Lecture 4: Bi-Cohen-Macaulay graphs

Jürgen Herzog Universität Duisburg-Essen

August 17-24 Moieciu de Sus, România

Let G be a finite simple graph on the vertex set [n]. We fix a field K and let $I(G) \subset K[x_1, \ldots, x_n]$ its edge ideal.

Let G be a finite simple graph on the vertex set [n]. We fix a field K and let $I(G) \subset K[x_1, \ldots, x_n]$ its edge ideal.

According Fløystad and Vatne, a squarefree monomial ideal $I \subset S$ is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its Alexander dual I^{\vee} of I is a Cohen-Macaulay ideal. A graph G is called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or bi-CM for short), if I(G) is CM or bi-CM.

Let G be a finite simple graph on the vertex set [n]. We fix a field K and let $I(G) \subset K[x_1, \ldots, x_n]$ its edge ideal.

According Fløystad and Vatne, a squarefree monomial ideal $I \subset S$ is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its Alexander dual I^{\vee} of I is a Cohen-Macaulay ideal. A graph G is called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or bi-CM for short), if I(G) is CM or bi-CM.

One important result regarding the Alexander dual that we will frequently use, is the Eagon-Reiner theorem which says that I is a Cohen-Macaulay ideal if and only if I^{\vee} has a linear resolution.

Let G be a finite simple graph on the vertex set [n]. We fix a field K and let $I(G) \subset K[x_1, \ldots, x_n]$ its edge ideal.

According Fløystad and Vatne, a squarefree monomial ideal $I \subset S$ is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its Alexander dual I^{\vee} of I is a Cohen-Macaulay ideal. A graph G is called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or bi-CM for short), if I(G) is CM or bi-CM.

One important result regarding the Alexander dual that we will frequently use, is the Eagon-Reiner theorem which says that I is a Cohen-Macaulay ideal if and only if I^{\vee} has a linear resolution.

Thus the Eagon-Reiner theorem implies that / is bi-CM if and only if / is a Cohen-Macaulay ideal with linear resolution.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_1, G_2 \subset G$ such that V(G) is the disjoint union of $V(G_1)$ and $V(G_2)$. It follows that $I(G) = I(G_1) + I(G_2)$, and the ideals $I(G_1)$ and $I(G_2)$ are ideals in a different set of variables.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_1, G_2 \subset G$ such that V(G) is the disjoint union of $V(G_1)$ and $V(G_2)$. It follows that $I(G) = I(G_1) + I(G_2)$, and the ideals $I(G_1)$ and $I(G_2)$ are ideals in a different set of variables. Therefore, the free resolution of S/I(G) is obtained as the tensor product of the resolutions of $S/I(G_1)$ and $S/I(G_2)$. This implies that I(G) has relations of degree 4, so that I(G) does not have a linear resolution.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_1, G_2 \subset G$ such that V(G) is the disjoint union of $V(G_1)$ and $V(G_2)$. It follows that $I(G) = I(G_1) + I(G_2)$, and the ideals $I(G_1)$ and $I(G_2)$ are ideals in a different set of variables. Therefore, the free resolution of S/I(G) is obtained as the tensor product of the resolutions of $S/I(G_1)$ and $S/I(G_2)$. This implies that I(G) has relations of degree 4, so that I(G) does not have a linear resolution.

A subset $C \subset [n]$ is called a vertex cover of G if $C \cap \{i,j\} \neq \emptyset$ for all edges $\{i,j\}$ of G. The graph G is called unmixed if all minimal vertex covers of G have the same cardinality.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_1, G_2 \subset G$ such that V(G) is the disjoint union of $V(G_1)$ and $V(G_2)$. It follows that $I(G) = I(G_1) + I(G_2)$, and the ideals $I(G_1)$ and $I(G_2)$ are ideals in a different set of variables. Therefore, the free resolution of S/I(G) is obtained as the tensor product of the resolutions of $S/I(G_1)$ and $S/I(G_2)$. This implies that I(G) has relations of degree 4, so that I(G) does not have a linear resolution.

A subset $C \subset [n]$ is called a vertex cover of G if $C \cap \{i,j\} \neq \emptyset$ for all edges $\{i,j\}$ of G. The graph G is called unmixed if all minimal vertex covers of G have the same cardinality.

Let $C \subset [n]$. Then the monomial prime ideal $P_C = (\{x_i : i \in C\})$ is a minimal prime ideal of I(G) if and only if C is a minimal vertex cover of G. Thus G is unmixed if and only if I(G) is unmixed in the algebraic sense.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of S/I(G) is equal to c, where c is the independence number of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of S/I(G) is equal to c, where c is the independence number of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of S/I(G) is equal to c, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with independence number c. The following conditions are equivalent:

(a) G is a bi-CM graph over K;

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of S/I(G) is equal to c, where c is the independence number of G.

- (a) G is a bi-CM graph over K;
- (b) G is a CM graph over K and $|E(G)| = \binom{n-c+1}{2}$;

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of S/I(G) is equal to c, where c is the independence number of G.

- (a) G is a bi-CM graph over K;
- (b) G is a CM graph over K and $|E(G)| = \binom{n-c+1}{2}$;
- (c) G is a CM graph over K and the number of minimal vertex covers of G is equal to n-c+1;

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of S/I(G) is equal to c, where c is the independence number of G.

- (a) G is a bi-CM graph over K;
- (b) G is a CM graph over K and $|E(G)| = \binom{n-c+1}{2}$;
- (c) G is a CM graph over K and the number of minimal vertex covers of G is equal to n-c+1;
- (d) $\beta_i(I_G) = (i+1)\binom{n-c+1}{i+2}$ for $i = 0, \dots, n-c-1$.

For the proof of the equivalent conditions we may assume that ${\cal K}$ is infinite.

For the proof of the equivalent conditions we may assume that K is infinite.

(a) \Leftrightarrow (b): We divide S/I(G) by a maximal regular sequence of linear forms to obtain T/J, where J is generated in degree 2 and dim T/J=0. Now I(G) has a linear resolution if and only if J has a linear resolution, and this is the case if and only if $J=\mathfrak{m}_T^2$. Thus G is bi-CM if and only if the number of generators of J is equal to $\binom{n-c+1}{2}$. Since I_G and J have the same number of generators and since the number of generators of I_G is equal to |E(G)|, the assertion follows.

For the proof of the equivalent conditions we may assume that K is infinite.

- (a) \Leftrightarrow (b): We divide S/I(G) by a maximal regular sequence of linear forms to obtain T/J, where J is generated in degree 2 and dim T/J=0. Now I(G) has a linear resolution if and only if J has a linear resolution, and this is the case if and only if $J=\mathfrak{m}_T^2$. Thus G is bi-CM if and only if the number of generators of J is equal to $\binom{n-c+1}{2}$. Since I_G and J have the same number of generators and since the number of generators of I_G is equal to |E(G)|, the assertion follows.
- (b) \Leftrightarrow (c): Since S/I_G is Cohen-Macaulay, the multiplicity of S/I_G is equal to the length $\ell(T/J)$ of T/J. On the other hand, the multiplicity is also the number of minimal prime ideals of I_G which coincides with the number of minimal vertex covers of G. Thus the length of T/J is equal to the number of minimal vertex covers of G. Since $J = \mathfrak{m}_T^2$ if and only if $\ell(T/J) = n c + 1$, the assertion follows.

(a) \Rightarrow (d): Note that $\beta_i(I_G) = \beta_i(J)$ for all i. Since J is isomorphic to the ideal of 2-minors of the matrix

$$\begin{pmatrix} y_1 & y_2 & \dots & y_{n-c} & 0 \\ 0 & y_1 & \dots & y_{n-c-1} & y_{n-c} \end{pmatrix}$$

in the variables y_1, \ldots, y_{n-c} , the Eagon-Northcott complex provides a free resolution of J, and the desired result follows.

(a) \Rightarrow (d): Note that $\beta_i(I_G) = \beta_i(J)$ for all i. Since J is isomorphic to the ideal of 2-minors of the matrix

$$\begin{pmatrix} y_1 & y_2 & \dots & y_{n-c} & 0 \\ 0 & y_1 & \dots & y_{n-c-1} & y_{n-c} \end{pmatrix}$$

in the variables y_1, \ldots, y_{n-c} , the Eagon-Northcott complex provides a free resolution of J, and the desired result follows.

(d) \Rightarrow (a): It follows from the description of the Betti numbers of I_G that proj dim $S/I_G = n - c$. Thus, depth $S/I_G = c$. Since dim $S/I_G = c$, it follows that I_G is a Cohen-Macaulay ideal. Since $|E(G)| = \beta_0(I_G) = \binom{n-c+1}{2}$, condition (b) is satisfied, and hence G is bi-CM, as desired. \square

The classification of bipartite and chordal bi-CM graphs

Theorem. Let G be a bipartite graph on the vertex set V with bipartition $V=V_1\cup V_2$ where $V_1=\{v_1,\ldots,v_n\}$ and $V_2=\{w_1,\ldots,w_m\}$. Then the following conditions are equivalent:

- (a) G is a bi-CM graph;
- (b) n = m and $E(G) = \{\{v_i, w_j\} \ 1 \le i \le j \le n\}.$

The classification of bipartite and chordal bi-CM graphs

Theorem. Let G be a bipartite graph on the vertex set V with bipartition $V = V_1 \cup V_2$ where $V_1 = \{v_1, \dots, v_n\}$ and $V_2 = \{w_1, \dots, w_m\}$. Then the following conditions are equivalent:

(a) **G** is a bi-CM graph;

(b)
$$n = m$$
 and $E(G) = \{\{v_i, w_j\} \ 1 \le i \le j \le n\}.$

The following picture shows a bi-CM bipartite graph for n = 4.

Figure: A bi-CM bipartite graph.

Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:

(a) G is a bi-CM graph;

Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:

- (a) G is a bi-CM graph;
- (b) Let F_1, \ldots, F_m be the facets of the clique complex of G with a free vertex. Then m=1, or m>1 and
 - (i) $V(G) = V(F_1) \cup V(F_2) \cup ... \cup V(F_m)$, and this union is disjoint;

Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:

- (a) G is a bi-CM graph;
- (b) Let F_1, \ldots, F_m be the facets of the clique complex of G with a free vertex. Then m=1, or m>1 and
 - (i) $V(G) = V(F_1) \cup V(F_2) \cup ... \cup V(F_m)$, and this union is disjoint;
 - (ii) each F_i has exactly one free vertex j_i ;

Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:

- (a) G is a bi-CM graph;
- (b) Let F_1, \ldots, F_m be the facets of the clique complex of G with a free vertex. Then m=1, or m>1 and
 - (i) $V(G) = V(F_1) \cup V(F_2) \cup ... \cup V(F_m)$, and this union is disjoint;
 - (ii) each F_i has exactly one free vertex j_i ;
 - (iii) the restriction of G to $[n] \setminus \{j_1, \ldots, j_m\}$ is a clique.

The following picture shows, up to isomorphism, all bi-CM chordal graphs whose center is the complete graph K_4 on 4 vertices:

Inseparable graphs

We say that G is inseparable, if I(G) is inseparable.

Inseparable graphs

We say that G is inseparable, if I(G) is inseparable.

When is a graph inseparable and what are the separable models of a graph?

Figure: A triangle and one of its inseparable models

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

There exists a unique path $P: i = i_0, i_1, \dots, i_r = j$ from i to j.

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

There exists a unique path $P: i = i_0, i_1, \dots, i_r = j$ from i to j.

We set $b(i,j) = i_1$ and call b(i,j) the begin of P, and set $e(i,j) = i_{r-1}$ and call e(i,j) the end of P.

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

There exists a unique path $P: i = i_0, i_1, \dots, i_r = j$ from i to j.

We set $b(i,j) = i_1$ and call b(i,j) the begin of P, and set $e(i,j) = i_{r-1}$ and call e(i,j) the end of P.

We now define the generic graph G_T associated with T whose vertex set is

$$V(G_T) = \{(i,j), (j,i) : \{i,j\} \text{ is an edge of } T\}.$$

and with $\{(i,k),(j,l)\}\in E(G_T)$ if and only if there exists a path P from i to j such that k=b(i,j) and l=e(i,j).

The generic graph of T.

The following theorem gives a classification of $\mbox{\ensuremath{Bi\text{-}CM}}$ - up to separation.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_T is an inseparable Bi-CM graph.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_T is an inseparable Bi-CM graph.

(b) For any inseparable Bi-CM graph G, there exists a unique tree T such that $G \simeq G_T$.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_T is an inseparable Bi-CM graph.

- (b) For any inseparable Bi-CM graph G, there exists a unique tree T such that $G \simeq G_T$.
- (c) Let G be any Bi-CM graph. Then there exists a tree T such that G_T is an inseparable model of G.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_T is an inseparable Bi-CM graph.

- (b) For any inseparable Bi-CM graph G, there exists a unique tree T such that $G \simeq G_T$.
- (c) Let G be any Bi-CM graph. Then there exists a tree T such that G_T is an inseparable model of G.
- (d) The finitely many trees T for which G_T is an inseparable model of G can all be determined by considering the Alexander dual $I(G)^{\vee}$ of I(G), and the relation trees of $I(G)^{\vee}$.

As we noticed before, the Alexander dual $J = I(G)^{\vee}$ of the edge ideal of a bi-CM graph G is a Cohen–Macaulay ideal of codimension 2 with linear resolution. The ideal J may have several distinct relation matrices with respect to the unique minimal set of monomial generators of J.

As we noticed before, the Alexander dual $J = I(G)^{\vee}$ of the edge ideal of a bi-CM graph G is a Cohen–Macaulay ideal of codimension 2 with linear resolution. The ideal J may have several distinct relation matrices with respect to the unique minimal set of monomial generators of J.

As shown in the paper "On multigraded resolutions" (Bruns-Herzog), one may attach to each of the relation matrices A of J a tree Γ , the so-called relation tree of A, as follows:

As we noticed before, the Alexander dual $J = I(G)^{\vee}$ of the edge ideal of a bi-CM graph G is a Cohen–Macaulay ideal of codimension 2 with linear resolution. The ideal J may have several distinct relation matrices with respect to the unique minimal set of monomial generators of J.

As shown in the paper "On multigraded resolutions" (Bruns-Herzog), one may attach to each of the relation matrices A of J a tree Γ , the so-called relation tree of A, as follows:

Let u_1,\ldots,u_{m+1} be the unique minimal set of monomial generators of J. Because J has a linear resolution, the generating relations of J may be chosen all of the form $x_k u_i - x_l u_j = 0$. This implies that in each row of the $m \times (m+1)$ -relation matrix A there are exactly two non-zero entries (which are variables with different signs). We call such relations, relations of binomial type.

Consider the bi-CM graph G on the vertex set [5] and edges $\{1,2\}$ $\{2,3\}$, $\{3,1\}$, $\{2,4\}$, $\{3,4\}$, $\{4,5\}$.

The ideal $J = I_G^{\vee}$ is generated by $u_1 = x_2x_3x_4$, $u_2 = x_1x_3x_4$, $u_3 = x_2x_3x_5$ and $u_4 = x_1x_2x_4$. The relation matrices with respect to u_1, u_2, u_3 and u_4 are the matrices

$$A_1 = \begin{pmatrix} x_1 & -x_2 & 0 & 0 \\ x_5 & 0 & -x_4 & 0 \\ x_1 & 0 & 0 & -x_3 \end{pmatrix},$$

and

$$A_{2} = \begin{pmatrix} x_{1} & -x_{2} & 0 & 0 \\ x_{5} & 0 & -x_{4} & 0 \\ 0 & x_{2} & 0 & -x_{3} \end{pmatrix}.$$

In the above example the relation tree of A_1 is

while the relation tree of A_2 is

Conversely, we now define for any given tree T on the vertex set [m+1] with edges e_1, \ldots, e_m the $m \times (m+1)$ -matrix A_T whose entries a_{kl} are defined as follows:

Conversely, we now define for any given tree T on the vertex set [m+1] with edges e_1, \ldots, e_m the $m \times (m+1)$ -matrix A_T whose entries a_{kl} are defined as follows: we assign to the kth edge $e_k = \{i, j\}$ of T with i < j the kth row of A_T by setting

$$a_{kl} = \begin{cases} x_{ij}, & \text{if } l = i, \\ -x_{ji}, & \text{if } l = j, \\ 0, & \text{otherwise.} \end{cases}$$

The matrix A_T is called the generic matrix attached to the tree T.

Conversely, we now define for any given tree T on the vertex set [m+1] with edges e_1, \ldots, e_m the $m \times (m+1)$ -matrix A_T whose entries a_{kl} are defined as follows: we assign to the kth edge $e_k = \{i,j\}$ of T with i < j the kth row of A_T by setting

$$a_{kl} = \begin{cases} x_{ij}, & \text{if } l = i, \\ -x_{ji}, & \text{if } l = j, \\ 0, & \text{otherwise.} \end{cases}$$

The matrix A_T is called the generic matrix attached to the tree T.

By the Hilbert-Burch theorem, the matrix A_T is the relation matrix of the ideal J_T of maximal minors of A_T , and J_T is a Cohen-Macaulay ideal of codimension 2 with linear resolution.

Naeem showed: the minors of A_T (which are the generators of J_T) are the monomials

$$\prod_{\stackrel{i=1}{i\neq j}}^{m+1} x_{ib(i,j)} \quad (j=1,\ldots,m+1),$$

Naeem showed: the minors of A_T (which are the generators of J_T) are the monomials

$$\prod_{\stackrel{i=1}{i\neq j}}^{m+1} x_{ib(i,j)} \quad (j=1,\ldots,m+1),$$

and

$$J_T^{\vee} = (x_{ib(i,j)} x_{je(i,j)} : 1 \le i < j \le m+1).$$

Naeem showed: the minors of A_T (which are the generators of J_T) are the monomials

$$\prod_{\stackrel{i=1}{i\neq j}}^{m+1} x_{ib(i,j)} \quad (j=1,\ldots,m+1),$$

and

$$J_T^{\vee} = (x_{ib(i,j)} x_{je(i,j)} : 1 \le i < j \le m+1).$$

Hence $J_T^{\vee} = I(G_T)$ where G_T is the generic graph defined before.

This shows that G_T is a bi-CM graph.

We denote by N(i) the neighborhood of i, that is,

$$N(i) = \{j : \{j, i\} \in E(G)\}$$

٠

We denote by N(i) the neighborhood of i, that is,

$$N(i) = \{j : \{j, i\} \in E(G)\}$$

.

Further let $G^{(i)}$ be the complementary graph of the restriction $G_{N(i)}$ of G to N(i).

We denote by N(i) the neighborhood of i, that is,

$$N(i) = \{j : \{j, i\} \in E(G)\}$$

.

Further let $G^{(i)}$ be the complementary graph of the restriction $G_{N(i)}$ of G to N(i).

Theorem. (Altmann, Bigdeli, Dancheng Lu, H) The following conditions are equivalent:

- (a) The graph G is inseparable;
- (b) $G^{(i)}$ is connected for all i.

Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

The generic relation matrix A_T specializes to A. From this fact one can deduce that $I(G_T)$ specializes to I(G).

Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

The generic relation matrix A_T specializes to A. From this fact one can deduce that $I(G_T)$ specializes to I(G).

Therefore, for any relation tree T of $I(G)^{\vee}$, one obtains the inseparable model G_T of G.

Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

The generic relation matrix A_T specializes to A. From this fact one can deduce that $I(G_T)$ specializes to I(G).

Therefore, for any relation tree T of $I(G)^{\vee}$, one obtains the inseparable model G_T of G.

Finally one shows that any inseparable bi-CM graph is of the form G_T , and that all inseparable models of G are the graphs G_T with T a relation tree of $I(G)^{\vee}$.

- **Problem 1**. Which of the ideals L(P, Q) is bi-CM?
- **Problem 2**. Which of the polymatroidal ideals are bi-CM?
- **Problem 3**. Which of the matroidal ideals are inseparable?