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In 1987 Hibi introduced a class of K -algebras which nowadays are
called Hibi rings.

Fix a field K and let L be a finite distributive lattice. The Hibi ring
K [L] is the K -algebra generated over K by the elements α ∈ L

with defining relations

αβ = (α ∧ β)(α ∨ β) with α, β ∈ L

Hibi: K [L] is an ASL and a normal Cohen–Macaulay domain.

Furthermore, the defining ideal of a Hibi ring has a quadratic
Gröbner basis and hence is a Koszul algebra.
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Hibi rings are toric rings: α ∈ L is join irreducible, iff

α 6= min L, and whenever α = β ∨ γ, then α = β or α = γ.

Let P be the poset of join irreducible elements of L. We denote by
I (P) the ideal lattice of poset ideals of P .

Birkhoff: L ' I (P).
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The Hibi ring has the following toric representation:

K [L] ' K [
∏

p∈α
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∏

p 6∈α

yp : α ∈ I (P)]
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K [L] is Gorenstein if and only if P is pure (that is, all maximal

chains in P have the same length).



Alternatively, the Hibi ring of L has a presentation

K [L] ' K [{s
∏

p∈α

tp : α ∈ L}] ⊂ T ,

where T = K [s, {tp | p ∈ P}] is the polynomial ring in the
variables s and tp.



Alternatively, the Hibi ring of L has a presentation

K [L] ' K [{s
∏

p∈α

tp : α ∈ L}] ⊂ T ,

where T = K [s, {tp | p ∈ P}] is the polynomial ring in the
variables s and tp.

Let P̂ be the poset obtained from P by adding the elements −∞
and ∞ with ∞ > p and −∞ < p for all p ∈ P .



Alternatively, the Hibi ring of L has a presentation

K [L] ' K [{s
∏

p∈α

tp : α ∈ L}] ⊂ T ,

where T = K [s, {tp | p ∈ P}] is the polynomial ring in the
variables s and tp.

Let P̂ be the poset obtained from P by adding the elements −∞
and ∞ with ∞ > p and −∞ < p for all p ∈ P .

We denote by T (P̂) the set of integer valued functions

v : P̂ → N

with v(∞) = 0 and v(p) < v(q) for all p > q.



Alternatively, the Hibi ring of L has a presentation

K [L] ' K [{s
∏

p∈α

tp : α ∈ L}] ⊂ T ,

where T = K [s, {tp | p ∈ P}] is the polynomial ring in the
variables s and tp.

Let P̂ be the poset obtained from P by adding the elements −∞
and ∞ with ∞ > p and −∞ < p for all p ∈ P .

We denote by T (P̂) the set of integer valued functions

v : P̂ → N

with v(∞) = 0 and v(p) < v(q) for all p > q.

These are the strictly order reversing functions on P̂ .
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By using a result of Richard Stanley, Hibi showed that the
monomials

sv(−∞)
∏

p∈P

t
v(p)
p , v ∈ T (P̂)

form a K -basis of canonical module ωL.



By using a result of Richard Stanley, Hibi showed that the
monomials

sv(−∞)
∏

p∈P

t
v(p)
p , v ∈ T (P̂)

form a K -basis of canonical module ωL.

Let JL denote the defining ideal of the Hibi ring K [L].

Theorem. (Ene, H, Saeedi Madani) Let L be a finite distributive
lattice and P the poset of join irreducible elements of L. Then

reg JL = |P | − rankP .
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Let P be the category of finite posets.

I Objects: finite posets

I Morphisms: isotone maps (i.e. order preserving maps)

ϕ : P → Q is isotone, if ϕ(p) ≤ ϕ(p′) for all p < p′.

Hom(P ,Q), the set of isotone maps from P to Q, is itself a poset.
We denote by [n] the totally ordered poset {1 < 2 < · · · < n} on n

elements. Then
I (P) ' Hom(P , [2])

Now the theorem of Birkhoff, can be rephrased as follows: Let P
be the subposet of join irreducible elements of the distributive
lattice L. Then

L ' Hom(P , [2])
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Fløystad, H, Greve introduced the ideals

L(P ,Q) = (
∏

p∈P

xp,ϕ(p) : ϕ ∈ Hom(P ,Q))

When P = [n] they are called letterplace ideals, and co-letterplace
ideals if Q = [n],

L(P , [2]) is the ideal IP considered before, whose Alexander dual
gives the edge ideal of Cohen–Macaulay bipartite graphs.

L(P , [n]) is the generalized Hibi ideal, introduced 2011 (European
J.Comb.) by Ene, H, Mohammadi.

The generators of L(P , [n]) are in bijection to the chains

I1 ⊆ I2 ⊆ . . . ⊆ In = P

of poset ideals.
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Theorem. (Ene, H, Mohammadi) L(P , [n])∨ = L([n],P)τ , where τ

denotes the switch of indices.

Does a similar statement hold for any P and Q? No!

Let P be a finite poset. We define the graph G (P) on the vertex
set P .

A subset {p1, p2} is an edge of G (P) if and only if p2 covers p1.

This graph is the underlying graph of the so-called Hasse diagram
of P which may also be viewed as a directed graph whose edges
are (p1, p2) where p2 covers p1.

We say that P is connected if G (P) is connected.

P is (co)-rooted if for all incomparable p1, p2 ∈ P there is no
p ∈ P with p > p1, p2 (p < p1, p2).
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Theorem. (H, Shikama, Qureshi) L(P ,Q)∨ = L(Q,P)τ if and
only if P or Q is connected and one of the following conditions
hold:

(a) Both, P and Q are rooted;

(b) Both, P and Q are co-rooted;

(c) P is connected and Q is a disjoint union of chains;

(d) Q is connected and P is a disjoint union of chains;

(e) P or Q is a chain.
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In the paper “Resolutions of co-letterplace ideals and
generalizations of Bier spheres” Alessio D’Al̀ı, Gunnar Fløystad and
Amin Nematbakhsh introduce a new technique for describing linear
resolutions of squarefree monomial ideals. By using this they give
the resolutions of co-letterplace ideals L(P , [n]) of posets in an
explicit, very simple form. That the ideals L(P , [n]) have a linear
resolution has been show before by Ene, H, Mohammadi.

In their paper “Resolutions of letter place ideals of posets” the
same authors develop some topological results to compute their
multigraded Betti numbers, and to give structural results on these
Betti numbers.
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As noted in the paper by Fløystad, H, Greve, the ideals L(P ,Q)
specialize to many well-known ideals. For example

I Let I be the initial ideal of the ideal of s-minors of an
(n + s − 1)× (m + s − 1)-matrix of indeterminates. Then I is
obtained from L([s], [m] × [n]) by reduction modulo a regular
sequence which identifies variables.

I A similar statement holds for the initial ideal of 2-minors of a
symmetric matrix, and of the initial ideal of a ladder
determinantal ideal.

I Ferrers ideals by Nagel and Reiner.

I Strongly stable ideals.
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The operation which is inverse to specialization is called separation.

Fløystad introduced this notion in his paper ”Cellular resolutions of
Cohen–Macaulay monomial ideals” (2009)

A typical example of separation is polarization. A monomial ideal
is called inseparable if it admits no separation.

Theorem. (a) (Fløystad, H, Greve) Any monomial ideal I
generated by a subset of the monomial generators of L(P ,Q) is
inseparable.
(b) (Altmann, Bigdeli, H, Dancheng Lu) The ideals L(P ,Q) are
rigid if and only if no two elements of P are comparable.

An inseparable monomial ideal I which specializes to a monomial
ideal J is called a separated model of J. So the ideals L(P ,Q) are
separated models of many monomial ideals.
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The K -algebra K [P,Q]

We denote by K [P ,Q] the toric ring generated over K by the
monomial generators of L(P ,Q), and call it an isotonian algebra.

K [P , [2]] is the classical Hibi ring. Its Krull dimension is rankP +1.

What is the Krull dimension of K [P ,Q]?

Theorem. (Bigdeli, Hibi, H, Shikama, Qureshi) Let P and Q be
finite posets. Then dimK [P ,Q] = |P |(|Q| − s) + rs − r + 1, where
r is the number of connected components of P and s is the
number of connected components of Q.
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As mentioned before, the Hibi ring K [P , [2]] is a normal
Cohen–Macaulay domain.

Conjecture. Isotonian algebras are normal Cohen–Macaulay
domains.

Theorem. (Bigdeli, Hibi, H, Shikama, Qureshi) Assume G (P) is a
forest or Q = [n]. Then K [P ,Q] is a normal Cohen-Macaulay
domain.

Conjecture. For any poset P and Q, the defining ideal of the
K -algebra K [P ,Q] has a squarefree initial ideal.

Assuming the conjecture is true, the algebras K [P ,Q] are all
normal by a theorem of Sturmfels, and then by a theorem of
Hochster they are also Cohen-Macaulay.
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The conjecture is known to be true in the following cases

I Classical Hibi rings.

I K [[2],P ] is the edge ring of a bipartite graph. The binomials
corresponding to the cycles of the graph form a Gröbner basis.
These generators have a squarefree initial ideal.

I Q = [n].

Theorem. (Bigdeli, Hibi, H, Shikama, Qureshi) Let P be the
chain and suppose that each connected component of Q is either
rooted or a co-rooted. Then the defining toric ideal of K [P ,Q]
admits a quadratic Gröbner basis and a squarefree initial ideal.



The ideals L(P ,Q) are pretty well studied. Less is known about
the algebras K [P ,Q].

Problem 1: Show that all the algebras K [P ,Q] are normal (and
hence CM).

Problem 2: For which P and Q does the defining ideal JPQ of
K [P ,Q] admit a quadratic Gröbner basis. Is the initial ideal of JPQ
squarefree for a suitable monomial order?

Problem 3: What is the projective dimension and the regularity of
JPQ? For Q = [2] we have a Hibi ring and the answer is known.

Problem 4: Compute the graded Betti numbers of the defining
ideal of a Hibi ring K [L] - for example when L is a planar lattice.
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