a simplicial complex of Δ $h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ from its f-vector via the relation
$\sum_{i=0}^{d} f_{i-1} t^{i}(1-t)^{d-i}=\sum_{i=0}^{d} h_{i} t^{i}$

h-vector of simplicial complexes

Assume that $\operatorname{dim} \Delta=d-1$.
We may study the h-vector of a simplicial complex of Δ $h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ from its f-vector via the relation

$$
\sum_{i=0}^{d} f_{i-1} t^{i}(1-t)^{d-i}=\sum_{i=0}^{d} h_{i} t^{i}
$$

In particular, for any $j=0, \ldots, d$, we have

$$
\begin{aligned}
& f_{j-1}=\sum_{i=0}^{j}\binom{d-i}{j-1} h_{i} \\
& h_{j}=\sum_{i=0}^{j}(-1)^{j-i}\binom{d-i}{j-1} f_{i-1} .
\end{aligned}
$$

h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.

h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.
Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M.

h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.
Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M.
Dually, $v_{j} \in E \backslash B$ is externally passive in B if there is some $v_{i} \in B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{i}\right) \cup v_{j}$ is a bases of M.

h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

Fix a total ordering $\left\{v_{1},<v_{2}<\cdots<v_{n}\right\}$ on $E(M)$.
Given a bases B, an element $v_{j} \in B$ is internally passive in B if there is some $v_{i} \in E \backslash B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{j}\right) \cup v_{i}$ is a bases of M.

Dually, $v_{j} \in E \backslash B$ is externally passive in B if there is some $v_{i} \in B$ such that $v_{i}<v_{j}$ and $\left(B \backslash v_{i}\right) \cup v_{j}$ is a bases of M.
Remark v_{j} is externally passive in B if it is internally passive in $E \backslash B$ in M^{*}.

h-vector of simplicial complexes

Bjorner proved that

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)}
$$

where $i p(B)$ counts the number of internally passive elements in B.

h-vector of simplicial complexes

Bjorner proved that

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)}
$$

where $i p(B)$ counts the number of internally passive elements in B. Remark This proves that the h-numbers of a matroid complex are nonnegative.

h-vector of simplicial complexes

Bjorner proved that

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}(M)} t^{i p(B)}
$$

where $i p(B)$ counts the number of internally passive elements in B. Remark This proves that the h-numbers of a matroid complex are nonnegative.

Alternatively,

$$
\sum_{i=0}^{d} h_{j} t^{j}=\sum_{B \in \mathcal{B}\left(M^{*}\right)} t^{e p(B)}
$$

where $e p(B)$ counts the number of externally passive elements in B.

h-vector of simplicial complexes

Remarks

- Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.

h-vector of simplicial complexes

Remarks

- Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.
- h-vector of a matroid complex Δ_{M} is actually a specialization of the Tutte polynomial of the corresponding matroid ; precisely we have $T(M ; x, 1)=h_{0} x^{d}+h_{1} x^{d_{1}}+\cdots+h_{d}$

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$.

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$.
Therefore

$$
\begin{aligned}
\sum_{i=0}^{2} f_{i-1} t^{i}(1-t)^{2-i} & =f_{-1} t^{0}(1-t)^{2}+f_{0} t(1-t)+f_{1} t^{2}(1-t)^{0} \\
& =(1-t)^{2}+3 t(1-t)+3 t^{2} \\
& =1-2 t+t^{2}+3 t-3 t-3 t^{2}+3 t^{2} \\
& =t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
\end{aligned}
$$

Example

We consider the matroid complex $\Delta\left(U_{2,3}\right)$
We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=3$ and $f_{1}=3$.
Therefore

$$
\begin{aligned}
\sum_{i=0}^{2} f_{i-1} t^{i}(1-t)^{2-i} & =f_{-1} t^{0}(1-t)^{2}+f_{0} t(1-t)+f_{1} t^{2}(1-t)^{0} \\
& =(1-t)^{2}+3 t(1-t)+3 t^{2} \\
& =1-2 t+t^{2}+3 t-3 t-3 t^{2}+3 t^{2} \\
& =t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
\end{aligned}
$$

Obtaining that $h(\Delta)=(1,1,1)$.

Example continuation

Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$.

Example continuation

Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$.
We can check that

- there is not internally passive element in B_{1}
- 3 is internally passive element of B_{2}
- 2 and 3 are internally passive elements of B_{3}

Example continuation

Let $\mathcal{B}\left(U_{2,3}\right)=\left\{B_{1}=\{1,2\}, B_{2}=\{1,3\}, B_{3}=\{2,3\}\right\}$.
We can check that

- there is not internally passive element in B_{1}
- 3 is internally passive element of B_{2}
- 2 and 3 are internally passive elements of B_{3}

Thus

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}\left(U_{2,3}\right)} t^{i p(B)}=1+t+t^{2}
$$

Example continuation

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$.

Example continuation

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$.
We can check that

- 2 and 3 are externally passive elements of B_{1}
- 3 is externally passive element of B_{2}
- there is not externally passive element in B_{3}

Example continuation

Let $\mathcal{B}\left(U_{2,3}^{*}=U_{1,3}\right)=\left\{B_{1}=\{1\}, B_{2}=\{2\}, B_{3}=\{3\}\right\}$.
We can check that

- 2 and 3 are externally passive elements of B_{1}
- 3 is externally passive element of B_{2}
- there is not externally passive element in B_{3}

Thus

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}\left(U_{1,3}\right)} t^{e p(B)}=t^{2}+t+1
$$

Example continuation

We have that

$$
T\left(U_{3,2} ; x, y\right)=x^{2}+x+y
$$

Example continuation

We have that

$$
T\left(U_{3,2} ; x, y\right)=x^{2}+x+y
$$ and thus

$$
T\left(U_{3,2} ; t, 1\right)=t^{2}+t+1=\sum_{i=0}^{2} h_{i} t^{i}
$$

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.
Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.
Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$.
We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.

Order ideal

An order ideal \mathcal{O} is a family of monomials (say of degree at most $r)$ with the property that if $\mu \in \mathcal{O}$ and $\nu \mid \mu$ then $\nu \in \mathcal{O}$.
Let \mathcal{O}_{i} denote the collection of monomials in \mathcal{O} of degree i. Let $F_{i}(\mathcal{O}):=\left|\mathcal{O}_{i}\right|$ and $F(\mathcal{O})=\left(F_{0}(\mathcal{O}), F_{1}(\mathcal{O}), \ldots, F_{r}(\mathcal{O})\right)$.
We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.
A vector $\mathbf{h}=\left(h_{0}, \ldots, h_{d}\right)$ is a pure O-sequence if there is a pure ideal \mathcal{O} such that $\mathbf{h}=F(\mathcal{O})$.

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x^{3} z$ and $x^{2} z^{3}$ is :

$$
X=\left\{x y^{3} z, x^{2} z^{3}\right.
$$

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x^{3} z$ and $x^{2} z^{3}$ is :

$$
X=\left\{\mathbf{x y}^{3} \mathbf{z}, \mathbf{x}^{2} \mathbf{z}^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z\right.
$$

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathbf{x y}^{3} \mathbf{z}, \mathbf{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& x y^{2}, x z^{2}, z^{3}, x^{2} z,
\end{aligned}
$$

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathrm{xy}^{3} z, \mathbf{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2},
\end{aligned}
$$

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathrm{xy}^{3} z, \mathrm{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x,
\end{aligned}
$$

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathbf{x y}^{3} z, x^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& \left.x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x, 1\right\} .
\end{aligned}
$$

Example

The pure monomial order ideal (inside $k[x, y, z]$ with maximal monomials $x y^{3} z$ and $x^{2} z^{3}$ is :

$$
\begin{aligned}
X= & \left\{\mathbf{x y}^{3} z, \mathbf{x}^{2} z^{3} ; y^{3} z, x y^{2} z, x y^{3}, x z^{3}, x^{2} z^{2}, y^{2} z, y^{3}, x y z,\right. \\
& \left.x y^{2}, x z^{2}, z^{3}, x^{2} z, y z, y^{2}, x z, x y, z^{2}, x^{2}, z, y, x, 1\right\} .
\end{aligned}
$$

Hence the h-vector of X is the pure O-sequence
$h=(1,3,6,7,5,2)$.

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured
Conjecture (Stanley, 1976) For any matroid $M, h(M)$ is a pure O -sequence.

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid $M, h(M)$ is a pure O -sequence.
Conjecture hold for several families of matroid complexes :

Stanley's conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid $M, h(M)$ is a pure O -sequence.
Conjecture hold for several families of matroid complexes :
(Merino, Noble, Ramirez-Ibañez, Villarroel, 2010) Paving matroids
(Merino, 2001) Cographic matroids
(Oh, 2010) Cotranversal matroids
(Schweig, 2010) Lattice path matroids
(Stokes, 2009) Matroids of rank at most three
(De Loera, Kemper, Klee, 2012) for all matroids on at most nine elements all matroids of corank two.

Example

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph G

Example

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph G

We have that $\operatorname{dim} \Delta=1$ and $f_{-1}=1, f_{0}=4$ and $f_{1}=4$.

Example

$$
\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\} .
$$

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus,

$$
\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}
$$

Example

$\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\}$.

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus,
$\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}$.
Obtaining the h-vector $h(1,2,1)$.

Example

$$
\mathcal{B}(M(G))=\left\{B_{1}=\{1,3\}, B_{2}=\{1,4\}, B_{3}=\{2,3\}, B_{4}=\{2,4\}\right\} .
$$

- there is not internally passive element in B_{1}
- 4 is internally passive element of B_{2}
- 2 is internally passive element of B_{3}
- 2 and 4 are internally passive elements of B_{4}

Thus,
$\sum_{i=0}^{2} h_{i} t^{i}=\sum_{B \in \mathcal{B}(M(G))} t^{i p(B)}=1+t+t+t^{2}=1+2 t+t^{2}$.
Obtaining the h-vector $h(1,2,1)$. Since $\mathcal{O}=\left(1, x_{1}, x_{2}, x_{1} x_{2}\right)$ is an order ideal then $h(1,2,1)$ is pure O-sequence.

