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Let G be a finite simple graph on the vertex set [n]. We fix a field
K and let I(G) C K|[xi,...,x,] its edge ideal.

According Flgystad and Vatne, a squarefree monomial ideal / C S
is called bi-Cohen-Macaulay (or simply bi-CM) if / as well as its
Alexander dual IV of I is a Cohen-Macaulay ideal. A graph G is
called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or
bi-CM for short), if /(G) is CM or bi-CM.

One important result regarding the Alexander dual that we will
frequently use, is the Eagon-Reiner theorem which says that / is a
Cohen-Macaulay ideal if and only if /Y has a linear resolution.

Thus the Eagon-Reiner theorem implies that / is bi-CM if and only
if I is a Cohen-Macaulay ideal with linear resolution.
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From this description it follows that a bi-CM graph is connected.
Indeed, if this is not the case, then there are induced subgraphs
Gi1, Gp C G such that V/(G) is the disjoint union of V(G;) and
V(G). It follows that /(G) = I(G1) + I(G2), and the ideals /(Gy)
and /(Gy) are ideals in a different set of variables. Therefore, the
free resolution of S/I(G) is obtained as the tensor product of the
resolutions of S//(Gy) and S/I(Gy). This implies that /(G) has
relations of degree 4, so that /(G) does not have a linear resolution.

A subset C C [n] is called a vertex cover of G if CN{i,j} # 0 for
all edges {i,j} of G. The graph G is called unmixed if all minimal
vertex covers of G have the same cardinality.

Let C C [n]. Then the monomial prime ideal Pc = ({x; : i € C})
is a minimal prime ideal of /(G) if and only if C is a minimal vertex
cover of G. Thus G is unmixed if and only if /(G) is unmixed in
the algebraic sense.
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no set {i,j} which is an edge of G. Note that D is an independent
set of G if and only if [n] \ D is a vertex cover. Thus the minimal
vertex covers of G correspond to the maximal independent sets of

G.

The cardinality of a maximal independent is called the
independence number of G. It follows that the Krull dimension of
S/I(G) is equal to ¢, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with

independence number c. The following conditions are equivalent:

(a) G is a bi-CM graph over K;

(b) G is a CM graph over K and |E(G)| = (”_SH);

(c) G is a CM graph over K and the number of minimal vertex
covers of G is equal to n—c+ 1,

(d) Billg) = (i + 1)(”7£;’1) fori=0,...,n—c—1.
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(a) < (b): We divide S/I(G) by a maximal regular sequence of
linear forms to obtain T/J, where J is generated in degree 2 and
dim T /J = 0. Now /(G) has a linear resolution if and only if J has
a linear resolution, and this is the case if and only if J = m2-,-. Thus
G is bi-CM if and only if the number of generators of J is equal to
(”7?1). Since Ig and J have the same number of generators and
since the number of generators of /¢ is equal to |E(G)|, the

assertion follows.

(b)< (c): Since S/l is Cohen-Macaulay, the multiplicity of S//¢
is equal to the length ¢(T /J) of T/J. On the other hand, the
multiplicity is also the number of minimal prime ideals of /g which
coincides with the number of minimal vertex covers of G. Thus the
length of T /J is equal to the number of minimal vertex covers of
G. Since J =m% if and only if /(T/J) = n— c + 1, the assertion
follows.



(a)= (d): Note that 5i(/g) = Si(J) for all i. Since J is isomorphic
to the ideal of 2-minors of the matrix

yi y2 ... Yn—c 0

0 yi -+ Yn—c-1 Yn—c
in the variables y1,...,y,—c, the Eagon-Northcott complex
provides a free resolution of J, and the desired result follows.



(a)= (d): Note that 5i(/g) = Si(J) for all i. Since J is isomorphic
to the ideal of 2-minors of the matrix

yi y2 ... Yn—c 0

0 yi -+ Yn—c-1 Yn—c
in the variables y1,...,y,—c, the Eagon-Northcott complex
provides a free resolution of J, and the desired result follows.

(d)= (a): It follows from the description of the Betti numbers of
I that projdim S/lc = n— c. Thus, depth S/l = c. Since
dimS/lg = c, it follows that /g is a Cohen-Macaulay ideal. Since
|E(G)| = Bo(lg) = ("5), condition (b) is satisfied, and hence G
is bi-CM, as desired. [J
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Theorem. Let G be a bipartite graph on the vertex set V with
bipartition V = Vj U V, where Vi = {vy,...,v,} and

Vo = {wi,...,wn}. Then the following conditions are equivalent:
(a) G is a bi-CM graph;

(b) n=mand E(G) = {{v;,w;} 1 <i<j<n}.



The classification of bipartite and chordal bi-CM graphs

Theorem. Let G be a bipartite graph on the vertex set V with
bipartition V = Vj U V, where Vi = {vy,...,v,} and
Vo = {wi,...,wn}. Then the following conditions are equivalent:

(a) G is a bi-CM graph;
(b) n=mand E(G) = {{v;,w;} 1 <i<j<n}.

The following picture shows a bi-CM bipartite graph for n = 4.

X1 X2 X3 X4

n Y2 y3 ya

Figure: A bi-CM bipartite graph.
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A subset F C [n] is called a clique of G, if {i,j} € E(G) for all
i,j € F with i # j. The set of all cliques of G is a simplicial
complex, denoted A(G).

Theorem.Let G be a chordal graph on the vertex set [n]. The
following conditions are equivalent:

(a) G is a bi-CM graph;
(b) Let F1,..., Fm be the facets of the clique complex of G with
a free vertex. Then m=1,
orm>1and
(i) V(G)=V(F1)UV(F)U...UV(Fy,), and this union is
disjoint;
(ii) each F; has exactly one free vertex j;;
(iii) the restriction of G to [n] \ {j1,....,Jjm} is a clique.



The following picture shows, up to isomorphism, all bi-CM chordal
graphs whose center is the complete graph K, on 4 vertices:
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Inseparable graphs

We say that G is inseparable, if /(G) is inseparable.

When is a graph inseparable and what are the separable models of
a graph?

X3

/\

X1 X2 X1 X2

X3 y

Figure: A triangle and one of its inseparable models
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Generic Bi-CM graphs

Let T be a tree on the vertex set [n], and let i and j be any two
vertices of the tree T.

There exists a unique path P :i=igy,i1,...,i, = j from i to j.

We set b(i,j) = ip and call b(i,j) the begin of P, and set
e(i,j) = ir—1 and call e(i,j) the end of P.

We now define the generic graph Gt associated with T whose
vertex set is

V(Gr)={(i,)), U, i) : {i,j} is an edge of T}.

and with {(/, k), (j,/)} € E(Gt) if and only if there exists a path
P from i to j such that k = b(i,j) and | = e(i,}).



X4

X3

X1

X2



X3

The generic graph of T.
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The following theorem gives a classification of Bi-CM - up to
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Theorem. (H-Rahimi) (a) Let T be a tree. Then Gt is an
inseparable Bi-CM graph.

(b) For any inseparable Bi-CM graph G, there exists a unique tree
T such that G ~ Gr.

(c) Let G be any Bi-CM graph. Then there exists a tree T such
that Gt is an inseparable model of G.

(d) The finitely many trees T for which Gt is an inseparable
model of G can all be determined by considering the Alexander
dual /(G)Y of I(G), and the relation trees of /(G)".
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As we noticed before, the Alexander dual J = /(G)Y of the edge
ideal of a bi-CM graph G is a Cohen—Macaulay ideal of
codimension 2 with linear resolution. The ideal J may have several
distinct relation matrices with respect to the unique minimal set of
monomial generators of J.

As shown in the paper "On multigraded resolutions"
(Bruns-Herzog), one may attach to each of the relation matrices A
of J a tree I, the so-called relation tree of A, as follows:

Let u1,...,Unt1 be the unique minimal set of monomial
generators of J. Because J has a linear resolution, the generating
relations of J may be chosen all of the form x,u; — xju; = 0. This
implies that in each row of the m x (m + 1)-relation matrix A
there are exactly two non-zero entries (which are variables with
different signs). We call such relations, relations of binomial type.



Consider the bi-CM graph G on the vertex set [5] and edges {1,2}
{2,3}, {3,1}, {2,4}, {3,4}, {4,5}.
X2
X4 X5
X1

X3

The ideal J = Ié is generated by 11 = xox3x4, Up = X1X3X4,
U3z = xpx3x5 and ug = xyxox4. The relation matrices with respect
to w1, up, u3 and uy are the matrices

X1 —X2 0 0
A1: X5 0 —X4 0 5
X1 0 0 —X3
and
X1 —X2 0 0
A2: X5 0 —X4 0

0 X2 0 —X3



(O Fr o«
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In the above example the relation tree of A; is

X3

X4 X1 X2

while the relation tree of As is

X3 X1 X2 X4



Conversely, we now define for any given tree T on the vertex set
[m + 1] with edges ey, ..., e, the m x (m+ 1)-matrix AT whose
entries ay; are defined as follows:
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X,'j, if | = i,
a =4 —Xxi, ifl=},
0, otherwise.

The matrix A7 is called the generic matrix attached to the tree T.



Conversely, we now define for any given tree T on the vertex set
[m+ 1] with edges e,. .., ey, the m x (m+ 1)-matrix A+ whose
entries ay are defined as follows: we assign to the kth edge

ex = {i,j} of T with i < the kth row of At by setting

X,'j, if | = i,
a =4 —Xxi, ifl=},
0, otherwise.

The matrix A7 is called the generic matrix attached to the tree T.

By the Hilbert-Burch theorem, the matrix At is the relation matrix
of the ideal J+ of maximal minors of A7, and Jr is a
Cohen-Macaulay ideal of codimension 2 with linear resolution.
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Naeem showed: the minors of A (which are the generators of J7)
are the monomials

m+1
H Xip(ijy U=1,...,m+1),
o
and
It = (Xin(ijyXje(iyy + 1 <1 <j<m+1).

Hence JY = I(G1) where G is the generic graph defined before.

This shows that G7 is a bi-CM graph.
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In order to see that Gt is inseparable, we apply the following
criterion: let G be a graph on the vertex set [n].

We denote by N(/) the neighborhood of i, that is,

N(i) ={j: {j,i} € E(G)}

Further let G() be the complementary graph of the restriction
GN(,-) of G to N(i).

Theorem. (Altmann, Bigdeli, Dancheng Lu, H) The following
conditions are equivalent:

(a) The graph G is inseparable;

(b) G is connected for all /.
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Now we know that Gt is an inseparable bi-CM graph.

Let G be any bi-CM graph, and let T be the relation tree attached
to a relation matrix A of /(G)".

The generic relation matrix At specializes to A. From this fact
one can deduce that /(G7) specializes to I(G).

Therefore, for any relation tree T of /(G)", one obtains the
inseparable model Gt of G.

Finally one shows that any inseparable bi-CM graph is of the form
G, and that all inseparable models of G are the graphs Gt with
T a relation tree of /(G)".



Problem 1. Which of the ideals L(P, Q) is bi-CM?
Problem 2. Which of the polymatroidal ideals are bi-CM?

Problem 3. Which of the matroidal ideals are inseparable?



