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polynomial of the form u − v , where u and v are monomials in S .
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Let K be a field. We denote by S = K [x1, . . . , xn] the polynomial
ring in the variables x1, . . . , xn. A binomial belonging to S is a
polynomial of the form u − v , where u and v are monomials in S .

A binomial ideal is an ideal of S generated by binomials. Any
binomial ideal is generated by a finite number of binomials.

An important class of binomial ideals are the so-called toric ideals.
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, 1 ≤ j ≤ n

be the column vectors of A.

We write Zd×n for the set of d × n-matrices A = (aij) 1≤i≤d
1≤j≤n

with

each aij ∈ Z.

As usual a · b =
∑n

i=1 aibi denotes the inner product of the vectors
a = (a1, . . . , an)

t and b = (b1, . . . , bn)
t . Here ct denotes transpose

of a vector c.
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1≤j≤n

∈ Zd×n is called a configuration matrix if

there exists c ∈ Qd such that

aj · c = 1, 1 ≤ j ≤ n.

For example, A =

(

1 3 2
0 2 1

)

is a configuration matrix, while

(a1, . . . , an) ∈ Z1×n is a configuration matrix if and only if
a1 = a2 = . . . = an 6= 0.

Now let T = K [t±1
1 , . . . , t±1

d ] be the Laurent polynomial ring over
K in the variables t1, . . . , tn, and let A ∈ Zd×n with column
vectors aj .
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We define a K -algebra homomorphism

π : S → T with xj 7→ taj .

The image of π is the K -subalgebra K [ta1 , . . . , tan ] of T , denoted

K [A]. We call K [A] the toric ring of A.

For the configuration matrix A of the above example we have
K [A] = K [t1, t

3
1 t

2
2 , t

2
1 t2].

The kernel of π is denoted by IA and is called the toric ideal of A.
In our example, we have IA = (x1x2 − x23 ).

Proposition: Let A ∈ Zd×n. Then dimK [A] = rankA.
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Proof. Let K (A) be the quotient field of K [A]. Then the Krull
dimension of K [A] is equal to the transcendence degree
trdeg(K (A)/K ) of K (A) over K .

Let V ⊂ Qd be the Q-subspace of Qd generated by the column
vectors of A. Then rankA = dimQ V .

Let b1, . . . ,bm be a Q-basis of integer vectors of V . Then
m = rankA and K (A) = K (tb1 , . . . , tbm). The desired result will
follow once we have shown that the elements tb1 , . . . , tbm are
algebraically independent over K .



To see this, let F ∈ K [y1, . . . , ym] be a polynomial with
F (tb1 , . . . , tbm) = 0. Say, F =

∑

c acy
c with ac ∈ K .

Then
0 =

∑

c

act
c1b1+···+cmbm .

Since the vectors b1, . . . ,bm are linearly independent it follows
that the monomials tc1b1+···cmbm are pairwise distinct. This implies
that F = 0. �
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belonging to Zn, we introduce the binomial fb ∈ S , defined by

fb =
∏

bi>0

x
bi
i −

∏

bj<0

x
−bj
j .

Note that fb = xb
+ − xb

−
, where

b+i =

{

bi , if bi ≥ 0,
0, if bi < 0,

and b−i =

{

0, if bi > 0,
−bi , if bi ≤ 0.
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2
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For example, if b = (1,−1, 0, 2), then fb = x1x
2
4 − x2.

If b = (1, 2, 3, 1), then fb = x1x
2
2 x

3
3 x4 − 1.

If f = x21 x2 − x1x
2
2x

3
3 x4, then f = x1x2fb with b = (1,−1,−3,−1).

Theorem. Any toric ideal is a binomial ideal. More precisely, let
A ∈ Zd×n. Then IA is generated by the binomials fb with b ∈ Zn

and Ab = 0.
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Proof. We first show that IA is a binomial ideal. Let f ∈ Ker π
with f =

∑

u λuu, λu ∈ K and each u a monomial in S . We write
f =

∑

c f
(c), where f (c) =

∑

u, π(u)=tc λuu.

It follows that

0 = π(f ) =
∑

c

π(f (c)) =
∑

c

(
∑

u, π(u)=tc

λu)t
c,

and hence
∑

u, π(u)=tc λu = 0 for all c. Thus if f (c) 6= 0 and

u ∈ supp(f (c)), then f (c) =
∑

v∈supp(f (c)) λv (v − u).

Finally, let fb ∈ S . Then π(fb) = tAb
+ − tAb

−
. Hence fb ∈ Ker π if

and only if Ab+ = Ab−, and this is the case if and only if Ab = 0.
�
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What are configuration matrices good for?

Proposition. Let A ∈ Zd×n. The following conditions are
equivalent:

(a) A is a configuration matrix;

(b) for all b = (b1, . . . , bn)
t ∈ Zn with Ab = 0 we have

∑n
i=1 bi = 0;

(c) IA is a graded ideal.

Proof. We only proof (b)⇔ (c). The binomials fb with Ab = 0
generate IA. Thus IA is graded if and only if all fb are
homogeneous. This is the case if and only if

∑n
i=1 bi = 0 for all b

with Ab = 0. �.
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We now give another interpretation of toric ideals.

A subgroup L of Zn is called a lattice. Recall from basic algebra
that L is a free abelian group of rank m ≤ n. The binomial ideal
IL ⊂ S generated by the binomials fb with b ∈ L is called the
lattice ideal of L.

Consider for example, the lattice L ⊂ Z3 with basis
(1, 1, 1), (1, 0,−1). Then b ∈ L if and only if Ab = 0 where
A = (1− 2, 1). Thus in this case we have that IL is a toric ideal.

On the other hand, any toric ideal is a lattice ideal.
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Proposition. Let A ∈ Zd×n. Then the toric ideal IA is equal to the
lattice ideal IL, where L = {b : Ab = 0}.
Proof: We know that IA is generated by the binomials fb with
Ab = 0. �

Not all lattice ideals are toric ideals. The simplest such example is
the ideal IL for L = 2Z ⊂ Z. Here IL = (x2 − 1). If IL would be a
toric ideal it would be a prime ideal. But x2 − 1 = (x + 1)(x − 1),
and so IL is not a prime ideal.

We have the following general result:

Theorem. Let L ⊂ Zn be a lattice. The following conditions are
equivalent:

(a) the abelian group Zn/L is torsionfree;

(b) IL is a prime ideal;

The equivalent conditions hold, if and only if IL is a toric ideal.
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b ∈ L if and only if Ab = 0, where A is the matrix whose column
vectors are a1, . . . , an. Therefore, IL is the toric ideal of A, and
hence a prime ideal. �
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free, there exists an embedding Zn/L ⊂ Zd for some d . Let
e1, . . . , en be the canonical basis of Zn. Then for i = 1, . . . , n,
ei + L is mapped to ai ∈ Zd via this embedding. It follows that
∑n

i=1 biai = 0 if and only if b = (b1, . . . , bn)
t ∈ L. In other words,

b ∈ L if and only if Ab = 0, where A is the matrix whose column
vectors are a1, . . . , an. Therefore, IL is the toric ideal of A, and
hence a prime ideal. �

Let I and J be two ideals. The saturation of I with respect to J is
the ideal I : J∞, where by definition I : J∞ =

⋃

k(I : J
k).
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Proof: We set x =
∏n

i=1 xi . Then

I : (

n
∏

i=1

xi)
∞ = ISx ∩ S .

Consider the polynomial ring T = K [x1, . . . , xn, y1, . . . , yn] over K

in the variables x1, . . . , xn, y1, . . . , yn. Then

T/(x1y1 − 1, . . . , xnyn − 1) ' Sx , and hence
T/(I , x1y1 − 1, . . . , xnyn − 1)T ' Sx/ISx .

Therefore, ISx ∩ S = (I , x1y1 − 1, . . . , xnyn − 1)T ∩ S , from which
it follows that I : (

∏n
i=1 xi)

∞ is a binomial ideal. �
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Proof. Let

L = {b ∈ Zn : ufb ∈ I for some monomial u}.

We claim that L ⊂ Zn is a lattice. Indeed, if b ∈ L then ufb ∈ I for
some monomial u and hence uf−b = −ufb ∈ I . This shows that
−b ∈ L. Now let c ∈ L be another vector. Then there exists a
monomial v such that vfc ∈ I . We get

(ufb)(vfc) = uv(wfb+c − xb
−

fc − xc
−

fb)

= uvwfb+c − xb
−

u(vfc)− xc
−

v(ufb).

It follows from this equation that b+ c ∈ L. This proves the claim.
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Proof. Let

L = {b ∈ Zn : ufb ∈ I for some monomial u}.

We claim that L ⊂ Zn is a lattice. Indeed, if b ∈ L then ufb ∈ I for
some monomial u and hence uf−b = −ufb ∈ I . This shows that
−b ∈ L. Now let c ∈ L be another vector. Then there exists a
monomial v such that vfc ∈ I . We get

(ufb)(vfc) = uv(wfb+c − xb
−

fc − xc
−

fb)

= uvwfb+c − xb
−

u(vfc)− xc
−

v(ufb).

It follows from this equation that b+ c ∈ L. This proves the claim.

In the next step one shows that I : (
∏n

i=1 xi )
∞ = IL. �
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that 1− xb ∈ ILSx where x =
∏n

i=1 xi . Observe that ILSx is
generated by the binomials 1− xc with c ∈ L. Therefore,Sx/ILSx is
isomorphic to the group ring K [Zn/L] which admits the K -basis
consisting of the elements of the group G = Zn/L.

Let g = b+ L. Then 1− g = 0 in K [Zn/L] because 1− xb ∈ ILSx .
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Lattice ideals are saturated, as the following result shows

Theorem. Let L ⊂ Zn be a lattice. Then IL : (
∏n

i=1 xi)
∞ = IL.

Proof. We only need to show that IL : (
∏n

i=1 xi )
∞ ⊂ IL. Let

f ∈ IL : (
∏n

i=1 xi )
∞. We may assume that f is a binomial, and we

may further assume that f = fb for some b ∈ Zn.

We want to show that b ∈ L. Since fb ∈ IL : (
∏n

i=1 xi )
∞, it follows

that 1− xb ∈ ILSx where x =
∏n

i=1 xi . Observe that ILSx is
generated by the binomials 1− xc with c ∈ L. Therefore,Sx/ILSx is
isomorphic to the group ring K [Zn/L] which admits the K -basis
consisting of the elements of the group G = Zn/L.

Let g = b+ L. Then 1− g = 0 in K [Zn/L] because 1− xb ∈ ILSx .
This implies that b+ L = 0 + L, and hence b ∈ L, as desired. �

Corollary. Let I ⊂ S be a binomial ideal. Then I is a lattice ideal
if and only if I : (

∏n
i=1 xi )

∞ = I .
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We have seen above that IL is not always a prime ideal. The lattice
ideal IL need to be even a radical ideal if char(K ) = p > 0.

Indeed if L = (p,−p) ⊂ Z2, then IL = (xp − yp), and we have
f = x − y 6∈ IL but f p ∈ IL.

However, if char(K ) = 0 or char(K ) = p > 0 and p is big enough,
then IL is a radical ideal. More precisely, we have

Theorem Let L ⊂ Zn be a lattice and let t be the maximal order
of a torsion element of Zn/L. If char(K ) = 0 or char(K ) > t, then
IL is a radical ideal.



Lattice basis ideals

Let L ⊂ Zn be a lattice and let B = b1, . . . ,bm be a Z-basis of L.
The ideal IB is called a lattice basis ideal of L.



Lattice basis ideals

Let L ⊂ Zn be a lattice and let B = b1, . . . ,bm be a Z-basis of L.
The ideal IB is called a lattice basis ideal of L.

In general, IB 6= IL. Consider for example, A = (3, 4, 5) ∈ Z1×3.
The toric ideal IA is the lattice ideal of the lattice L with basis
B = (2, 1,−2), (1,−2, 1). Then IB = (x2y − z2, xz − y2), while IL
also contains the binomial x3 − yz .
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However one has

Corollary. Let B be a basis of the lattice L. Then
IB : (
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∞ = IL.
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We fix a field K , and let X = (xij) be an (m × n)-matrix of
indeterminates. The ideal of all 2-minors of X is a prime ideal and
and hence may be viewed as a toric ideal, or as a lattice ideal IL for
the lattice L ⊂ Zm×n with lattice basis B consisting of the vectors

eij + ei+1,j+1 − ei ,j+1 − ei+1,j , 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1.



Proof. There exists a lattice L′ ⊂ Zn such that
IB : (

∏n
i=1 xi )

∞ = IL′ . Since B ⊂ L′ it follows that L ⊂ L′.

On the other hand, IB ⊂ IL. Thus,
IL′ = IB : (

∏n
i=1 xi)

∞ ⊂ IL : (
∏n

i=1 xi )
∞ = IL. This shows that

L′ ⊂ L, and hence L′ = L. �

We fix a field K , and let X = (xij) be an (m × n)-matrix of
indeterminates. The ideal of all 2-minors of X is a prime ideal and
and hence may be viewed as a toric ideal, or as a lattice ideal IL for
the lattice L ⊂ Zm×n with lattice basis B consisting of the vectors

eij + ei+1,j+1 − ei ,j+1 − ei+1,j , 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1.

The ideal IB is called the ideal of adjacent minors of X . It has first
been studied by Hoşten and Sullivant.
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Let I be an ideal in a Noetherian ring. Then there exists an integer
k such that (
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I )k ⊂ I . The smallest integer with this property is

called the index of nilpotency, denoted nilpot(I ).



In general, IB is not a radical ideal.

Let I be an ideal in a Noetherian ring. Then there exists an integer
k such that (

√
I )k ⊂ I . The smallest integer with this property is

called the index of nilpotency, denoted nilpot(I ).

Theorem. (Ene, H, Hibi and Qureshi) I be the ideal of adjacent
2-minors of the generic (m × n)-matrix X , and let n = 4k + p and
n = 4l + q with 0 ≤ p, q < 4. Then

nilpot(I ) ≥ (k + bp
3
c)(l + bq

3
c) + 1 ≈ mn

16
.



Problems

Problem 1. Show that

A =









2 0 3 4
1 −2 1 −1
3 0 5 1
7 −1 12 5









is a configuration matrix.

Problem 2. Let A ∈ Zd×n. Then IA is a principal ideal if and only
if rankA = n − 1.

Problem 2. Let A = (3, 4, 5) ∈ Z1×3. Compute IA.



Problem 3. Let I ⊂ K [x1, . . . , xn, y1, . . . , yn] be the ideal
generated by a set S of 2-minors of the 2× n-matrix

X =

(

x1 · · · xn
y1 · · · yn

)

. We denote by [i , j] a 2-minor with rows i

and j . Show that I is a prime ideal if and only [n] is the disjoint
union of sets S1, . . . ,Sk such that S =

⋃k
i=1{[i , j] : {i , j} ⊂ Sk}.

Problem 4. Let char(K ) = 0 and let b ∈ Zn. Then I = (fb) ⊂ S

is a radical ideal.

Problem 5. Let b1, . . . ,br ∈ Zn be Q-linearly independent
vectors. Then fb1 , . . . , fbr is a regular sequence.



Problem 6. Show that (xk − yk , x l − y l) : (xy)∞ = (x − y).
Which is the smallest integer m with the property that
(xk − yk , x l − y l) : (xy)m = (x − y)?

Problem 7. Let L ⊂ Zn be a lattice. Prove that height IL = rankL.

Problem 6. Let B be a basis of a lattice L for which Zn/L is
torsionfree. Then IB = IL if and only if IB is a prime ideal.

Problem 7. Let I ⊂ S be the ideal of adjacent 2-minors of a
m × n-matrix of indeterminates.
(a) Show that I is a radical ideal if and only if m ≤ 2 or n ≤ 2.
(b) Find a polynomial f ∈ S \ I with f 2 ∈ I , if m = n = 3.
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