Problems

Jürgen Herzog Universität Duisburg-Essen

August 17-24 Moieciu de Sus, România

Problems

Problem 1. Show that

$$A = \begin{pmatrix} 2 & 0 & 3 & 4 \\ 1 & -2 & 1 & -1 \\ 3 & 0 & 5 & 1 \\ 7 & -1 & 12 & 5 \end{pmatrix}$$

is a configuration matrix.

Problem 2. Let $A \in \mathbb{Z}^{d \times n}$. Then I_A is a principal ideal if and only if rank A = n - 1.

Problem 3. Let $A = (3,4,5) \in \mathbb{Z}^{1\times 3}$. Compute I_A .

Problem 4. Let $I \subset K[x_1, \ldots, x_n, y_1, \ldots, y_n]$ be the ideal generated by a set \mathcal{S} of 2-minors of the $2 \times n$ -matrix

$$X = \begin{pmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{pmatrix}$$
. We denote by $[i,j]$ a 2-minor with rows i

and j. Show that f is a prime ideal if and only [n] is the disjoint union of sets S_1, \ldots, S_k such that $S = \bigcup_{i=1}^k \{[i,j] : \{i,j\} \subset S_k\}$.

Problem 5. Let char(K) = 0 and let $\mathbf{b} \in \mathbb{Z}^n$. Then $I = (f_{\mathbf{b}}) \subset S$ is a radical ideal.

Problem 6. Let $\mathbf{b}_1, \dots, \mathbf{b}_r \in \mathbb{Z}^n$ be \mathbb{Q} -linearly independent vectors. Then $f_{\mathbf{b}_1}, \dots, f_{\mathbf{b}_r}$ is a regular sequence.

Problem 7. Show that $(x^k - y^k, x^l - y^l) : (xy)^{\infty} = (x - y)$. Which is the smallest integer m with the property that $(x^k - y^k, x^l - y^l) : (xy)^m = (x - y)$?

Problem 8. Let $L \subset \mathbb{Z}^n$ be a lattice. Prove that height $I_L = \operatorname{rank} L$.

Problem 9. Let \mathcal{B} be a basis of a lattice L for which \mathbb{Z}^n/L is torsionfree. Then $I_{\mathcal{B}} = I_L$ if and only if $I_{\mathcal{B}}$ is a prime ideal.

Problem 10. Let $I \subset S$ be the ideal of adjacent 2-minors of a $m \times n$ -matrix of indeterminates.

- (a) Show that I is a radical ideal if and only if $m \le 2$ or $n \le 2$.
- (b) Find a polynomial $f \in S \setminus I$ with $f^2 \in I$, if m = n = 3.

The ideals L(P,Q) are pretty well studied. Less is known about the algebras K[P,Q].

Problem 11. Show that all the algebras K[P,Q] are normal (and hence CM).

Problem 12. For which P and Q does the defining ideal J_{PQ} of K[P,Q] admit a quadratic Gröbner basis. Is the initial ideal of J_{PQ} squarefree for a suitable monomial order?

Problem 13. What is the projective dimension and the regularity of J_{PQ} ? For Q = [2] we have a Hibi ring and the answer is known.

Problem 14. Compute the graded Betti numbers of the defining ideal of a Hibi ring K[L] - for example when L is a planar lattice.

Problem 15. Let $I \subset S$ be generated by a regular sequence . Show that S/I is not rigid. (Hint: First show than I/I^2 is a free SI-module)

Problem 16. Let $I\subset S$ be a graded ideal, and assume that K is a perfect field and that R=S/I is a reduced CM ring. Then R is rigid if and only if $\Omega_{R/K}\otimes\omega_R$ is CM.

Problem 17. Let $I \subset S$ be a graded ideal, and assume that K is a perfect field and that R = S/I is a 1-dimensional reduced Gorenstein ring. Then R is rigid if and only if $\Omega_{R/K}$ is torsionfree.

Problem 18. Find an inseparable monomial ideal which is not rigid.

Problem 19. Let G be a graph and G^* its whisker graph. Show that G^* is bi-CM if and only if G is a complete graph.

Problem 20. Which of the ideals L(P, Q) is bi-CM?

Problem 21. Which of the matroidal ideals are inseparable?

Problem 22. Let \mathfrak{m} be the graded maximal ideal of $S = K[x_1, \ldots, x_n]$. Compute the module $T^1(S/\mathfrak{m}^2)$.

Problem 23. Let $I \subset \mathfrak{m}^2$ be a graded ideal with dim S/I = 0. Do we always have that $T^1(R) \neq 0$?

Problem 24. Let R = K[H] be a numerical semigroup ring. Show that $T^1(R)$ is module of finite length.

Problem 25. Compute the length of $T^1(R)$ when $R = K[t^{h_1}, t^{h_2}]$.