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Stanley depth

Let K be a field, S = K [x1, ...,xn] be the polynomial ring in n variables,
and M be a finitely generated Zn-graded S-module. Let u ∈ M be a
homogeneous element in M and Z a subset of {x1, ...,xn}. We denote
by uK [Z ] the K -subspace of M generated by all elements uv where v is
a monomial in K [Z ]. The Zn-graded K -subspace uK [Z ] ⊂M is called a
Stanley space of dimension |Z |, if uK [Z ] is a free K [Z ]-module.

A Stanley decomposition of M is a presentation of the Zn-graded K -
vector space M as a finite direct sum of Stanley spaces

D : M =
m⊕
i=1

uiK [Zi ]

in the category of Zn-graded K -vector spaces.



In other words, each of the summands is a Zn-graded K -subspace of M
and the decomposition is compatible with the Zn-grading, i.e. for each
a ∈ Zn we have Ma =⊕m

i=1(uiK [Zi ])a . The number

sdepth D = min {|Zi | : i = 1,m}

is called the Stanley depth of D .
The Stanley depth of M is defined to be

sdepth M = max { sdepth D : D is a Stanley decomposition of M}.

It is conjectured by Stanley that depth M ≤ sdepth M for all Zn-graded
S-modules M.



Hilbert depth

Let M be a finitely generated graded R = K [x1, ...,xn]-module. A Hilbert
decomposition is a finite family

D = (Si ,si )i∈I

such that si ∈ Zn , Si is a graded K -algebra retract of R for each i ∈ I ,
and

M ∼=
⊕
i∈I

Si (−si )

as a graded K -vector space.



A Hilbert decomposition carries the structure of an R-module and has a
well-defined depth, which is called the depth of the Hilbert decomposition
D and will be denoted by hdepthD. The Hilbert depth of a module M is

max{hdepthD | D is a Hilbert decomposition of M}

and will be denoted by hdepthM.

Proposition(Cimpoeas) Let M be a finitely generated Zn-graded
S-module. If sdepth(M) = 0 then depth(M) = 0. Conversely, if
depth(M) = 0 and dimK (Ma)≤ 1 for any a ∈ Zn, then sdepth(M) = 0.
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Computing Hilbert depth

Let HM(X ) = ∑a∈Nn H(M,a)X a be the Hilbert series of M and g ∈ Nn

such that M is positively g -determined. Then the Hilbert series of M can
be recovered from the polynomial

HM(X )�g := ∑
0�a�g

H(M,a)X a.

Given a,b ∈ Zn such that a� b, we set

Q[a,b](X ) := ∑
a�c�b

X c

and call it the polynomial induced by the interval [a,b].



We define a Hilbert partition of the polynomial HM(X )�g to be an
expression

P : HM(X )�g = ∑i∈IP Q[ai ,bi ](X )

as a finite sum of polynomials induced by the intervals [ai ,bi ] (the
notation IP makes clear the dependency on P and so the finiteness).
In order to describe the Hilbert decomposition of M induced by the
Hilbert partition P of HM(X )�g , we introduce the following notations.
Let

ρ : {0� a� g} −→ N, ρ(a) := |Za|,

and for 0� a� b � g we set

G [a,b] = {c ∈ [a,b] | cj = aj for all j ∈ N with Xj ∈ Zb}.



Theorem The following statements hold:

1 Let P : HM(X )�g = ∑
r
i=1Q[ai ,bi ](X ) be a Hilbert partition of

HM(X )�g . Then

D(P) : M ∼=
r⊕

i=1

( ⊕
c∈G [ai ,bi ]

K [Zbi ](−c)
)

is a Hilbert decomposition of M. Moreover,

hdepthD(P) = min{ρ(bi ) : i = 1, . . . , r}.

2 Let D be a Hilbert decomposition of M. Then there exists a Hilbert
partition P of HM(X )�g such that

hdepthD(P)≥ hdepthD.

In particular, hdepthM can be computed as the maximum of the
numbers hdepthD(P), where P runs over the finitely many Hilbert
partitions of HM(X )�g .

Corollary Let M a finitely generated multigraded R-module. Then

hdepthM = max{hdepthD(P) : P is a Hilbert partition of HM(X )�g}.



Restricting the search

Let B be a subset of Nn and 0≤ s ≤ n. We define two subsets of B,

B<s := {a ∈ B : ρ(a) < s} and B≥s := {a ∈ B : ρ(a)≥ s}.

Let a ∈ B<s . We define the set

B=s(a) := {x ∈ B≥s : a� x , ρ(x) = s}.

Theorem Assume hdepthM ≥ s. Then there exists a Hilbert partition

P : HM(X )�g =
r

∑
i=1

Q[ai ,bi ](X )

such that if ρ(ai ) < s then bi ∈ B=s(a).



Problem Find an algorithm to compute the Stanley depth for finitely
generated multigraded R-modules M with dimK Ma ≤ 1 for all a ∈ Zn.



Algorithm 1: Function which checks if hdepth≥ s recursively

Data: g ∈ Nn, s ∈ N and a polynomial P(X ) = HM(X )�g ∈ N[X1, ...,Xn]
Result: true if hdepthM ≥ s
Boolean CheckHilbertDepth(g,s,P);
begin

1 if P /∈ N[X1, ...,Xn] then
return false;

2 Container E =FindElementsToCover(g,s,P);
3 if size(E) = 0 then

return true;

4 else
5 for i=begin(E) to i=end(E) do
6 Container C [i ]:=FindPossibleCovers(g,s,P,E [i ]);
7 if size(C [i ])= 0 then

return false;

8 for j=begin(C [i ]) to j=end(C [i ]) do
9 Polynomial P̃(X ) = P(X )−Q[E [i ],C [i ][j ]](X );

10 if CheckHilbertDepth(g,s,P̃)=true then
return true;

11 return false;



Problem Let M and N be finitely generated multigraded R-modules.
Then

sdepth(M⊕N)≥Min{sdepth(M),sdepth(N)}.

Do we have equality?

Answer No. If n = 4,M = R2,N = m then

D(M⊕N) :(1,0,0)K [X1,X2,X3]⊕ (0,1,0)K [X1,X2,X4]⊕
(0,0,X1)K [X1,X3,X4]⊕ (0,0,X2)K [X1,X2,X3]⊕
(0,X3,X3)K [X1,X3,X4]⊕ (0,X3,0)K [X2,X3,X4]⊕
(X4,0,X4)K [X1,X2,X4]⊕ (X4,0,0)K [X2,X3,X4]⊕
(0,X1X2X3,0)K [X1,X2,X3]⊕ (X1X3X4,0,0)K [X1,X3,X4]⊕
(0,0,X1X2X4)K [X1,X2,X4]⊕ (0,0,X2X3X4)K [X2,X3,X4]⊕
(X1X2X3X4,0,0)K [X1,X2,X3,X4]⊕ (0,X1X2X3X4,0)K [X1,X2,X3,X4]⊕
(0,0,X1X2X3X4)K [X1,X2,X3,X4].

3=sdepth(M⊕N) = hdepth(M⊕N) > Min{sdepth(M),sdepth(N)}= 2.
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Problem In the particular case where I ⊂ R is a monomial ideal, does
sdepth(R⊕ I ) = sdepth I hold?

Answer No. If n = 6, I = m then

D(R⊕ I ): (X5,X5)K [X3,X4,X5,X6]⊕ (X6,0)K [X3,X4,X5,X6]⊕
(1,0)K[X1,X2,X3,X4]⊕ (0,X1X2X3)K [X1,X2,X3,X4]⊕
(X5,0)K [X1,X2,X4,X5]⊕ (0,X1X4X5)K [X1,X2,X4,X5]⊕
(X6,X6)K [X1,X2,X3,X6]⊕ (0,X1X3X6)K [X1,X2,X3,X6]⊕
(X1X5X6,0)K [X1,X2,X5,X6]⊕ (0,X1)K [X1,X2,X5,X6]⊕
(X2X3X5,0)K [X2,X3,X5,X6]⊕ (0,X2)K [X2,X3,X5,X6]⊕
(X1X3X5,0)K [X1,X3,X4,X5]⊕ (0,X3)K [X1,X3,X4,X5]⊕
(X1X4X6,0)K [X1,X2,X4,X6]⊕ (0,X4)K [X1,X2,X4,X6]⊕
(X2X5X6,0)K [X2,X4,X5,X6]⊕ (0,X2X4X5)K [X2,X4,X5,X6]⊕
(X1X3X4X6,0)K [X1,X3,X4,X6]⊕ (0,X3X4X6)K [X1,X3,X4,X6]⊕
(X2X3X4X5,0)K [X2,X3,X4,X5]⊕ (0,X2X3X4)K [X2,X3,X4,X5]⊕
(X2X4X6,0)K [X2,X3,X4,X6]⊕ (0,X2X3X4X6)K [X2,X3,X4,X6]⊕
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(X1X2X3X5,0)K [X1,X2,X3,X5]⊕ (0,X1X2X3X5)K [X1,X2,X3,X5]⊕
(X1X3X5X6,0)K [X1,X3,X5,X6]⊕ (0,X1X3X5X6)K [X1,X3,X5,X6]⊕
(X1X4X5X6,0)K [X1,X4,X5,X6]⊕ (0,X1X4X5X6)K [X1,X4,X5,X6]⊕
(X1X2X3X4X5,0)K [X1,X2,X3,X4,X5]⊕
(0,X1X2X3X4X5)K [X1,X2,X3,X4,X5]⊕
(X1X2X3X4X6,0)K [X1,X2,X3,X4,X6]⊕
(0,X1X2X3X4X6)K [X1,X2,X3,X4,X6]⊕
(X1X2X3X5X6,0)K [X1,X2,X3,X5,X6]⊕
(0,X1X2X3X5X6)K [X1,X2,X3,X5,X6]⊕
(X1X2X4X5X6,0)K [X1,X2,X4,X5,X6]⊕
(0,X1X2X4X5X6)K [X1,X2,X4,X5,X6]⊕
(X1X3X4X5X6,0)K [X1,X3,X4,X5,X6]⊕
(0,X1X3X4X5X6)K [X1,X3,X4,X5,X6]⊕
(X2X3X4X5X6,0)K [X2,X3,X4,X5,X6]⊕
(0,X2X3X4X5X6)K [X2,X3,X4,X5,X6]⊕
(X1X2X3X4X5X6,0)K [X1,X2,X3,X4,X5,X6]⊕
(0,X1X2X3X4X5X6)K [X1,X2,X3,X4,X5,X6].
4=sdepth(R⊕ I ) = hdepth(R⊕ I ) > sdepth(I ) = hdepth(I ) = 3.
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