Lecture 3: Deformations and separations

Jürgen Herzog Universität Duisburg-Essen

August 17-24 Moieciu de Sus, România

Deformations

We fix a field K and let A be the category of standard graded K-algebras. For each $A \in A$ we denote by \mathfrak{m}_A the graded maximal ideal of A.

Deformations

We fix a field K and let A be the category of standard graded K-algebras. For each $A \in A$ we denote by \mathfrak{m}_A the graded maximal ideal of A.

Let $A \in \mathcal{A}$. A deformation of A with basis B is a flat homomorphism $B \to C$ of standard graded K-algebras with fiber $C/\mathfrak{m}_B C = A$.

Deformations

We fix a field K and let A be the category of standard graded K-algebras. For each $A \in A$ we denote by \mathfrak{m}_A the graded maximal ideal of A.

Let $A \in \mathcal{A}$. A deformation of A with basis B is a flat homomorphism $B \to C$ of standard graded K-algebras with fiber $C/\mathfrak{m}_B C = A$.

Thus we obtain a commutative diagram of standard graded K-algebras

Let $I \subset B$ be a graded ideal. Then $B \to C$ induces the flat homomorphism $B/I \to C/IC$, and hence induces the deformation

$$\begin{array}{ccc}
C/IC & \longrightarrow & A \\
\uparrow & & \uparrow \\
B/I & \longrightarrow & K.
\end{array}$$

Let $I \subset B$ be a graded ideal. Then $B \to C$ induces the flat homomorphism $B/I \to C/IC$, and hence induces the deformation

$$C/IC \longrightarrow A$$

$$\uparrow \qquad \uparrow$$

$$B/I \longrightarrow K.$$

We denote by $K[\epsilon]$ the K-algebra with $\epsilon \neq 0$ but $\epsilon^2 = 0$.

Let $I \subset B$ be a graded ideal. Then $B \to C$ induces the flat homomorphism $B/I \to C/IC$, and hence induces the deformation

$$\begin{array}{ccc}
C/IC & \longrightarrow & A \\
\uparrow & & \uparrow \\
B/I & \longrightarrow & K.
\end{array}$$

We denote by $K[\epsilon]$ the K-algebra with $\epsilon \neq 0$ but $\epsilon^2 = 0$.

Any surjective K-algebra homomorphism $B \to K[\epsilon]$ induces a deformation of A with basis $K[\epsilon]$.

A deformation of A with basis $K[\epsilon]$ is called an infinitesimal deformation.

A deformation of A with basis $K[\epsilon]$ is called an infinitesimal deformation.

A deformation of A with basis $K[\epsilon]$ is called an infinitesimal deformation.

$$\begin{array}{ccc}
C & \longrightarrow & A \\
\uparrow & & \uparrow \\
K[\epsilon] & \longrightarrow & K.
\end{array}$$

Lemma. $K[\epsilon] \to C$ is flat if and only if $0 : C \epsilon = \epsilon C$.

A deformation of A with basis $K[\epsilon]$ is called an infinitesimal deformation.

$$\begin{array}{ccc}
C & \longrightarrow & A \\
\uparrow & & \uparrow \\
K[\epsilon] & \longrightarrow & K.
\end{array}$$

Lemma. $K[\epsilon] \to C$ is flat if and only if $0:_C \epsilon = \epsilon C$.

Proof. C is a flat $K[\epsilon]$ -module, if and only if

$$\operatorname{Tor}_1^{K[\epsilon]}(C, K[\epsilon]/(\epsilon)) = 0.$$

A deformation of A with basis $K[\epsilon]$ is called an infinitesimal deformation.

$$\begin{array}{ccc}
C & \longrightarrow & A \\
\uparrow & & \uparrow \\
K[\epsilon] & \longrightarrow & K.
\end{array}$$

Lemma. $K[\epsilon] \to C$ is flat if and only if $0:_C \epsilon = \epsilon C$.

Proof. C is a flat $K[\epsilon]$ -module, if and only if

$$\operatorname{\mathsf{Tor}}_1^{K[\epsilon]}(C,K[\epsilon]/(\epsilon))=0.$$

We have the exact sequence

$$\cdots \xrightarrow{\epsilon} K[\epsilon] \xrightarrow{\epsilon} K[\epsilon] \longrightarrow K[\epsilon]/(\epsilon) \longrightarrow 0.$$

$$\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0,$$

whose *i*th homology is $\operatorname{Tor}_i(C, K[\epsilon])/(\epsilon)$).

$$\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0,$$

whose *i*th homology is $\operatorname{Tor}_i(C, K[\epsilon])/(\epsilon)$).

Thus we see that $\operatorname{Tor}_1(C, K[\epsilon])/(\epsilon)) = (0 :_C \epsilon)/\epsilon C$. The assertion follows. \square .

$$\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0,$$

whose *i*th homology is $\operatorname{Tor}_i(C, K[\epsilon])/(\epsilon)$).

Thus we see that $\operatorname{Tor}_1(C, K[\epsilon])/(\epsilon)) = (0 :_C \epsilon)/\epsilon C$. The assertion follows. \Box .

Whenever there is a deformation $B \to C$ of A with $B \neq k$, then there is also an infinitesimal deformation, induced by a surjective K-algebra homomorphism.

$$\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0,$$

whose *i*th homology is $\operatorname{Tor}_i(C, K[\epsilon])/(\epsilon)$).

Thus we see that $\operatorname{Tor}_1(C, K[\epsilon])/(\epsilon)) = (0 :_C \epsilon)/\epsilon C$. The assertion follows. \square .

Whenever there is a deformation $B \to C$ of A with $B \neq k$, then there is also an infinitesimal deformation, induced by a surjective K-algebra homomorphism.

Thus, if there is no infinitesimal deformation, then there cannot by any other deformation.

An infinitesimal deformation always exists. For example

$$A[\epsilon] = A \otimes_{K} K[\epsilon] \longrightarrow A$$

$$\uparrow \qquad \qquad \uparrow$$

$$K[\epsilon] \longrightarrow K.$$

An infinitesimal deformation always exists. For example

$$A[\epsilon] = A \otimes_{K} K[\epsilon] \longrightarrow A$$

$$\uparrow \qquad \qquad \uparrow$$

$$K[\epsilon] \longrightarrow K.$$

However this is a trivial deformation.

An infinitesimal deformation always exists. For example

$$A[\epsilon] = A \otimes_{K} K[\epsilon] \longrightarrow A$$

$$\uparrow \qquad \qquad \uparrow$$

$$K[\epsilon] \longrightarrow K.$$

However this is a trivial deformation.

More generally we say that C is a trivial deformation of A with basis B, if $C \simeq A \otimes_K B$ as a B-algebra, and this isomorphism induces the identity on A modulo \mathfrak{m}_B .

The algebra A is called <u>rigid</u>, if A admits no non-trivial infinitesimal deformation.

The algebra A is called rigid, if A admits no non-trivial infinitesimal deformation.

Can an infinitesimal deformation of A be lifted to a deformation with basis B?

The algebra A is called rigid, if A admits no non-trivial infinitesimal deformation.

Can an infinitesimal deformation of A be lifted to a deformation with basis B? In general there are obstructions to do this.

The algebra A is called rigid, if A admits no non-trivial infinitesimal deformation.

Can an infinitesimal deformation of A be lifted to a deformation with basis B? In general there are obstructions to do this.

An infinitesimal deformation of A which is induced by a deformation of A with basis K[t] (the polynomial ring), is called unobstructed.

How can we find and classify all non-trivial infinitesimal deformations of S/I?

How can we find and classify all non-trivial infinitesimal deformations of S/I?

Let $S = K[x_1, ..., x_n]$ be the polynomial ring and let A = S/I where $I \subset S$ is a graded ideal.

How can we find and classify all non-trivial infinitesimal deformations of S/I?

Let $S = K[x_1, ..., x_n]$ be the polynomial ring and let A = S/I where $I \subset S$ is a graded ideal.

Let $J \subset S[\epsilon]$ be a graded ideal, and let $C = S[\epsilon]/J$ be a potential infinitesimal deformation of S/I.

How can we find and classify all non-trivial infinitesimal deformations of S/I?

Let $S = K[x_1, ..., x_n]$ be the polynomial ring and let A = S/I where $I \subset S$ is a graded ideal.

Let $J \subset S[\epsilon]$ be a graded ideal, and let $C = S[\epsilon]/J$ be a potential infinitesimal deformation of S/I.

Proposition: Let $I=(f_1,\ldots,f_m)$. Then $J=(f_1+g_1\epsilon,\ldots,f_m+g_m\epsilon)$ and $K[\epsilon]\to S[\epsilon]/J$ is flat if and only $\varphi:I\to S/I$ with $f_i\mapsto g_i+I$ is a is a well-defined S-module homomorphism.

Proof. Assume that $K[\epsilon] \to C$ is flat. Let $\sum_i h_i f_i = 0$. We want to show that $\sum_i h_i g_i \in I$.

Proof. Assume that $K[\epsilon] \to C$ is flat. Let $\sum_i h_i f_i = 0$. We want to show that $\sum_i h_i g_i \in I$. To see this, let $g = \sum_i h_i (f_i + \epsilon g_i)$. Then $g = \epsilon(\sum_i h_i g_i)$ and $g \in J$. Therefore, $\sum_i h_i g_i \in J : \epsilon$. Since C is a flat $K[\epsilon]$ -module, there exists $p \in S$ such that $\sum_i h_i g_i - \epsilon p \in J$. Modulo ϵ it follows that $\sum_i h_i g_i \in I$. The converse direction is proved similarly. \square

Proof. Assume that $K[\epsilon] \to C$ is flat. Let $\sum_i h_i f_i = 0$. We want to show that $\sum_i h_i g_i \in I$. To see this, let $g = \sum_i h_i (f_i + \epsilon g_i)$. Then $g = \epsilon(\sum_i h_i g_i)$ and $g \in J$. Therefore, $\sum_i h_i g_i \in J : \epsilon$. Since C is a flat $K[\epsilon]$ -module, there exists $p \in S$ such that $\sum_i h_i g_i - \epsilon p \in J$. Modulo ϵ it follows that $\sum_i h_i g_i \in I$. The converse direction is proved similarly. \square

The proposition says that the infinitesimal deformations of S/I are in bijection to the elements of $I^* = \text{Hom}_S(I, S/I)$.

Proof. Assume that $K[\epsilon] \to C$ is flat. Let $\sum_i h_i f_i = 0$. We want to show that $\sum_i h_i g_i \in I$. To see this, let $g = \sum_i h_i (f_i + \epsilon g_i)$. Then $g = \epsilon(\sum_i h_i g_i)$ and $g \in J$. Therefore, $\sum_i h_i g_i \in J : \epsilon$. Since C is a flat $K[\epsilon]$ -module, there exists $p \in S$ such that $\sum_i h_i g_i - \epsilon p \in J$. Modulo ϵ it follows that $\sum_i h_i g_i \in I$. The converse direction is proved similarly. \square

The proposition says that the infinitesimal deformations of S/I are in bijection to the elements of $I^* = \text{Hom}_S(I, S/I)$.

Let $C = S[\epsilon]/J$ be an infinitesimal deformation of S/I. Then this deformation is trivial if and only if there a $K[\epsilon]$ -automorphism $\varphi: S[\epsilon] \to S[\epsilon]$ such that $\varphi(J) = IS[\epsilon]$.

Let $\mathsf{Der}_{\mathcal{K}}(S)$ be the S-module of K-derivations $\partial: S \to S$ of S.

Proposition. The infinitesimal deformation $S[\epsilon]/J$ of S/I is trivial if and only if there exists $\partial \in \operatorname{Der}_K(S)$ such that $J = (f_1 + \partial f_1 \epsilon, \dots, f_m + \partial f_m \epsilon)$.

Proposition. The infinitesimal deformation $S[\epsilon]/J$ of S/I is trivial if and only if there exists $\partial \in \operatorname{Der}_K(S)$ such that $J = (f_1 + \partial f_1 \epsilon, \dots, f_m + \partial f_m \epsilon)$.

Proof. We show: suppose there exists $\partial \in \operatorname{Der}_{K}(S)$ with $J = (f_1 + \partial f_1 \epsilon, \dots, f_m + \partial f_m \epsilon)$, then the deformation is trivial.

Proposition. The infinitesimal deformation $S[\epsilon]/J$ of S/I is trivial if and only if there exists $\partial \in \operatorname{Der}_K(S)$ such that $J = (f_1 + \partial f_1 \epsilon, \dots, f_m + \partial f_m \epsilon)$.

Proof. We show: suppose there exists $\partial \in \operatorname{Der}_{K}(S)$ with $J = (f_1 + \partial f_1 \epsilon, \dots, f_m + \partial f_m \epsilon)$, then the deformation is trivial.

We define the $K[\epsilon]$ -algebra automorphism $\varphi: S[\epsilon] \to S[\epsilon]$ with $x_i \mapsto x_i + \partial x_i \epsilon$.

Proposition. The infinitesimal deformation $S[\epsilon]/J$ of S/I is trivial if and only if there exists $\partial \in \operatorname{Der}_{K}(S)$ such that $J = (f_{1} + \partial f_{1}\epsilon, \dots, f_{m} + \partial f_{m}\epsilon)$.

Proof. We show: suppose there exists $\partial \in \operatorname{Der}_{K}(S)$ with $J = (f_1 + \partial f_1 \epsilon, \dots, f_m + \partial f_m \epsilon)$, then the deformation is trivial.

We define the $K[\epsilon]$ -algebra automorphism $\varphi: S[\epsilon] \to S[\epsilon]$ with $x_i \mapsto x_i + \partial x_i \epsilon$.

Then

$$\varphi(\prod_{i=1}^{n} x_{i}^{a_{i}}) = \prod_{i=1}^{n} (x_{i} + \partial x_{i} \epsilon)^{a_{i}} = \prod_{i=1}^{n} (x_{i}^{a_{i}} + a_{i} x_{i}^{a_{i}-1} \partial x_{i} \epsilon)$$

$$= \prod_{i=1}^{n} x_{i}^{a_{i}} + \sum_{i=1}^{n} a_{i} x_{i}^{a_{i}-1} \partial x_{i} \prod_{j \neq i} x_{j}^{a_{j}} \epsilon$$

$$= \prod_{i=1}^{n} x_{i}^{a_{i}} + \partial(\prod_{i=1}^{n} x_{i}^{a_{i}}) \epsilon.$$

Since φ and ∂ are K-linear, it follows that $\varphi(f_i) = f_i + \partial f_i \epsilon$ for all i. Therefore, $\varphi^{-1}(J) = IS[\epsilon]$. \square

Since φ and ∂ are K-linear, it follows that $\varphi(f_i) = f_i + \partial f_i \epsilon$ for all i. Therefore, $\varphi^{-1}(J) = IS[\epsilon]$. \square

As a consequence of our considerations so far we see the following: if we consider the natural map $\delta^*: \operatorname{Der}_{\mathcal{K}}(S) \to I^*$ which assigns to $\partial \in \operatorname{Der}_{\mathcal{K}}(S)$ the element $\delta^*(\partial)$ with

$$\delta^*(\partial)(f_i) = \partial f_i + I,$$

then the non-zero elements of Coker δ^* are in bijection to the isomorphism classes of non-trivial infinitesimal deformations of S/I.

Since φ and ∂ are K-linear, it follows that $\varphi(f_i) = f_i + \partial f_i \epsilon$ for all i. Therefore, $\varphi^{-1}(J) = IS[\epsilon]$. \square

As a consequence of our considerations so far we see the following: if we consider the natural map $\delta^*: \operatorname{Der}_{\mathcal{K}}(S) \to I^*$ which assigns to $\partial \in \operatorname{Der}_{\mathcal{K}}(S)$ the element $\delta^*(\partial)$ with

$$\delta^*(\partial)(f_i) = \partial f_i + I,$$

then the non-zero elements of Coker δ^* are in bijection to the isomorphism classes of non-trivial infinitesimal deformations of S/I.

This cokernel is denoted by $T^1(S/I)$ and is called the first cotangent module of S/I.

Lichtenbaum and Schlessinger 1967 first introduced the functors T^i for i=0,1,2 in the paper "On the cotangent complex of a morphism" TransAMS.

Lichtenbaum and Schlessinger 1967 first introduced the functors T^i for i=0,1,2 in the paper "On the cotangent complex of a morphism" TransAMS.

Quillen (Proc. Symp. Pure Math, 1970) and independently André (Homologie des algebres commutatives) defined the higher cotangent functors and developed their theory.

Lichtenbaum and Schlessinger 1967 first introduced the functors T^i for i=0,1,2 in the paper "On the cotangent complex of a morphism" TransAMS.

Quillen (Proc. Symp. Pure Math, 1970) and independently André (Homologie des algebres commutatives) defined the higher cotangent functors and developed their theory.

In characteristic 0, a different (and simpler approach) is given by Palamadov (Deformations of complex spaces) by using DGA algebras.

S/I is rigid, if S/I admits no infinitesimal deformations, and this is the case if and only if $T^1(S/I) = 0$.

S/I is rigid, if S/I admits no infinitesimal deformations, and this is the case if and only if $T^1(S/I) = 0$.

Example: Let
$$I = (xy, xz, yz) \subset S = K[x, y, z]$$
, and $L = (xw, xz, yz) \subset T = K[x, y, z, w]$.

S/I is rigid, if S/I admits no infinitesimal deformations, and this is the case if and only if $T^1(S/I) = 0$.

Example: Let
$$I = (xy, xz, yz) \subset S = K[x, y, z]$$
, and $L = (xw, xz, yz) \subset T = K[x, y, z, w]$.

Then t:=w-y is a non-zerodivisor of T/L. Thus $K[t]\to T/L$ is flat, and hence $T/L\otimes K[\epsilon]$ with $K[\epsilon]=K[t]/(t^2)$ is an infinitesimal deformation of S/I.

S/I is rigid, if S/I admits no infinitesimal deformations, and this is the case if and only if $T^1(S/I) = 0$.

Example: Let
$$I = (xy, xz, yz) \subset S = K[x, y, z]$$
, and $L = (xw, xz, yz) \subset T = K[x, y, z, w]$.

Then t:=w-y is a non-zerodivisor of T/L. Thus $K[t]\to T/L$ is flat, and hence $T/L\otimes K[\epsilon]$ with $K[\epsilon]=K[t]/(t^2)$ is an infinitesimal deformation of S/I.

We have T = K[x, y, z, t] and L = (xy + xt, xz, yz), and hence $T/L \otimes K[\epsilon] \simeq S[\epsilon]/(xy + x\epsilon, xz, yz)$.

Is $S[\epsilon]/(xy+x\epsilon,xz,yz)$ a non-trivial deformation of S/I?

Is $S[\epsilon]/(xy+x\epsilon,xz,yz)$ a non-trivial deformation of S/I? Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(xy)=x$ and $\partial(xz)=\partial(yz)=0$. Is $S[\epsilon]/(xy+x\epsilon,xz,yz)$ a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(xy) = x$ and $\partial(xz) = \partial(yz) = 0$.

The module $\operatorname{Der}_K(S)$ is a free S-module with basis $\partial_x, \partial_y, \partial_z$.

Is $S[\epsilon]/(xy+x\epsilon,xz,yz)$ a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists $\partial \in \mathsf{Der}_{\mathcal{K}}(S)$ with $\partial(xy) = x$ and $\partial(xz) = \partial(yz) = 0$.

The module $\operatorname{Der}_K(S)$ is a free S-module with basis $\partial_x, \partial_y, \partial_z$.

Let $\partial = f \partial_x + g \partial_y + h \partial_z$. Then $x = \partial(xy) = fy + gx$, and hence f = 0 and g = 1. Furthermore, $0 = \partial(yz) = fz + gx = gx$, and hence g = 0, a contradiction.

Is $S[\epsilon]/(xy + x\epsilon, xz, yz)$ a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(xy) = x$ and $\partial(xz) = \partial(yz) = 0$.

The module $\operatorname{Der}_K(S)$ is a free S-module with basis $\partial_x, \partial_y, \partial_z$.

Let $\partial = f \partial_x + g \partial_y + h \partial_z$. Then $x = \partial(xy) = fy + gx$, and hence f = 0 and g = 1. Furthermore, $0 = \partial(yz) = fz + gx = gx$, and hence g = 0, a contradiction.

The calculations show that $T^1(S/I)_{-1} \neq 0$.

Let R = S/I, $I \subset S$ a graded ideal, M a graded R-module.

Let R = S/I, $I \subset S$ a graded ideal, M a graded R-module.

A K-derivation $\delta: R \to M$ is a K-linear map such that

$$\delta(rs) = r\delta(s) + s\delta(r)$$
 for all $r, s \in R$.

Let R = S/I, $I \subset S$ a graded ideal, M a graded R-module.

A K-derivation $\delta: R \to M$ is a K-linear map such that

$$\delta(rs) = r\delta(s) + s\delta(r)$$
 for all $r, s \in R$.

The module of differentials $\Omega_{R/K}$ is defined by the universal property that there exists a K-derivation $d:R\to\Omega_{R/K}$ such that for any derivation $\delta:R\to M$ there exists an R-module

homomorphism $\varphi:\Omega_{R/K} o M$ such that

$$\partial = \varphi \circ \mathbf{d}$$
.

Let $I = (f_1, \ldots, f_m)$. Then

Let $I = (f_1, \ldots, f_m)$. Then

$$\Omega_{R/K} \simeq \bigoplus_{i=1}^n Rdx_i/U,$$

where U is generated by the elements $\sum_{i=1}^{n} \overline{\partial_i f_j} dx_i$ for $j=1,\ldots,m$.

Let $I = (f_1, \ldots, f_m)$. Then

$$\Omega_{R/K} \simeq \bigoplus_{i=1}^n Rdx_i/U,$$

where U is generated by the elements $\sum_{i=1}^{n} \overline{\partial_i f_j} dx_i$ for $j=1,\ldots,m$.

Thus the relation matrix of $\Omega_{R/K}$ is the Jacobian matrix.

There is the fundamental exact sequence of *R*-modules

$$I/I^2 \to \bigoplus_{i=1}^n Rdx_i \to \Omega_{R/K} \to 0,$$

where $\delta: I/I^2 \to \bigoplus_{i=1}^n Rdx_i$ is the *R*-linear map

$$f+I^2\mapsto \sum_{i=1}^n \overline{\partial_i f} dx_i.$$

There is the fundamental exact sequence of *R*-modules

$$I/I^2 o igoplus_{i=1}^n Rdx_i o \Omega_{R/K} o 0,$$

where $\delta: I/I^2 \to \bigoplus_{i=1}^n Rdx_i$ is the *R*-linear map

$$f+I^2\mapsto \sum_{i=1}^n \overline{\partial_i f} dx_i.$$

For an *R*-module *M* we set $M^* = \operatorname{Hom}_R(M, R)$.

There is the fundamental exact sequence of *R*-modules

$$I/I^2 o igoplus_{i=1}^n Rdx_i o \Omega_{R/K} o 0,$$

where $\delta: I/I^2 \to \bigoplus_{i=1}^n Rdx_i$ is the *R*-linear map

$$f+I^2\mapsto \sum_{i=1}^n \overline{\partial_i f} dx_i.$$

For an R-module M we set $M^* = \operatorname{Hom}_R(M, R)$.

By dualizing, the fundamental exact sequence yields the exact sequence

$$\delta^*: \bigoplus_{i=1}^n R\partial_i \to (I/I^2)^* \to T^1(R) \to 0.$$

Let $V = \text{Ker } \delta$. If R is reduced and K is a perfect field, then Supp $V \cap \text{Ass}(R) = \emptyset$, and hence $V^* = \text{Hom}_R(V, R) = 0$.

Let $V = \text{Ker } \delta$. If R is reduced and K is a perfect field, then Supp $V \cap \text{Ass}(R) = \emptyset$, and hence $V^* = \text{Hom}_R(V, R) = 0$.

Therefore, by dualizing the exact sequence

$$0 \to V \to I/I^2 \to U \to 0$$

we obtain that $U^* = (I/I^2)^*$.

Let $V = \text{Ker } \delta$. If R is reduced and K is a perfect field, then Supp $V \cap \text{Ass}(R) = \emptyset$, and hence $V^* = \text{Hom}_R(V, R) = 0$.

Therefore, by dualizing the exact sequence

$$0 \to V \to I/I^2 \to U \to 0$$

we obtain that $U^* = (I/I^2)^*$. Now the fundamental exact sequence yields

$$\begin{aligned} \mathsf{Ext}^1_R(\Omega_{R/K},R) &= & \mathsf{Coker}(\bigoplus_{i=1}^n R\partial_i \to U^*) \\ &= & \mathsf{Coker}(\bigoplus_{i=1}^n R\partial_i \to (I/I^2)^*) = \mathcal{T}^1(R). \end{aligned}$$

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

(i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all $1 \le j \le n$;

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

- (i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all $1 \le j \le n$;
- (ii) x_i and y divide some minimal generators of J;

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

- (i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all $1 \le j \le n$;
- (ii) x_i and y divide some minimal generators of J;
- (iii) $y x_i$ is a non-zero divisor of S[y]/J.

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

- (i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all $1 \le j \le n$;
- (ii) x_i and y divide some minimal generators of J;
- (iii) $y x_i$ is a non-zero divisor of S[y]/J.

The ideal *I* is called separable if it admits an *i*-separation, otherwise it is called inseparable.

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

- (i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all $1 \le j \le n$;
- (ii) x_i and y divide some minimal generators of J;
- (iii) $y x_i$ is a non-zero divisor of S[y]/J.

The ideal *I* is called separable if it admits an *i*-separation, otherwise it is called inseparable.

For example $I = (x_1x_2, x_1x_3, x_2x_3)$ admits the 2-separation $J = (x_1y, x_1x_3, x_2x_3)$.

Let $I \subseteq S$ be a monomial ideal, and let y be an indeterminate over S. Fløystad calls a monomial ideal $J \subseteq S[y]$ an i-separation of I, if the following conditions hold:

- (i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all $1 \le j \le n$;
- (ii) x_i and y divide some minimal generators of J;
- (iii) $y x_i$ is a non-zero divisor of S[y]/J.

The ideal *I* is called separable if it admits an *i*-separation, otherwise it is called inseparable.

For example $I = (x_1x_2, x_1x_3, x_2x_3)$ admits the 2-separation $J = (x_1y, x_1x_3, x_2x_3)$.

Separations are unobstructed deformations of monomial ideals which preserve the monomial structure.

Proof: By condition (iii), S/I is obtained from S[y]/J by reduction modulo a linear form which is a regular element on S[y]/J. This implies that I and J are minimally generated by the same number of generators.

Proof: By condition (iii), S/I is obtained from S[y]/J by reduction modulo a linear form which is a regular element on S[y]/J. This implies that I and J are minimally generated by the same number of generators.

Let J be minimally generated by v_1, \ldots, v_m . We may assume that y divides v_1, \ldots, v_k but does not divide the other generators of J. We may furthermore assume that for all i, v_i is mapped to u_i under the K-algebra homomorphism (i).

Proof: By condition (iii), S/I is obtained from S[y]/J by reduction modulo a linear form which is a regular element on S[y]/J. This implies that I and J are minimally generated by the same number of generators.

Let J be minimally generated by v_1, \ldots, v_m . We may assume that y divides v_1, \ldots, v_k but does not divide the other generators of J. We may furthermore assume that for all i, v_i is mapped to u_i under the K-algebra homomorphism (i).

Then we may write

$$J = (u_1 + (u_1/x_i)(y - x_i), \dots, u_k + (u_k/x_i)(y - x_i), u_{k+1}, \dots, u_m).$$

From this presentation and by (iii) it follows that S[y]/J is an unobstructed deformation of S/I induced by the element $[\varphi] \in T^1(S/I)_{-\epsilon_i}$, where $\varphi \in I^*$ is the S-module homomorphism with $\varphi(u_j) = u_j/x_i + I$ for $j = 1, \ldots, k$ and $\varphi(u_j) = 0$, otherwise.

Corollary. The monomial ideal I is inseparable if $T^1(S/I)_{-\epsilon_i} = 0$ for all i.

Corollary. The monomial ideal I is inseparable if $T^1(S/I)_{-\epsilon_i} = 0$ for all i.

If J is an ideal which is obtained from I by a finite number of separation steps, then we say that J specializes to I. If moreover, J is inseparable, then J is called an inseparable model of I.

Corollary. The monomial ideal I is inseparable if $T^1(S/I)_{-\epsilon_i} = 0$ for all i.

If J is an ideal which is obtained from I by a finite number of separation steps, then we say that J specializes to I. If moreover, J is inseparable, then J is called an inseparable model of I.

Each monomial ideal admits an inseparable model, but in general not only one.

Corollary. The monomial ideal I is inseparable if $T^1(S/I)_{-\epsilon_i} = 0$ for all i.

If J is an ideal which is obtained from I by a finite number of separation steps, then we say that J specializes to I. If moreover, J is inseparable, then J is called an inseparable model of I.

Each monomial ideal admits an inseparable model, but in general not only one.

For example, $J = (x_1y, x_1x_3, x_2x_3)$ is an inseparable model of $I = (x_1x_2, x_1x_3, x_2x_3)$.

Problem 1. Let $I = (x_1x_2, x_2x_3, x_3x_4) \subset K[x_1, x_2, x_3, x_4]$. Show that S/I is not rigid.

Problem 2. Let $I\subset S$ be a graded ideal, and assume that K is a perfect field and that R=S/I is a reduced CM ring. Then R is rigid if and only if $\Omega_{R/K}\otimes\omega_R$ is CM.

Problem 3. Let $I \subset S$ be a graded ideal, and assume that K is a perfect field and that R = S/I is a 1-dimensional reduced Gorenstein ring. Then R is rigid if and only if $\Omega_{R/K}$ is torsionfree.

Problem 4. Find an inseparable monomial ideal which is not rigid.