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Rigid simplicial complexes

Let K be a field, and A be a simplicial complex on the vertex set
[n].
It is an open problem to classify the rigid simplicial complexes, that

is, simplicial complexes A with the property that the
Stanley-Reisner ring K[A] is rigid.

From Lecture 3 we know that K[A] is rigid if and only if
TY(K[A]) = 0.

Since TY(K[A]) is Z"-graded, it follows that T!(K[A]) = 0 if and
only if TH(K[A])c = 0 for all c € Z".
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The field K will be fixed, and we write T1(A) for T}(K[A]), in
order to simplify notation.

We write c € Z" as a — b with a,b € N” and suppansuppb = 0,
and set A =suppa and B = suppb. Here N denotes the set of
non-negative integers, and the support of a vector a € N" is
defined to be the set suppa = {i € [n] : a; # 0}.

Theorem. (Altmann, Christophersen) (a) T1(A)a_p = 0 if
b¢{0,1}".

(b) Assuming b € {0,1}", then T*(A),_p, depends only on A and
B.



Recall that for a subset A of [n], the link of A is defined to be
linka A={F €A FNA=0, FUAE A}

with vertex set V(linka A) = [n] \ A.



Recall that for a subset A of [n], the link of A is defined to be
linka A={F €A FNA=0, FUAE A}

with vertex set V(linka A) = [n] \ A.

Theorem. (Altmann, Christophersen)

THA)a—p = T(linka A)_p



Recall that for a subset A of [n], the link of A is defined to be
linka A={F €A FNA=0, FUAE A}

with vertex set V(linka A) = [n] \ A.

Theorem. (Altmann, Christophersen)

THA)a—p = T(linka A)_p

We say that A is ()-rigid, if T1(A)_p =0 for all b € {0,1}".
Thus, A is rigid, if and only if all its links are ()-rigid.
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Let A; and A, be simplicial complexes on disjoint vertex sets,
then the join A * Ay is a simplicial complex on the vertex set
V(Al) U V(A2) with faces {F UG: FelA,Ge A2}

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let
In, € K[x1,...,x5] and In, € K[y1,...,¥m]. Then
Tl(Al * A2) = Tl(Al)[yb cee >ym] @ Tl(A2)[Xl7 s 7Xn]'

In particular Aj * Ay is rigid if and only if Ay and A, are rigid.

(b) Let Ay # {0} and Ay # {0} be simplicial complexes with
disjoint vertex sets, and asssume that for i = 1,2, {j} € A; for all
J € V(4A)). Then the following conditions are equivalent:

(1) Ay U A, is rigid;
(2) Ay U Ay is (-rigid;
(3) A1 and A; are simplices with dim Ay + dim A, > 0.
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Rigid graphs

The previous theorem implies that A must be connected if it is
rigid, unless dim A = 0.

As said before, a classification of the rigid simplicial complexes is
yet unknown.

Here we now discuss the case that A = A(G) where G is a graph
on [n] and A(G) is the simplicial complex of independent sets of G.

Thus if /(G) is the edge ideal of G, then I5(g) = I(G).
We call G rigid, if K[A(G)](= S/I(G)) is rigid.

For i € G we defined in Lecture 4, the neighborhood
N(i) = {j: {i,j} € E(G)}, and denoted by G() the
complementary graph of the restriction Gy of G to N(i).
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is called the neighborhood of A (in G), and the set
N[A] = AU N(A)
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We also define the sets
N(A) = | N(i)
i€A
is called the neighborhood of A (in G), and the set
N[A] = AU N(A)
is called the closed neighborhood of A (in G).
We have the following criterion of rigidity of G.

Theorem. G is rigid if and only if for all independent sets
A C V(G) one has:

(@) (G\ N[A])Y is connected for all i € [n]\ N[A];
(8) G\ N[A] contains no isolated edge.
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By far not all bipartite graphs are rigid.

Proposition. Let G be a Cohen—Macaulay bipartite graph. Then
G is not rigid.

Proof. If G is not connected, then A(G) is a join. Thus G is rigid
(resp. CM) if and only if each connected component is rigid (resp.
CM). Thus we assume that G is connected. Since G is
Cohen—Macaulay, after a suitable relabeling of its vertices, G arises
from a finite poset P = {p1,...,pn} as follows:

V(G) ={p1,---Pn:q1,---,qn} and E(G) = {{pi, q;} pi < pj}.
We may assume that p; is a minimal element in P. Let
A={p2,...,pn}. Then N[A] ={p2,...,Pn,q2,...,qn}, and

G\ N[A] = {p1,q1}. It follows from () that G is not rigid. OJ
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A vertex v of G is called a free vertex if degv = 1, and an edge e
is called a leaf if it has a free vertex. An edge e of G is called a
branch, if there exists a leaf € with € # e such that en e’ # 0.

Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph
on the vertex set [n] such that G does not contain any induced
cycle of length 4, 5 or 6. Then G is rigid if and only if each edge of
G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

Corollary. Let G be a chordal graph. Then G is rigid if and only if
each edge of G is a branch and each vertex of a 3-cycle of G
belongs to a leaf.

Corollary. Suppose that all cycles of G have length > 7 (which for
example is the case when G is a forest). Then G is rigid if and only
if each edge of G is a branch.
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T for toric rings

Let H be an affine semigroup, that is, a finitely generated
subsemigroup of Z™ for some m > 0. Let hy,...,h, be the
minimal generators of H, and fix a field K.

The toric ring K[H] associated with H is the K-subalgebra of the

ring K[tlﬂ, ..., t=1] of Laurent polynomials generated by the
monomials ¢ ... th". Here t? = tf(l) e tf;,(m) for

a=(a(1),...,a(m)) e zZ™.

Let S = K[xi, ..., x| be the polynomial ring over K in the
variables xi, ..., x,. The K-algebra R = K[H]| has a presentation
S — R with x; — thi fori=1,...,n.

The kernel Iy C S of this map is the toric ideal attached to H.
Corresponding to this presentation of K[H] there is a presentation
N" — H of H which can be extended to the group homomorphism
7" — Z™ with €¢; — h; for i = 1,...,n, where €1,..., €, denotes
the canonical basis of Z".
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Let L C Z" be the kernel of this group homomorphism. The lattice
L is called the relation lattice of H. As we know, L is a free
abelian group and Z"/L is torsion-free.

Moreover, Iy is generated by the binomials f, with v € L, where
f, = x"t — xV-.

We define an H-grading on S by setting deg x; = h;. Then Iy is a
graded ideal with deg f, = h(v), where

hv)= 3 vidhi(= 3 —v(i)h).

i, v(1)=0 i, v(1)<0
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Let vy,...,v, be a basis of L. Since Iy is a prime ideal we may
localize S with respect to this prime ideal and obtain

IHS/H = (fV17 ) fvr)SIH-

In particular, we see that
height Iy = rank L.

We let R = K[H], and let ZH denote the associated group of H,
that is, the smallest subgroup of Z™ containing H.

The cotangent module T(K[H]) admits a natural ZH-grading.
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We consider the following example: let H be a numerical
semigroup. Then R = K[H] = K[tM,..., t"] c K[t] with
hy < hy < ... < h, a minimal set of generators of H.

We claim that R is rigid, if and only if n =1, that is, if and only if
R is regular.

There is an epimorphism x : Qg — m with x(dx;) — hit" where
m = (tM, ... th") is the graded maximal ideal of R.

Since rank Qg /i = rankm = 1, it follows that C = Ker x is a
torsion module. Thus we obtain the following exact sequence

0—C—QrKk—>m—0,
which induces the long exact sequence

Homg(C, R) — Extk(m, R) — Extg(Qr/k, R).
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Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus
Homg(C,R) = 0 and Extgp(m, R) ~m~1/R # 0. It follows that
Exti(Qr/k, R) # 0.

It is a big open conjecture whether a K-subalgebra R C K|[t] is
rigid if and only if R is regular.

The conjecture is known to be correct if the embedding dimension
of R is 3, or R is Gorenstein of embedding dimension 4. The proof
uses Hilbert-Burch and the Buchsbaum-Eisenbud structure
theorem.
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We want to compute the graded components T1(R), of T*(R) for
acZH:

The cotangent module T1(R) is defined via the exact sequence

(Qs/k ®s R)* ——— U* = TH(R) =0
of ZH-graded modules, where M* denotes the R-dual of the
ZH-graded R-module M.

Let f,,,...,f, be a system of generators of /5. Observe that the
elements df,,, ..., df,, form a system of generators of U.

Let a € ZH. We denote by KL the K-subspace of K" spanned by
vi,...,Vs and by KL, the K-subspace of KL spanned by the set of
vectors {v; : a+ h(v;) ¢ H}.

Then one shows that dimk(U*), = dimx KL — dimk KL,. for all
aE€ZH.
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Similarly one obtains a description of Im(0*).

In conclusion one sees that all information which is needed to
compute dimx T1(R), can be obtained from the (s x n)-matrix

vi(l) wvi(2) vi(n)
AH _ VQF].) V2f2) VQFn)
vs(1) wvs(2) ... wvs(n)

Indeed, dimy TY(K[H]), can be computed as follows: let

| = rank Ay, I, the rank of the submatrix of Ay whose rows are
the ith rows of Ay for which a+ h(v;) ¢ H, and let d, be the rank
of the submatrix of Ay whose columns are the jth columns of Ay
for which a+ h; € H. Then

dimk TY(K[H]), = | — I, — da.

Corollary. T(K[H])), =0 for all a € H.
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Separated saturated lattices

Which affine semigroup ring K[H] is obtained from another affine
semigroup ring K[H'] by specialization, that is, by reduction
modulo a regular element?

Of course we can always choose H' = H x N in which case K[H']
is isomorphic to the polynomial ring K[H][y| over K[H] in the
variable y, and K[H)] is obtained from K[H’] by reduction modulo
the regular element y.

This trivial case we do not consider as a proper solution of finding
an K[H'] that specializes to K[H]. If no non-trivial K[H'] exists,
which specializes to K[H], then H will be called inseparable and
otherwise separable.
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Let €1,...,€, be the canonical basis of Z” and €1, ..., €, €411 the

canonical basis of Z™1. Let i € [n]. We denote by

m;: Z"t — 7" the group homomorphism with m;(¢;) = ¢; for

j=1,....nand mi(ent1) = €.

For convenience we denote again by 7; the K-algebra

homomorphism S[xp41] — S with 7j(x;) = xj for j =1,...,n and

7T,'(Xn+1) = Xj.

Let L C Z" be a saturated lattice. We say that L is i-separable for

some i € [n], if there exists a saturated lattice L’ C Z"*! such that
(i) rank L' = rank L;

(i) () = Io;

(iii) there exists a minimal system of generators f,,, ..., f,, of I;/

such that the vectors (wi(n+1),...,ws(n+ 1)) and
(wi(i),...,ws(i)) are linearly independent.
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The lattice L is called inseparable if it is i-inseparable for all i. We
also call a semigroup H and its toric ring inseparable if the relation
lattice of H is inseparable.

The lattice L’ satisfying (i)-(iii) is called an i-separation lattice for
L.

If L" is an i-separation lattice of L, then x,.1 — x; is a
non-zerodivisor on S[x,+1]//;/ and

(Slxntal/ 1)/ (31 — xi)(Sxnta] /1) = S/

Theorem. Let H be a positive affine semigroup which is minimally
generated by hi,..., h,, L C Z" the relation lattice of H. Suppose
that L is j-separable. Then TY(K[H])_p # 0. In particular, if
K[H] is standard graded, then H is inseparable, if

TYK[H])-1 = 0.
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Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph
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Proposition. Any numerical semigroup ring K[t t" th] is
i-separable for i = 1,2, 3.

Is the same result true for any numerical semigroup?

Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph
with edge set {e1,..., ey}, and let R = K[G] be the edge ring of
G. Then the following conditions are equivalent:

(a) The relation lattice of H(G) is i-separable.
(b) TX(R)_, £0.

(c) There exists a cycle C of G for which ¢; is a chord, and there
is no crossing path chord P of C with respect to e;.

It is widely open for which graphs G, the edge ring K[G] is rigid.



Problem 1. Let m be the graded maximal ideal of
S = K[xi,...,x,]. Compute the module T1(S/m?).

Problem 2. Let / C m? be a graded ideal with dimS// = 0. Do
we always have that T1(R) # 07

Problem 3. Let R = K[H] be a numerical semigroup ring. Show
that T1(R) is module of finite length.

Problem 4. Compute the length of T*(R) when R = K[t t"].



