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Toric ideals

Let K be a field. We denote by S = K|[xq,..., x,] the polynomial
ring in the variables xi, ..., x,. A binomial belonging to S is a
polynomial of the form u — v, where u and v are monomials in S.

A binomial ideal is an ideal of S generated by binomials. Any
binomial ideal is generated by a finite number of binomials.

An important class of binomial ideals are the so-called toric ideals.
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In order to define toric ideals we let A = (ajj)1<i<s be a

. ] 1<j<n
d X n-matrix of integers and let
alj
a2j .
a; = . ) 1 SJ <n
adj

be the column vectors of A.

We write Z*" for the set of d x n-matrices A = (a;;)1<i<a with
1<j<n

each a; € Z.
As usual a-b = 27:1 a;b; denotes the inner product of the vectors
a=1(a,...,an) and b = (by,..., b,)". Here c' denotes transpose
of a vector c.
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A matrix A = (ajj)1<i<a € 79%" is called a configuration matrix if
1<j<n

there exists ¢ € Q9 such that

aj-c=1, 1<,<n.

For example, A = (1 3 2) is a configuration matrix, while

0 21
(a1,...,an) € ZY" is a configuration matrix if and only if
31232:...23,,750.

Now let T = K[tlil, . tjl] be the Laurent polynomial ring over
K in the variables t;,...,t,, and let A € Z9*" with column
vectors a;.
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We define a K-algebra homomorphism
m:S5S—= T with xj—t%.
The image of 7 is the K-subalgebra K[t?',... t?"] of T, denoted

K[A]. We call K[A] the toric ring of A.

For the configuration matrix A of the above example we have
KIA] = K[t1, 52, t2t5].

The kernel of 7 is denoted by /4 and is called the toric ideal of A.
In our example, we have /4 = (x1x2 — x3).

Proposition: Let A € Z9*". Then dim K[A] = rank A.
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Proof. Let K(A) be the quotient field of K[A]. Then the Krull
dimension of K[A] is equal to the transcendence degree
trdeg(K(A)/K) of K(A) over K.

Let V C Q? be the Q-subspace of Q9 generated by the column
vectors of A. Then rank A = dimg V.

Let by,...,b,, be a Q-basis of integer vectors of V. Then

m = rank A and K(A) = K(t", ... tP"). The desired result will
follow once we have shown that the elements tP1, ... tP» are
algebraically independent over K.



To see this, let F € K[yi,...,Ym| be a polynomial with
F(t,...,tbm) = 0. Say, F = > ocacy® with ac € K.

Then
0 — Z actclb1+"'+cmbm.
c

Since the vectors by, ..., b,, are linearly independent it follows
that the monomials t&1P1t¢mbm are pajrwise distinct. This implies
that F =0. O
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Given a column vector

belonging to Z", we introduce the binomial f, € S, defined by

_ b; —b;
fo= [T 5" =I5

b;>0 b;j<0

Note that f, = x®" — xP™, where

b, if b >0 _ [0, ifh>0
+ _ 1 I Y _ ) 1 )
bi _{ 0, ifb<o, M b _{ —bj,



For example, if b = (1,—1,0,2), then f, = x1xZ — xo.
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For example, if b = (1,—1,0,2), then f, = Xle — X2.
If b=(1,2,3,1), then f, = x1x3x3x4 — 1.

If f= X12X2 — X1X22X§’X4, then f = xyxofy, with b = (1, -1, -3, —1).

Theorem. Any toric ideal is a binomial ideal. More precisely, let
A € 79" Then I, is generated by the binomials f, with b € Z”
and Ab = 0.
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Proof. We first show that /4 is a binomial ideal. Let f € Kerm
with f =" Ayu, A\, € K and each u a monomial in 5. We write
f=>. £(©) where f(€) = Zu, (u)=te Aul.

It follows that

O=n(f)=> a(fN=>D"( > It

c C u, w(u)=te

and hence ), x(u)=te Au = 0 for all c. Thus if f(€) £ 0 and
u € supp(f(©)), then f(¢) = 2 vesupp(FO) Av(v — ).
Finally, let f, € S. Then (%) = tAb" — tAb”  Hence f, € Ker 7 if

and only if Ab™ = Ab~, and this is the case if and only if Ab = 0.
O
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What are configuration matrices good for?

Proposition. Let A € Z9*". The following conditions are
equivalent:

(a) Ais a configuration matrix;

(b) for all b= (b1,...,b,)" € Z" with Ab =0 we have
>y bi =0;
(c) la is a graded ideal.

Proof. We only proof (b)< (c). The binomials f, with Ab =0
generate /4. Thus /4 is graded if and only if all f, are
homogeneous. This is the case if and only if -7 ; b; = 0 for all b
with Ab = 0. [O.
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Lattice ideals

We now give another interpretation of toric ideals.

A subgroup L of Z" is called a lattice. Recall from basic algebra
that L is a free abelian group of rank m < n. The binomial ideal
I; C S generated by the binomials f, with b € L is called the
lattice ideal of L.

Consider for example, the lattice L C Z3 with basis
(1,1,1),(1,0,—1). Then b € L if and only if Ab = 0 where
A= (1-2,1). Thus in this case we have that /, is a toric ideal.

On the other hand, any toric ideal is a lattice ideal.
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toric ideal it would be a prime ideal. But x*> — 1 = (x + 1)(x — 1),
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Proposition. Let A € Z9*". Then the toric ideal /4 is equal to the
lattice ideal /;, where L = {b: Ab = 0}.

Proof: We know that /4 is generated by the binomials f;, with
Ab=0. I

Not all lattice ideals are toric ideals. The simplest such example is
the ideal /; for L = 27 C Z. Here I, = (x*> —1). If I, would be a
toric ideal it would be a prime ideal. But x*> — 1 = (x + 1)(x — 1),
and so /; is not a prime ideal.

We have the following general result:

Theorem. Let L C 7" be a lattice. The following conditions are
equivalent:

(a) the abelian group Z"/L is torsionfree;

(b) I is a prime ideal;

The equivalent conditions hold, if and only if /; is a toric ideal.



We only indicate the proof of (a) = (b): Since Z"/L is torsion
free, there exists an embedding Z" /L C 79 for some d. Let
ei,...,e, be the canonical basis of Z". Then for i =1,...,n,

e; + L is mapped to a; € Z via this embedding. It follows that

> i, bjaj=0if and only if b = (by,...,by)" € L. In other words,
b € L if and only if Ab = 0, where A is the matrix whose column
vectors are ai,...,an. Iherefore, I, is the toric ideal of A, and
hence a prime ideal. [J



We only indicate the proof of (a) = (b): Since Z"/L is torsion
free, there exists an embedding Z" /L C 79 for some d. Let
ei,...,e, be the canonical basis of Z". Then for i =1,...,n,

e; + L is mapped to a; € Z via this embedding. It follows that

> i, bjaj=0if and only if b = (by,...,by)" € L. In other words,
b € L if and only if Ab = 0, where A is the matrix whose column
vectors are ai,...,an. Iherefore, I, is the toric ideal of A, and
hence a prime ideal. [J

Let / and J be two ideals. The saturation of / with respect to J is
the ideal / : J>, where by definition / : J> = J, (I : J¥).
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Proposition. Let / C S be a binomial ideal. Then /: (T]{_; x;)>

is also a binomial ideal.

Proof: We set x = [[7_; x;. Then

l: (l_Ix,-)OO =15NS.
i=1

Consider the polynomial ring T = K[x1,...,Xn, Y1, .-

in the variables x1,...,Xp, ¥1,...,Yn. Then

T/(xay1 —1,...,xpyn — 1) =~ S, and hence
T/(I,xiy1 — 1,...,Xayn — 1) T =~ S/ ISx.

, ¥n] over K

Therefore, 1S, NS = (I,x1y1 — 1,...,xayn — 1) T NS, from which

it follows that / : ([[;_; xi)> is a binomial ideal. O
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Theorem. Let /| C S be a binomial ideal. Then /: ([[/_; x;))> is a
lattice ideal.

Proof. Let

L={beZ": ufy el for some monomial u}.

We claim that L C Z" is a lattice. Indeed, if b € L then ufy, € | for
some monomial u and hence uf_, = —ufy, € I. This shows that
—b € L. Now let c € L be another vector. Then there exists a
monomial v such that vfc € . We get

(ufy)(v) = uv(Whic—x* fo—x° f)

= uwwhye —xP u(vi) — x¢ v(ufy).

It follows from this equation that b+ c € L. This proves the claim.



Theorem. Let /| C S be a binomial ideal. Then /: ([[/_; x;))> is a
lattice ideal.

Proof. Let

L={beZ": ufy el for some monomial u}.

We claim that L C Z" is a lattice. Indeed, if b € L then ufy, € | for
some monomial u and hence uf_, = —ufy, € I. This shows that
—b € L. Now let c € L be another vector. Then there exists a
monomial v such that vfc € . We get
(uy)(vE) = uv(Whic—x" fo—x° f)
= uwwhye —xP u(vi) — x¢ v(ufy).
It follows from this equation that b+c € L. This proves the claim.

In the next step one shows that / : ([]7_; x;)>* = /. O
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f el (I17.1 xi)>. We may assume that f is a binomial, and we
may further assume that f = f, for some b € Z".
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We want to show that b € L. Since f, € I : ([];/_; xi)>°, it follows
that 1 — xP € /; S, where x = [17_; x;. Observe that I; S is
generated by the binomials 1 — x¢ with ¢ € L. Therefore,S, /I, Sx is
isomorphic to the group ring K[Z" /L] which admits the K-basis
consisting of the elements of the group G = Z"/L.
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Proof. We only need to show that /; : ([]7_; x;)>° C /.. Let
f el (I17.1 xi)>. We may assume that f is a binomial, and we
may further assume that f = £, for some b € Z".

n

We want to show that b € L. Since f, € I : ([];/_; xi)>°, it follows
that 1 — xP € /; S, where x = [17_; x;. Observe that I; S is
generated by the binomials 1 — x¢ with ¢ € L. Therefore,S, /I, Sx is
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consisting of the elements of the group G = Z"/L.
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Lattice ideals are saturated, as the following result shows
Theorem. Let L C Z" be a lattice. Then Ip : (J]/_, xi)>° = .

Proof. We only need to show that /; : ([]7_; x;)>° C /.. Let
f el (I17.1 xi)>. We may assume that f is a binomial, and we
may further assume that f = £, for some b € Z".

n

We want to show that b € L. Since f, € I : ([];/_; xi)>°, it follows
that 1 — xP € /; S, where x = [17_; x;. Observe that I; S is
generated by the binomials 1 — x¢ with ¢ € L. Therefore,S, /I, Sx is
isomorphic to the group ring K[Z" /L] which admits the K-basis
consisting of the elements of the group G = Z"/L.

Llet g =b+ L Then1l—g=0in K[Z"/L] because 1 —xP € I, S,.
This implies that b+ L =0+ L, and hence b € L, as desired. [

Corollary. Let | C S be a binomial ideal. Then / is a lattice ideal
if and only if /: (J]7_; xi)>® = 1.
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We have seen above that /; is not always a prime ideal. The lattice
ideal /| need to be even a radical ideal if char(K) = p > 0.

Indeed if L = (p, —p) C Z?, then I = (xP — yP), and we have
f=x—y¢&l but fPel.

However, if char(K) = 0 or char(K) = p > 0 and p is big enough,
then /; is a radical ideal. More precisely, we have

Theorem Let L C 7Z" be a lattice and let t be the maximal order
of a torsion element of Z"/L. If char(K) = 0 or char(K) > t, then
I; is a radical ideal.
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The toric ideal /4 is the lattice ideal of the lattice L with basis
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Lattice basis ideals

Let L C Z" be a lattice and let B = by,...,b,, be a Z-basis of L.
The ideal I is called a lattice basis ideal of L.

In general, Iz # .. Consider for example, A = (3,4,5) € Z*3,
The toric ideal /4 is the lattice ideal of the lattice L with basis
B=(2,1,-2),(1,-2,1). Then Iz = (x%y — z%,xz — y?), while I,

also contains the binomial x> — yz.

However one has

Corollary. Let B be a basis of the lattice L. Then
Is < (T ) = I
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Ig : (I17-1 xi)°° = Irr. Since B C L' it follows that L C L.
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On the other hand, Iz C I;. Thus,
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We fix a field K, and let X = (x;;) be an (m x n)-matrix of

indeterminates. The ideal of all 2-minors of X is a prime ideal and
and hence may be viewed as a toric ideal, or as a lattice ideal /; for
the lattice L € Z™*" with lattice basis 5 consisting of the vectors
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Proof. There exists a lattice L’ C Z" such that
Ig : (I17-1 xi)°° = Irr. Since B C L' it follows that L C L.

On the other hand, Iz C I;. Thus,
Iy =1g: (H?:l X,')OO C (H?:l X,')Oo = I;. This shows that
L'’ c L, and hence ' = L. O

We fix a field K, and let X = (x;;) be an (m x n)-matrix of
indeterminates. The ideal of all 2-minors of X is a prime ideal and
and hence may be viewed as a toric ideal, or as a lattice ideal /; for
the lattice L € Z™*" with lattice basis 5 consisting of the vectors

ej +e+1j+1— € j+1—€it1, 1<i<m—-11<;<n—-1

The ideal Iz is called the ideal of adjacent minors of X. It has first
been studied by Hosten and Sullivant.
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Let / be an ideal in a Noetherian ring. Then there exists an integer
k such that (\/7)" C I. The smallest integer with this property is
called the index of nilpotency, denoted nilpot(/).



In general, Iz is not a radical ideal.

Let / be an ideal in a Noetherian ring. Then there exists an integer
k such that (\/7)" C I. The smallest integer with this property is
called the index of nilpotency, denoted nilpot(/).

Theorem. (Ene, H, Hibi and Qureshi) / be the ideal of adjacent
2-minors of the generic (m x n)-matrix X, and let n = 4k + p and
n=4l+ q with 0 < p,qg < 4. Then

p mn

nitpot(1) > (k+ [E))(1+ [3) +1~ T2



Problems

Problem 1. Show that

2 0 3 4
1 -2 1 -1
A= 3 0 5 1
7 -1 12 5

is a configuration matrix.

Problem 2. Let A € Z9%". Then I, is a principal ideal if and only
if ankA=n—1.

Problem 2. Let A= (3,4,5) € Z!*3. Compute /4.



Problem 3. Let | C K[x1,...,Xn, Y1,---,Yn] be the ideal
generated by a set S of 2-minors of the 2 x n-matrix
X _ Xl ... Xn

yr - Yn
and j. Show that / is a prime ideal if and only [n] is the disjoint

union of sets S1,...,Sk such that S = Ufle{[i,j] {i,j} C Sk}

Problem 4. Let char(K) =0 and let b & Z". Then | = (f,) C S
is a radical ideal.

>. We denote by [/, j] a 2-minor with rows i

Problem 5. Let by,... b, € Z" be Q-linearly independent
vectors. Then f, ,...,f, is a regular sequence.



Problem 6. Show that (x* — y* x/ — y!) : (xy)® = (x — y).
Which is the smallest integer m with the property that

(XK =y x =yl ()™ = (x = y)?

Problem 7. Let L C Z" be a lattice. Prove that height [, = rank L.

Problem 6. Let B be a basis of a lattice L for which Z"/L is
torsionfree. Then Iz = [, if and only if Iz is a prime ideal.

Problem 7. Let /| C S be the ideal of adjacent 2-minors of a
m X n-matrix of indeterminates.

(a) Show that / is a radical ideal if and only if m <2 or n < 2.
(b) Find a polynomial f € S\ I with f2 €/, if m=n=3.
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