22nd edition of the National Algebra School Algebraic and Combinatorial Applications of Toric Ideals

An algorithm for computing the multigraded Hilbert depth of a module

Bogdan Ichim, Andrei Zarojanu
University of Bucharest

Stanley depth

Let K be a field, $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables, and M be a finitely generated \mathbb{Z}^{n}-graded S-module. Let $u \in M$ be a homogeneous element in M and Z a subset of $\left\{x_{1}, \ldots, x_{n}\right\}$. We denote by $u K[Z]$ the K-subspace of M generated by all elements $u v$ where v is a monomial in $K[Z]$. The \mathbb{Z}^{n}-graded K-subspace $u K[Z] \subset M$ is called a Stanley space of dimension $|Z|$, if $u K[Z]$ is a free $K[Z]$-module.
A Stanley decomposition of M is a presentation of the \mathbb{Z}^{n}-graded K vector space M as a finite direct sum of Stanley spaces

$$
\mathscr{D}: M=\bigoplus_{i=1}^{m} u_{i} K\left[Z_{i}\right]
$$

in the category of \mathbb{Z}^{n}-graded K-vector spaces.

In other words, each of the summands is a \mathbb{Z}^{n}-graded K-subspace of M and the decomposition is compatible with the \mathbb{Z}^{n}-grading, i.e. for each $a \in \mathbb{Z}^{n}$ we have $M_{a}=\oplus_{i=1}^{m}\left(u_{i} K\left[Z_{i}\right]\right)_{a}$. The number

$$
\text { sdepth } \mathscr{D}=\min \left\{\left|Z_{i}\right|: i=\overline{1, m}\right\}
$$

is called the Stanley depth of \mathscr{D}.
The Stanley depth of M is defined to be
sdepth $M=\max \{$ sdepth $\mathscr{D}: \mathscr{D}$ is a Stanley decomposition of $M\}$.
It is conjectured by Stanley that depth $M \leq$ sdepth M for all \mathbb{Z}^{n}-graded S-modules M.

Hilbert depth

Let M be a finitely generated graded $R=K\left[x_{1}, \ldots, x_{n}\right]$-module. A Hilbert decomposition is a finite family

$$
\mathfrak{D}=\left(S_{i}, s_{i}\right)_{i \in I}
$$

such that $s_{i} \in \mathbb{Z}^{n}, S_{i}$ is a graded K-algebra retract of R for each $i \in I$, and

$$
M \cong \bigoplus_{i \in I} S_{i}\left(-s_{i}\right)
$$

as a graded K-vector space.

A Hilbert decomposition carries the structure of an R-module and has a well-defined depth, which is called the depth of the Hilbert decomposition \mathfrak{D} and will be denoted by hdepth \mathfrak{D}. The Hilbert depth of a module M is

$$
\max \{\text { hdepth } \mathfrak{D} \mid \mathfrak{D} \text { is a Hilbert decomposition of } M\}
$$

and will be denoted by hdepth M.

A Hilbert decomposition carries the structure of an R-module and has a well-defined depth, which is called the depth of the Hilbert decomposition \mathfrak{D} and will be denoted by hdepth \mathfrak{D}. The Hilbert depth of a module M is

$$
\max \{\text { hdepth } \mathfrak{D} \mid \mathfrak{D} \text { is a Hilbert decomposition of } M\}
$$

and will be denoted by hdepth M.

Proposition(Cimpoeas) Let M be a finitely generated \mathbb{Z}^{n}-graded S-module. If sdepth $(M)=0$ then $\operatorname{depth}(M)=0$. Conversely, if $\operatorname{depth}(M)=0$ and $\operatorname{dim}_{K}\left(M_{a}\right) \leq 1$ for any $a \in \mathbb{Z}^{n}$, then $\operatorname{sdepth}(M)=0$.

Computing Hilbert depth

Let $H_{M}(X)=\sum_{a \in \mathbb{N}^{n}} H(M, a) X^{a}$ be the Hilbert series of M and $g \in \mathbb{N}^{n}$ such that M is positively g-determined. Then the Hilbert series of M can be recovered from the polynomial

$$
H_{M}(X)_{\preceq g}:=\sum_{0 \preceq a \preceq g} H(M, a) X^{a} .
$$

Given $a, b \in \mathbb{Z}^{n}$ such that $a \preceq b$, we set

$$
Q[a, b](X):=\sum_{a \preceq c \preceq b} X^{c}
$$

and call it the polynomial induced by the interval $[a, b]$.

We define a Hilbert partition of the polynomial $H_{M}(X)_{\preceq g}$ to be an expression

$$
\mathfrak{P}: H_{M}(X)_{\preceq g}=\sum_{i \in l_{\mathfrak{F}}} Q\left[a^{i}, b^{i}\right](X)
$$

as a finite sum of polynomials induced by the intervals $\left[a^{i}, b^{i}\right.$] (the notation $I_{\mathfrak{P}}$ makes clear the dependency on \mathfrak{P} and so the finiteness). In order to describe the Hilbert decomposition of M induced by the Hilbert partition \mathfrak{P} of $H_{M}(X)_{\preceq g}$, we introduce the following notations. Let

$$
\rho:\{0 \preceq a \preceq g\} \longrightarrow \mathbb{N}, \quad \rho(a):=\left|Z_{a}\right|,
$$

and for $0 \preceq a \preceq b \preceq g$ we set

$$
\mathscr{G}[a, b]=\left\{c \in[a, b] \mid c_{j}=a_{j} \text { for all } j \in \mathbb{N} \text { with } X_{j} \in Z_{b}\right\} .
$$

Theorem The following statements hold:
(1) Let $\mathfrak{P}: H_{M}(X)_{\preceq g}=\sum_{i=1}^{r} Q\left[a^{i}, b^{i}\right](X)$ be a Hilbert partition of $H_{M}(X)_{\preceq g}$. Then

$$
\mathfrak{D}(\mathfrak{P}): M \cong \bigoplus_{i=1}^{r}\left(\bigoplus_{c \in \mathscr{G}\left[a^{i}, b^{i}\right]} K\left[Z_{b^{i}}\right](-c)\right)
$$

is a Hilbert decomposition of M. Moreover,

$$
\text { hdepth } \mathfrak{D}(\mathfrak{P})=\min \left\{\rho\left(b^{i}\right): i=1, \ldots, r\right\} .
$$

(2) Let \mathfrak{D} be a Hilbert decomposition of M. Then there exists a Hilbert partition \mathfrak{P} of $H_{M}(X)_{\preceq g}$ such that
hdepth $\mathfrak{D}(\mathfrak{P}) \geq$ hdepth \mathfrak{D}.
In particular, hdepth M can be computed as the maximum of the numbers hdepth $\mathfrak{D}(\mathfrak{P})$, where \mathfrak{P} runs over the finitely many Hilbert partitions of $H_{M}(X)_{\preceq g \text {. }}$
Corollary Let M a finitely generated multigraded R-module. Then hdepth $M=\max \left\{\right.$ hdepth $\mathfrak{D}(\mathfrak{P}): \mathfrak{P}$ is a Hilbert partition of $\left.H_{M}(X)_{\preceq g}\right\}$.

Restricting the search

Let B be a subset of \mathbb{N}^{n} and $0 \leq s \leq n$. We define two subsets of B,

$$
B_{<s}:=\{a \in B: \rho(a)<s\} \quad \text { and } \quad B_{\geq s}:=\{a \in B: \rho(a) \geq s\} .
$$

Let $a \in B_{<s}$. We define the set

$$
B_{=s}(a):=\left\{x \in B_{\geq s}: a \preceq x, \rho(x)=s\right\} .
$$

Theorem Assume hdepth $M \geq s$. Then there exists a Hilbert partition

$$
\mathfrak{P}: H_{M}(X)_{\preceq g}=\sum_{i=1}^{r} Q\left[a^{i}, b^{i}\right](X)
$$

such that if $\rho\left(a^{i}\right)<s$ then $b^{i} \in B_{=s}(a)$.

Problem Find an algorithm to compute the Stanley depth for finitely generated multigraded R-modules M with $\operatorname{dim}_{K} M_{a} \leq 1$ for all $a \in \mathbb{Z}^{n}$.

Algorithm 1: Function which checks if hdepth $\geq s$ recursively
Data: $g \in \mathbb{N}^{n}$, $s \in \mathbb{N}$ and a polynomial $P(X)=H_{M}(X)_{\preceq g} \in \mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$ Result: true if hdepth $M \geq s$
Boolean CheckHilbertDepth (g, s, P);
begin
if $P \notin \mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$ then return false;

Container $E=$ FindElementsToCover (g, s, P); if $\operatorname{size}(E)=0$ then return true; else

$$
\text { for } i=\operatorname{begin}(E) \text { to } i=\operatorname{end}(E) \text { do }
$$

$$
\text { Container } C[i]:=\text { FindPossibleCovers }(g, s, P, E[i]) \text {; }
$$

if size $(C[i])=0$ then return false;
for $j=$ begin $(C[i])$ to $j=$ end $(C[i])$ do Polynomial $\tilde{P}(X)=P(X)-Q[E[i], C[i][j]](X)$; if CheckHilbertDepth $(g, s, \tilde{P})=$ true then return true;

Problem Let M and N be finitely generated multigraded R-modules. Then

$$
\operatorname{sdepth}(M \oplus N) \geq \operatorname{Min}\{\operatorname{sdepth}(M), \operatorname{sdepth}(N)\}
$$

Do we have equality?

Problem Let M and N be finitely generated multigraded R-modules. Then

$$
\operatorname{sdepth}(M \oplus N) \geq \operatorname{Min}\{\operatorname{sdepth}(M), \operatorname{sdepth}(N)\}
$$

Do we have equality?
Answer No. If $n=4, M=R^{2}, N=m$ then

$$
\begin{aligned}
\mathfrak{D}(M \oplus N): & (1,0,0) K\left[X_{1}, X_{2}, X_{3}\right] \oplus(0,1,0) K\left[X_{1}, X_{2}, X_{4}\right] \oplus \\
& \left(0,0, X_{1}\right) K\left[X_{1}, X_{3}, X_{4}\right] \oplus\left(0,0, X_{2}\right) K\left[X_{1}, X_{2}, X_{3}\right] \oplus \\
& \left(0, X_{3}, X_{3}\right) K\left[X_{1}, X_{3}, X_{4}\right] \oplus\left(0, X_{3}, 0\right) K\left[X_{2}, X_{3}, X_{4}\right] \oplus \\
& \left(X_{4}, 0, X_{4}\right) K\left[X_{1}, X_{2}, X_{4}\right] \oplus\left(X_{4}, 0,0\right) K\left[X_{2}, X_{3}, X_{4}\right] \oplus \\
& \left(0, X_{1} X_{2} X_{3}, 0\right) K\left[X_{1}, X_{2}, X_{3}\right] \oplus\left(X_{1} X_{3} X_{4}, 0,0\right) K\left[X_{1}, X_{3}, X_{4}\right] \oplus \\
& \left(0,0, X_{1} X_{2} X_{4}\right) K\left[X_{1}, X_{2}, X_{4}\right] \oplus\left(0,0, X_{2} X_{3} X_{4}\right) K\left[X_{2}, X_{3}, X_{4}\right] \oplus \\
& \left(X_{1} X_{2} X_{3} X_{4}, 0,0\right) K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \oplus\left(0, X_{1} X_{2} X_{3} X_{4}, 0\right) K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \\
& \left(0,0, X_{1} X_{2} X_{3} X_{4}\right) K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] .
\end{aligned}
$$

$3=\operatorname{sdepth}(M \oplus N)=\operatorname{hdepth}(M \oplus N)>\operatorname{Min}\{\operatorname{sdepth}(M), \operatorname{sdepth}(N)\}=2$.

Problem In the particular case where $I \subset R$ is a monomial ideal, does sdepth $(R \oplus I)=$ sdepth $/$ hold?

Problem In the particular case where $I \subset R$ is a monomial ideal, does $\operatorname{sdepth}(R \oplus I)=$ sdepth $/$ hold?
Answer No. If $n=6, I=m$ then

$$
\begin{aligned}
& \mathfrak{D}(R \oplus I): \quad\left(X_{5}, X_{5}\right) K\left[X_{3}, X_{4}, X_{5}, X_{6}\right] \oplus\left(X_{6}, 0\right) K\left[X_{3}, X_{4}, X_{5}, X_{6}\right] \oplus \\
& (1,0) K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \oplus\left(0, X_{1} X_{2} X_{3}\right) K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \oplus \\
& \left(X_{5}, 0\right) K\left[X_{1}, X_{2}, X_{4}, X_{5}\right] \oplus\left(0, X_{1} X_{4} X_{5}\right) K\left[X_{1}, X_{2}, X_{4}, X_{5}\right] \oplus \\
& \left(X_{6}, X_{6}\right) K\left[X_{1}, X_{2}, X_{3}, X_{6}\right] \oplus\left(0, X_{1} X_{3} X_{6}\right) K\left[X_{1}, X_{2}, X_{3}, X_{6}\right] \oplus \\
& \left(X_{1} X_{5} X_{6}, 0\right) K\left[X_{1}, X_{2}, X_{5}, X_{6}\right] \oplus\left(0, X_{1}\right) K\left[X_{1}, X_{2}, X_{5}, X_{6}\right] \oplus \oplus \\
& \left(X_{2} X_{3} X_{5}, 0\right) K\left[X_{2}, X_{3}, X_{5}, X_{6}\right] \oplus\left(0, X_{2}\right) K\left[X_{2}, X_{3}, X_{5}, X_{6}\right] \oplus \\
& \left(X_{1} X_{3} X_{5}, 0\right) K\left[X_{1}, X_{3}, X_{4}, X_{5}\right] \oplus\left(0, X_{3}\right) K\left[X_{1}, X_{3}, X_{4}, X_{5}\right] \oplus \\
& \left(X_{1} X_{4} X_{6}, 0\right) K\left[X_{1}, X_{2}, X_{4}, X_{6}\right] \oplus\left(0, X_{4}\right) K\left[X_{1}, X_{2}, X_{4}, X_{6}\right] \oplus \\
& \left(X_{2} X_{5} X_{6}, 0\right) K\left[X_{2}, X_{4}, X_{5}, X_{6}\right] \oplus\left(0, X_{2} X_{4} X_{5}\right) K\left[X_{2}, X_{4}, X_{5}, X_{6}\right] \oplus \\
& \left(X_{1} X_{3} X_{4} X_{6}, 0\right) K\left[X_{1}, X_{3}, X_{4}, X_{6}\right] \oplus\left(0, X_{3} X_{4} X_{6}\right) K\left[X_{1}, X_{3}, X_{4}, X_{6}\right] \oplus \\
& \left(X_{2} X_{3} X_{4} X_{5}, 0\right) K\left[X_{2}, X_{3}, X_{4}, X_{5}\right] \oplus\left(0, X_{2} X_{3} X_{4}\right) K\left[X_{2}, X_{3}, X_{4}, X_{5}\right] \oplus \\
& \left(X_{2} X_{4} X_{6}, 0\right) K\left[X_{2}, X_{3}, X_{4}, X_{6}\right] \oplus\left(0, X_{2} X_{3} X_{4} X_{6}\right) K\left[X_{2}, X_{3}, X_{4}, X_{6}\right] \oplus
\end{aligned}
$$


```
(X }\mp@subsup{1}{1}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{}\mp@subsup{X}{6}{},0)K[\mp@subsup{X}{1}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{\prime},\mp@subsup{X}{6}{}]\oplus(0,\mp@subsup{X}{1}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{}\mp@subsup{X}{6}{})K[\mp@subsup{X}{1}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
( (X }\mp@subsup{X}{2}{}\mp@subsup{X}{3}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{\prime},0)K[\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{}]
(0, X1 X X X X X X X X )K[ X , , X, , X , , X , , X5]\oplus
( (X1 X X X X X X X X , 0)K[ X , , X2, X , , X , , X6] }
(0, X1 X X X X X X X X ) K[ X , , X, , X , , X4, , X6]\oplus
(X1 X X X X X X X X , 0)K[ X , , X, , X , , X , , X6]\oplus
```



```
( }\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{}\mp@subsup{X}{6}{},0)K[\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
(0, X1 X X X X X X }\mp@subsup{\}{6}{\prime}\mathrm{ )K[ X }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
(X1 X X X X X X X X 
(0, X1 X X X X X X }\mp@subsup{\}{6}{\prime})K[\mp@subsup{X}{1}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
( }\mp@subsup{X}{2}{}\mp@subsup{X}{3}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{}\mp@subsup{X}{6}{},0)K[\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
(0, X2 X X X X X X }\mp@subsup{\}{6}{})K[\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
( }\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\mp@subsup{X}{3}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{}\mp@subsup{X}{6}{},0)K[\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
(0, X1 X X X X X X X X }\mp@subsup{X}{6}{})K[\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{}]
4=\operatorname{sdepth}(R\oplusI)=\operatorname{hdepth}(R\oplusI)>\operatorname{sdepth}(I)=\operatorname{hdepth}(I)=3.
```

The first author was partially supported by project PN-II-RU-TE-2012-3-0161 and the second author was partially supported by the strategic grant POSDRU/159/1.5/S/137750, Project Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research cofinanced by the European Social Found within the Sectorial Operational Program Human Resources Development 2007 2013, during the preparation of this work.

References：

J．Herzog，A survey on Stanley depth．In＂Monomial Ideals，Computations and Applications＂，A．Bigatti，P．Giménez，E．Sáenz－de－Cabezón（Eds．），Proceedings of MONICA 2011．Springer Lecture Notes in Mathematics 2083 （2013）．

J．Herzog，M．Vladoiu，X．Zheng，How to compute the Stanley depth of a monomial ideal，J． Algebra， 322 （2009），3151－3169．

M．Cimpoeas，The Stanley conjecture on monomial almost complete intersection ideals， Bull．Math．Soc．Sci．Math．Roumanie，55（103），（2012），35－39．

B．Ichim，J．J．Moyano－Fernandez，How to compute the multigraded Hilbert depth of a module，Math．Nachr．287，No．11－12，1274－1287（2014）

B．Ichim and A．Zarojanu，Hdepth：An algorithm for computing the multigraded Hilbert depth of a module．To appear in Exp．Math．

A．Popescu，An algorithm to compute the Hilbert depth．Journal of Symbolic Computation Volume 66，JanuaryFebruary 2015，Pages 17

D．Popescu，An inequality between depth and Stanley depth，Bull．Math．Soc．Sc．Math． Roumanie 52（100），（2009），377－382，arXiv：AC／0905．4597v2．

D．Popescu，Bounds of Stanley depth，An．St．Univ．Ovidius．Constanta，19（2），（2011）， 187－194．

W．Bruns，C．Krattenthaler，J．Uliczka，Stanley decompositions and Hilbert depth in the Koszul complex，J．Commutative Alg．， 2 （2010），327－357．

R．P．Stanley，Linear Diophantine equations and local cohomology，Invent．Math． 68 （1982） 175－193．

