Connectedness and regularity for dual graphs of projective curves

Michela Di Marca (University of Genova)

EMS SUMMER SCHOOL ON MULTIGRADED ALGEBRA AND APPLICATIONS

August 17-24, Moieciu de Sus, Romania

joint work with Bruno Benedetti and Matteo Varbaro

Notations

• $S = k[x_0, x_1, ..., x_n]$, k some field.

Notations

- $S = k[x_0, x_1, ..., x_n]$, k some field.
- $I \subset S$ homogeneous equidimensional ideal with $Min(I) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$ set of minimal primes:

$$\sqrt{I} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$$
 and $\mathsf{height}(\mathfrak{p}_i) = \mathsf{height}(I), \ i = 1, \ldots, s.$

Notations

- $S = k[x_0, x_1, ..., x_n]$, k some field.
- $I \subset S$ homogeneous equidimensional ideal with $Min(I) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$ set of minimal primes:

$$\sqrt{I} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$$
 and $\mathsf{height}(\mathfrak{p}_i) = \mathsf{height}(I), \ i = 1, \ldots, s.$

• R = S/I, X = Proj(R),

$$X_{red} = X_1 \cup \ldots \cup X_s$$
,

where $X_i = \text{Proj}(S/\mathfrak{p}_i)$ are the irreducible components,

$$\operatorname{\mathsf{codim}}(X_i) = \operatorname{\mathsf{codim}}(X) = \operatorname{\mathsf{height}}(I), \ i = 1, \dots, s.$$

Dual graphs: general definition

Algebraic
$$(R = S/I)$$

Geometric
$$(X = Proj(R))$$

$$\mathsf{Min}(I) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$$

 X_1, \ldots, X_s irreducible components

Dual graphs: general definition

Algebraic
$$(R = S/I)$$
 Geometric $(X = Proj(R))$

$$Min(I) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\} \qquad X_1, \dots, X_s \text{ irreducible components}$$

$$G(I) = ([s], E), [s] = \{1, \dots, s\} \qquad G(X) = ([s], E), [s] = \{1, \dots, s\}$$

Dual graphs: general definition

$$\begin{aligned} &\mathsf{Algebraic}\;(R=S/I) & \mathsf{Geometric}\;(X=\operatorname{Proj}(R)) \\ &\mathsf{Min}(I) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\} & X_1, \dots, X_s \; \mathsf{irreducible} \; \mathsf{components} \\ & G(I) = ([s], E), \; [s] = \{1, \dots, s\} & G(X) = ([s], E), \; [s] = \{1, \dots, s\} \\ & \{i, j\} \in E & \{i, j\} \in E \\ & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow \\ & \mathsf{height}(\mathfrak{p}_i + \mathfrak{p}_j) = \mathsf{height}(I) + 1 & \mathsf{dim}(X_i \cap X_j) = \mathsf{dim}(X) - 1 \end{aligned}$$

Example: dual graph of subspace arrangements

 $X \subset \mathbb{P}^n_k$ subspace arrangement:

$$X = X_1 \cup \ldots \cup X_s$$

 X_i projective subspace of dimension d, $\forall i = 1, \ldots, s$.

Example: dual graph of subspace arrangements

 $X \subset \mathbb{P}^n_k$ subspace arrangement:

$$X = X_1 \cup \ldots \cup X_s$$

 X_i projective subspace of dimension d, $\forall i = 1, \dots, s$.

$$G(X) = ([s], E)$$
, where $\{i, j\} \in E \Leftrightarrow \dim(X_i \cap X_j) = d - 1$.

(Here "dim" is the dimension as projective spaces.)

Example: dual graph of simplicial complexes

 Δ pure simplicial complex on n+1 vertices with facets $\{F_1,\ldots,F_s\}$:

$$|F_i| = \dim(\Delta) + 1, \forall i = 1, \ldots, s.$$

Example: dual graph of simplicial complexes

 Δ pure simplicial complex on n+1 vertices with facets $\{F_1,\ldots,F_s\}$:

$$|F_i| = \dim(\Delta) + 1, \forall i = 1, \ldots, s.$$

For the squarefree monomial ideal I_{Δ} , the prime decomposition is:

$$I_{\Delta} = (x_i : i \notin F_1) \cap \ldots \cap (x_i : i \notin F_s).$$

 $X_{\Delta} := Proj(S/I_{\Delta})$ is a coordinate arrangement.

Example: dual graph of simplicial complexes

 Δ pure simplicial complex on n+1 vertices with facets $\{F_1,\ldots,F_s\}$:

$$|F_i| = \dim(\Delta) + 1, \forall i = 1, \ldots, s.$$

For the squarefree monomial ideal I_{Δ} , the prime decomposition is:

$$I_{\Delta} = (x_i : i \notin F_1) \cap \ldots \cap (x_i : i \notin F_s).$$

 $X_{\Delta} := Proj(S/I_{\Delta})$ is a coordinate arrangement.

Here $G(X_{\Delta}) = ([s], E)$, where $\{i, j\} \in E \Leftrightarrow |F_i \cap F_j| = \dim(\Delta)$.

Example: dual graph of curves

 $C \subset \mathbb{P}^n_k$ projective curve:

$$C = C_1 \cup \ldots \cup C_s$$

 C_i projective algebraic set of dimension 1, $\forall i=1,\ldots,s$.

Example: dual graph of curves

 $C \subset \mathbb{P}^n_k$ projective curve:

$$C = C_1 \cup \ldots \cup C_s$$

 C_i projective algebraic set of dimension 1, $\forall i = 1, \dots, s$.

Here G(C) = ([s], E), where $\{i, j\} \in E \Leftrightarrow C_i \cap C_j \neq \emptyset$.

The inclusions are strict

$$\left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ simplicial} \\ \mathrm{complexes} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ subspace} \\ \mathrm{arrangements} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ projective} \\ \mathrm{varieties} \end{array} \right\} = \left\{ \mathrm{all\ graphs} \right\}$$

The inclusions are strict

$$\left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ simplicial} \\ \mathrm{complexes} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ subspace} \\ \mathrm{arrangements} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ projective} \\ \mathrm{varieties} \end{array} \right\} = \left\{ \mathrm{all\ graphs} \right\}$$

By Bertini's theorem, starting from a dimension d projective variety X and doing d-2 generic hyperplane sections, we can find a curve C with

$$G(X) = G(C).$$

The inclusions are strict

$$\left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ simplicial} \\ \mathrm{complexes} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ subspace} \\ \mathrm{arrangements} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \mathrm{dual\ graphs} \\ \mathrm{of\ projective} \\ \mathrm{varieties} \end{array} \right\} = \left\{ \mathrm{all\ graphs} \right\}$$

By Bertini's theorem, starting from a dimension d projective variety X and doing d-2 generic hyperplane sections, we can find a curve C with

$$G(X) = G(C).$$

Hence:

$$\left\{ \begin{array}{c} \mathrm{dual\;graphs} \\ \mathrm{of\;subspace} \\ \mathrm{arrangements} \end{array} \right\} = \left\{ \begin{array}{c} \mathrm{dual\;graphs} \\ \mathrm{of\;line} \\ \mathrm{arrangements} \end{array} \right\} \; ; \; \left\{ \begin{array}{c} \mathrm{dual\;graphs} \\ \mathrm{of\;projective} \\ \mathrm{varieties} \end{array} \right\} = \left\{ \begin{array}{c} \mathrm{dual\;graphs} \\ \mathrm{of\;projective} \\ \mathrm{curves} \end{array} \right\}$$

Measures of connectedness

Two ways of quantifying the connectedness of a simple graph G on the vertex set [s] are provided by the following invariants:

• the diameter of G:

$$\operatorname{diam} G := \max\{d(i,j) : i,j \in [s]\};$$

Measures of connectedness

Two ways of quantifying the connectedness of a simple graph G on the vertex set [s] are provided by the following invariants:

• the diameter of G:

$$\operatorname{diam} G := \max\{d(i,j) : i,j \in [s]\};$$

• the integer *r* such that *G* is *r*-connected:

 $r := \min\{|A| : A \subset [s], G_{[s] \setminus A} \text{ is disconnected or a single point}\}.$

Measures of connectedness

Two ways of quantifying the connectedness of a simple graph G on the vertex set [s] are provided by the following invariants:

• the diameter of G:

$$\operatorname{diam} G := \max\{d(i,j) : i,j \in [s]\};$$

• the integer *r* such that *G* is *r*-connected:

$$r:=\min\{|A|:A\subset [s],\ G_{[s]\setminus A}\ \text{is disconnected or a single point}\}.$$

If G is r-connected, every vertex in G has at least r neighbours. G is said r-regular when every vertex of G has exactly r neighbours.

Castelnuovo-Mumford regularity

Consider a minimal free resolution of *R* as *S*-module:

$$\mathbb{F}_{\cdot}: 0 \to F_p \to \dots F_j \to F_{j-1} \to \dots \to F_1 \to F_0 \to R \to 0.$$

Castelnuovo-Mumford regularity

Consider a minimal free resolution of *R* as *S*-module:

$$\mathbb{F}_{\cdot}: 0 \to F_p \to \dots F_j \to F_{j-1} \to \dots \to F_1 \to F_0 \to R \to 0.$$

The (Castelnuovo-Mumford) regularity of R is:

$$reg(R) := min\{r \mid F_j \text{ is generated in degrees } \leq r + j, \ \forall j\}.$$

(If
$$X = Proj(R)$$
, then $reg(X) = reg(R) - 1$.)

Castelnuovo-Mumford regularity

Consider a minimal free resolution of *R* as *S*-module:

$$\mathbb{F}_{\cdot}: 0 \to F_p \to \dots F_j \to F_{j-1} \to \dots \to F_1 \to F_0 \to R \to 0.$$

The (Castelnuovo-Mumford) regularity of R is:

$$reg(R) := min\{r \mid F_j \text{ is generated in degrees } \leq r + j, \ \forall j\}.$$

(If
$$X = Proj(R)$$
, then $reg(X) = reg(R) - 1$.)

Remark

When $I = (f_1, ..., f_h)$ is a complete intersection ideal (i.e. h = height(I)), $deg(f_i) = d_i$ and R = S/I, we have:

$$reg(R) = d_1 + \ldots + d_h - h.$$

Good properties on $S/I \Rightarrow$ Better connectedness on G(I)

Theorem (Hartshorne 1962)

If $X \subset \mathbb{P}^n$ is arithmetically Cohen-Macaulay, G(X) is connected.

Good properties on $S/I \Rightarrow$ Better connectedness on G(I)

Theorem (Hartshorne 1962)

If $X \subset \mathbb{P}^n$ is arithmetically Cohen-Macaulay, G(X) is connected.

Theorem (Benedetti, Varbaro 2015)

 $X=X_1\cup\ldots\cup X_s\subset\mathbb{P}^n$ arithmetically Gorenstein (e.g. complete intersection) subspace arrangement of regularity r.

Then G(X) is r-1-connected, and hence

$$\operatorname{diam}(G(X)) \leq \left\lfloor \frac{s-2}{r} \right\rfloor + 1.$$

Example: lines on a smooth quadric

If $Q \subseteq \mathbb{P}^3$ is a smooth quadric, and X is the union of p lines of a ruling of Q, and q of the other ruling, then G(X) is the complete bipartite graph $K_{p,q}$.

Figure : $K_{3,3}$

Example: lines on a smooth quadric

If $Q \subseteq \mathbb{P}^3$ is a smooth quadric, and X is the union of p lines of a ruling of Q, and q of the other ruling, then G(X) is the complete bipartite graph $K_{p,q}$.

Figure : $K_{3,3}$

One can check that $X \subseteq \mathbb{P}^3$ is a complete intersection (of Q and an union of p planes) if and only if p = q. In this case

- $\operatorname{reg} X 1 = p$.
- G(X) is *p*-connected.
- G(X) is *p*-regular.

Example: 27 lines on a cubic

Let $Z \subseteq \mathbb{P}^3$ be a smooth cubic, and $X = \bigcup_{i=1}^{27} X_i$ be the union of all the lines on Z.

Figure : Clebsch's cubic: $x_0^3 + x_1^3 + x_2^3 + x_3^3 = (x_0 + x_1 + x_2 + x_3)^3$

Example: 27 lines on a cubic

Let $Z \subseteq \mathbb{P}^3$ be a smooth cubic, and $X = \bigcup_{i=1}^{27} X_i$ be the union of all the lines on Z.

Figure : Clebsch's cubic: $x_0^3 + x_1^3 + x_2^3 + x_3^3 = (x_0 + x_1 + x_2 + x_3)^3$

X is a complete intersection (of Z and an union of 9 planes). In this case:

- reg X 1 = 10.
- G(X) is 10-connected.
- G(X) is 10-regular.

Examples in higher degrees

• The general surface of degree $d \ge 4$ in \mathbb{P}^3 contains no lines.

Examples in higher degrees

- The general surface of degree $d \ge 4$ in \mathbb{P}^3 contains no lines.
- The Fermat surfaces Z of degree d with equation:

$$x_0^d + x_1^d + x_2^d + x_3^d = 0,$$

contains $3d^2$ lines.

Examples in higher degrees

- The general surface of degree $d \ge 4$ in \mathbb{P}^3 contains no lines.
- The Fermat surfaces Z of degree d with equation:

$$x_0^d + x_1^d + x_2^d + x_3^d = 0,$$

contains $3d^2$ lines.

- For every d, this line arrangement X on Z has dual graph G(X) consisting in 3d complete graphs K_d , and each pair of K_d is connected by a complete matching.
- G(X) is 4d 2-regular.
- X is a complete intersection between Z and an union of 3d planes and hence reg(X) = (4d 2) 1.

The two notions of regularity coincides!

Theorem (Benedetti, D., Varbaro)

 $X \subset \mathbb{P}^n$ arithmetically Gorenstein (e.g. complete intersection) line arrangement with regularity r having planar singularities. Then G(X) is r-1-regular.

The two notions of regularity coincides!

Theorem (Benedetti, D., Varbaro)

 $X \subset \mathbb{P}^n$ arithmetically Gorenstein (e.g. complete intersection) line arrangement with regularity r having planar singularities.

Then G(X) is r-1-regular.

In other words, we want a line arrangement such that if three lines meet at the same point, then they are all coplanar.

The two notions of regularity coincides!

Theorem (Benedetti, D., Varbaro)

 $X \subset \mathbb{P}^n$ arithmetically Gorenstein (e.g. complete intersection) line arrangement with regularity r having planar singularities.

Then G(X) is r-1-regular.

In other words, we want a line arrangement such that if three lines meet at the same point, then they are all coplanar.

Remark

 If no three lines of the arrangement meet at the same point, the hypothesis of having only planar singularities is fulfilled.

The hypothesis of having planar singularities is necessary

Example

- Let $Y := Proj(S/J) \subset \mathbb{P}^{n-1}$, where $J = (f_1, \dots, f_d)$ is a complete intersection of n-1 polynomials of degree d.
- The cone $X \subset \mathbb{P}^n$ of Y is an arrangement of d^{n-1} lines in \mathbb{P}^n with

$$\operatorname{reg} X = (n-1)d - n + 2.$$

• Since all lines in X pass through the origin, G(X) is the complete graph, so it is $(d^{n-1}-1)$ -regular and

$$d^{n-1}-1 >> ((n-1)d-n+2)-1.$$

The hypothesis of having planar singularities is necessary

Example

- Let $Y := Proj(S/J) \subset \mathbb{P}^{n-1}$, where $J = (f_1, \dots, f_d)$ is a complete intersection of n-1 polynomials of degree d.
- The cone $X \subset \mathbb{P}^n$ of Y is an arrangement of d^{n-1} lines in \mathbb{P}^n with

$$\operatorname{reg} X = (n-1)d - n + 2.$$

• Since all lines in X pass through the origin, G(X) is the complete graph, so it is $(d^{n-1}-1)$ -regular and

$$d^{n-1} - 1 >> ((n-1)d - n + 2) - 1.$$

There are also examples of complete intersection line arrangements with non-planar singularities whose dual graph is not even regular!

Lines on a smooth surface

If an arrangement of lines in \mathbb{P}^3 is contained in a smooth surface, the singularities of the arrangement are always planar.

Lines on a smooth surface

If an arrangement of lines in \mathbb{P}^3 is contained in a smooth surface, the singularities of the arrangement are always planar.

Corollary

Suppose to have the line arrangement

$$X = L_1 \cup \ldots \cup L_{de} \subset \mathbb{P}^3$$
,

consisting of $d \cdot e$ lines.

If the lines lie on two surfaces of degree d and e without common component and one of them is smooth, then each line meets exactly

$$d + e - 2$$

of the others.

What about other projective curves?

Theorem (Benedetti, Bolognese, Varbaro 2015)

 $X \subset \mathbb{P}^n$ arithmetically Gorenstein curve of regularity r. If every primary component of X has regularity $\leq R$, then

$$G(X)$$
 is $\left\lfloor \frac{r+R-2}{R} \right\rfloor$ – connected.

What about other projective curves?

Theorem (Benedetti, Bolognese, Varbaro 2015)

 $X \subset \mathbb{P}^n$ arithmetically Gorenstein curve of regularity r. If every primary component of X has regularity $\leq R$, then

$$G(X)$$
 is $\left\lfloor \frac{r+R-2}{R} \right\rfloor$ – connected.

In particular,

$$\operatorname{diam}(G(X)) \leq \left\lfloor \frac{R(s-2)}{r+R-2} \right\rfloor + 1.$$

What about other projective curves?

Theorem (Benedetti, Bolognese, Varbaro 2015)

 $X \subset \mathbb{P}^n$ arithmetically Gorenstein curve of regularity r. If every primary component of X has regularity $\leq R$, then

$$G(X)$$
 is $\left\lfloor \frac{r+R-2}{R} \right\rfloor$ – connected.

In particular,

$$\operatorname{diam}(G(X)) \leq \left\lfloor \frac{R(s-2)}{r+R-2} \right\rfloor + 1.$$

Conjecture (Benedetti, Varbaro 2014)

If $X \subset \mathbb{P}^n$ is arithmetically Cohen-Macaulay and $I_X \subset S$ is generated by quadrics, then

$$diam(G(X)) \leq height(I_X) (= codim(X)).$$

About the conjecture

Proposition

The conjecture is true up to codimension 4 for aGorenstein reduced.

About the conjecture

Proposition

The conjecture is true up to codimension 4 for aGorenstein reduced.

Without the assumption "generated by quadrics" the conjecture is false already for line arrangements in codimension 2 (while for simplicial complex is always true for codim = 2, 3).

About the conjecture

Proposition

The conjecture is true up to codimension 4 for aGorenstein reduced.

Without the assumption "generated by quadrics" the conjecture is false already for line arrangements in codimension 2 (while for simplicial complex is always true for codim = 2, 3).

Example (Schläfli double six)

There is a sub-arrangement X of the 27 lines on a smooth cubic having the following dual graph:

X is a complete intersection of a cubic and a quartic. Yet, diam(G(X)) = 3.