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Deformations

We fix a field K and let A be the category of standard graded
K-algebras. For each A € A we denote by m, the graded maximal
ideal of A.

Let A c A. A deformation of A with basis B is a flat

homomorphism B — C of standard graded K-algebras with fiber
C/mpC = A.

Thus we obtain a commutative diagram of standard graded

K-algebras
c — A

I

B —— K.



Let / C B be a graded ideal. Then B — C induces the flat
homomorphism B/l — C/IC, and hence induces the deformation
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Let / C B be a graded ideal. Then B — C induces the flat
homomorphism B/l — C/IC, and hence induces the deformation

C/IC —— A

I I

B/l — K.

We denote by K[e] the K-algebra with ¢ # 0 but €2 = 0.

Any surjective K-algebra homomorphism B — K]|e] induces a
deformation of A with basis K[e].
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Infinitesimal deformations

A deformation of A with basis K[e] is called an infinitesimal
deformation.

c —— A

I I

Kle] — K.

Lemma. K[¢] — Cis flat if and only if 0 :c € = €C.
Proof. C is a flat K[e]-module, if and only if
Tory (€, Ke]/(€)) = 0.

We have the exact sequence

- — K[ —— K]€] Kle]/(e) —— 0.
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Tensoring with C we obtain the complex

= c — C 0,
whose ith homology is Tor;(C, K[e])/(€)).

Thus we see that Tor1(C, K[e])/(€)) = (0 :c €)/eC. The assertion
follows. .

Whenever there is a deformation B — C of A with B # k, then
there is also an infinitesimal deformation, induced by a surjective
K-algebra homomorphism.

Thus, if there is no infinitesimal deformation, then there cannot by
any other deformation.
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An infinitesimal deformation always exists. For example
Alel = ARk Kle] —— A
K] — K.
However this is a trivial deformation.
More generally we say that C is a trivial deformation of A with

basis B, if C ~ A®yk B as a B-algebra, and this isomorphism
induces the identity on A modulo mg.
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The algebra A is called rigid, if A admits no non-trivial
infinitesimal deformation.

Can an infinitesimal deformation of A be lifted to a deformation
with basis B? In general there are obstructions to do this.

An infinitesimal deformation of A which is induced by a
deformation of A with basis K[t] (the polynomial ring), is called
unobstructed.
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The cotangent functor T

How can we find and classify all non-trivial infinitesimal
deformations of S//?

Let S = K[xi, ..., x| be the polynomial ring and let A= S/I
where | C S is a graded ideal.

Let J C S[e] be a graded ideal, and let C = S[e]/J be a potential
infinitesimal deformation of S//.

Proposition: Let /| = (f1,...,fy). Then

J=(fi+gi€, ..., fm+ gme) and K[e] — S[e]/J is flat if and only
w:l— S/l with f; — g; + I is a is a well-defined S-module
homomorphism.
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Proof. Assume that K[e] — C is flat. Let }_; hjfi = 0. We want
to show that >°; hig; € I. To see this, let g = >, hi(f; + €g;).
Then g = €(>_; higi) and g € J. Therefore, >, hig; € J : €. Since
C is a flat K[e]-module,there exists p € S such that

> higi —ep € J. Modulo € it follows that >; hig; € I.

The converse direction is proved similarly. [J

The proposition says that the infinitesimal deformations of S// are
in bijection to the elements of /* = Homs(/,S/1).

Let C = S[e]/J be an infinitesimal deformation of S//. Then this
deformation is trivial if and only if there a K[e]-automorphism
¢ : S[e] — S|e] such that ¢(J) = IS[e].
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Let Derk(S) be the S-module of K-derivations 9:S — S of S.

Proposition. The infinitesimal deformation S[e]/J of S// is trivial
if and only if there exists 0 € Der(S) such that
J = (fi + Ofie, ..., fy + Ofipe).

Proof. We show: suppose there exists 0 € Derk(S) with
J = (fi + Ofie, ..., fm + Ofpe), then the deformation is trivial.

We define the K[e]-algebra automorphism ¢ : S[e] — S|e] with
X; — Xj + Oxje.

Then

n n n

o(I[x) = [I(xi+oxie)™ = [[( + aix~oxe)

i=1 i=1 i=1

n n
= l_leff + z; a,-x,-a"_lﬁx; H><j‘"fe
i= =

J#i
n n
— Hx,-a" + 8(H x7)e.
i=1 i=1



Since ¢ and O are K-linear, it follows that ¢(f;) = f; + df;e for all
i. Therefore, o=1(J) = IS[¢]. O
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As a consequence of our considerations so far we see the following:
if we consider the natural map 6* : Derk(S) — I* which assigns to
0 € Derk(S) the element 6*(9) with

5" (0)(fi) = Ofi + 1,

then the non-zero elements of Coker §* are in bijection to the
isomorphism classes of non-trivial infinitesimal deformations of S//.



Since ¢ and O are K-linear, it follows that ¢(f;) = f; + df;e for all
i. Therefore, o=1(J) = IS[¢]. O

As a consequence of our considerations so far we see the following:
if we consider the natural map 6* : Derk(S) — I* which assigns to
0 € Derk(S) the element 6*(9) with

5" (0)(fi) = Ofi + 1,

then the non-zero elements of Coker §* are in bijection to the
isomorphism classes of non-trivial infinitesimal deformations of S//.

This cokernel is denoted by T1(S/I) and is called the first
cotangent module of S/I.
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For any B-algebra homomorphism B — A, there exist functors
T'(A/B,M) and T;(A/B, M) for i = 0,1,... the so-called tangent
and cotangent functors. They are functor in all three variables.

Lichtenbaum and Schlessinger 1967 first introduced the functors
T/ for i =0,1,2 in the paper "On the cotangent complex of a
morphism" TransAMS.

Quillen (Proc. Symp. Pure Math, 1970) and independently André
(Homologie des algebres commutatives) defined the higher
cotangent functors and developed their theory.

In characteristic 0, a different (and simpler approach) is given by
Palamadov (Deformations of complex spaces) by using DGA
algebras.
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T1(S/1) is a finitely generated graded (multigraded ) S-module, if
S/l is graded (multigraded).

S/1is rigid, if S/I admits no infinitesimal deformations, and this is
the case if and only if T}(S//) = 0.

Example: Let | = (xy,xz,yz) C S = K|x,y, z|, and
L=(xw,xz,yz) C T = K[x,y,z,w].

Then t := w — y is a non-zerodivisor of T /L. Thus K[t] — T /L is
flat, and hence T/L ® K[e] with K[e] = K[t]/(t?) is an
infinitesimal deformation of S//.

We have T = K|[x,y,z,t] and L = (xy + xt, xz, yz), and hence
T/L® Kle] ~ Sle]/(xy + xe, xz, yz).



Is S[e]/(xy + xe,xz, yz) a non-trivial deformation of S/I?



Is S[e]/(xy + xe,xz, yz) a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists 9 € Derk(S) with
Jd(xy) = x and J(xz) = d(yz) = 0.



Is S[e]/(xy + xe,xz, yz) a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists 9 € Derk(S) with
Jd(xy) = x and J(xz) = d(yz) = 0.

The module Derk(S) is a free S-module with basis dy, d,, 0,.



Is S[e]/(xy + xe,xz, yz) a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists 9 € Derk(S) with
Jd(xy) = x and J(xz) = d(yz) = 0.

The module Derk(S) is a free S-module with basis dy, d,, 0,.

Let 0 = fOx + g0y + h0,. Then x = d(xy) = fy + gx, and hence
f =0 and g = 1. Furthermore, 0 = 9(yz) = fz + gx = gx, and
hence g = 0, a contradiction.



Is S[e]/(xy + xe,xz, yz) a non-trivial deformation of S/I?

Suppose it is trivial. Then there exists 9 € Derk(S) with
Jd(xy) = x and J(xz) = d(yz) = 0.
The module Derk(S) is a free S-module with basis dy, d,, 0,.

Let 0 = fOx + g0y + h0,. Then x = d(xy) = fy + gx, and hence
f =0 and g = 1. Furthermore, 0 = 9(yz) = fz + gx = gx, and
hence g = 0, a contradiction.

The calculations show that T1(S//)_1 # 0.
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Let R=S5/I, | C S a graded ideal, M a graded R-module.

A K-derivation § : R — M is a K-linear map such that
o(rs) = ro(s) +so(r) forall r,s € R.

The module of differentials Q2 is defined by the universal

property that there exists a K-derivation d : R — Qg /K such that
for any derivation 0 : R — M there exists an R-module
homomorphism ¢ : Qg — M such that

0=¢yod.



Let I =(f,...,fm). Then
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Let I =(f,...,fm). Then

QR/K ~ @Rdx,-/U,

i=1

where U is generated by the elements -7 ; ijdx,- for
j=1...,m

Thus the relation matrix of Qg is the Jacobian matrix.
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There is the fundamental exact sequence of R-modules
/17 — @ Rdx; — Qg — 0,
i=1
where § : I/I> — @"_; Rdx; is the R-linear map
f+ 1P imdx,-.
i=1
For an R-module M we set M* = Homg(M, R).

By dualizing, the fundamental exact sequence yields the exact
sequence

§* PRI — (1/PP)* — THR) — 0.
i=1
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Let V = Kerd. If R is reduced and K is a perfect field, then
Supp V N Ass(R) = 0, and hence V* = Homg(V, R) = 0.

Therefore, by dualizing the exact sequence
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In general, the map 6 : /12 — @"_; Rdx; is not injective.

Let V = Kerd. If R is reduced and K is a perfect field, then
Supp V N Ass(R) = 0, and hence V* = Homg(V, R) = 0.

Therefore, by dualizing the exact sequence
0=V —=1/P=5U—=0

we obtain that U* = (///2)*. Now the fundamental exact
sequence yields
n
Extk(Qr/k,R) = Coker( RO; — U*)
i=1

= Coker(é RO; — (1/17)*) = TX(R).
i=1
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Separation

Let / C S be a monomial ideal, and let y be an indeterminate over
S. Flgystad calls a monomial ideal J C S[y] an i-separation of /, if
the following conditions hold:

(i) the ideal / is the image of J under the K-algebra
homomorphism S[y| — S with y — x; and x; — x; for all
1<j<n

(i) x; and y divide some minimal generators of J;
(iii) y — x; is a non-zero divisor of S[y|/J.

The ideal | is called separable if it admits an i-separation,
otherwise it is called inseparable.

For example | = (x1x2, x1x3, x2x3) admits the 2-separation
J = (xay, x1x3, x2x3).

Separations are unobstructed deformations of monomial ideals
which preserve the monomial structure.
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Proposition. Let / be a squarefree monomial ideal, and let J be
an j-separation of /. Then TY(S/I)_., # 0.

Proof: By condition (iii), S// is obtained from S[y|/J by
reduction modulo a linear form which is a regular element on
S[y]/J. This implies that / and J are minimally generated by the
same number of generators.

Let J be minimally generated by v1, ..., vy,. We may assume that
y divides vq, ..., vk but does not divide the other generators of J.
We may furthermore assume that for all i, v; is mapped to u;
under the K-algebra homomorphism (i).

Then we may write
J = (o1 + (un/xi)(y = xi), - vk + (Ui /xi)(y = Xi)s thegas - - Um).-

From this presentation and by (iii) it follows that S[y]/J is an
unobstructed deformation of S// induced by the element

[¢] € TY(S/I)_.,, where ¢ € I* is the S-module homomorphism
with o(uj) = uj/x;+ | for j =1,..., k and ¢(u;) = 0, otherwise.
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Condition (ii) makes sure that S[y]/J is a non-trivial deformation
of S/I.
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for all /.

If Jis an ideal which is obtained from / by a finite number of
separation steps, then we say that J specializes to /. If moreover, J
is inseparable, then J is called an inseparable model of /.

Each monomial ideal admits an inseparable model, but in general
not only one.

For example, J = (x1y, x1x3, x2x3) is an inseparable model of
| = (X1X2,X1X3,X2X3).



Problem 1. Let / = (x1x2, x2x3, X3x3) C K[x1, X2, X3, x4]. Show
that S// is not rigid.
Problem 2. Let /| C S be a graded ideal, and assume that K is a

perfect field and that R = S/ is a reduced CM ring. Then R is
rigid if and only if Qr/k ® wg is CM.

Problem 3. Let / C S be a graded ideal, and assume that K is a
perfect field and that R = S// is a 1-dimensional reduced
Gorenstein ring. Then R is rigid if and only if Qg /k is torsionfree.

Problem 4. Find an inseparable monomial ideal which is not rigid.



