Lecture 5: Rigidity and separability of simplicial complexes and toric rings

Jürgen Herzog Universität Duisburg-Essen

August 17-24 Moieciu de Sus, România

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

It is an open problem to classify the rigid simplicial complexes, that is, simplicial complexes Δ with the property that the Stanley-Reisner ring $K[\Delta]$ is rigid.

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

It is an open problem to classify the rigid simplicial complexes, that is, simplicial complexes Δ with the property that the Stanley-Reisner ring $K[\Delta]$ is rigid.

From Lecture 3 we know that $K[\Delta]$ is rigid if and only if $T^1(K[\Delta]) = 0$.

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

It is an open problem to classify the rigid simplicial complexes, that is, simplicial complexes Δ with the property that the Stanley-Reisner ring $K[\Delta]$ is rigid.

From Lecture 3 we know that $K[\Delta]$ is rigid if and only if $T^1(K[\Delta]) = 0$.

Since $T^1(K[\Delta])$ is \mathbb{Z}^n -graded, it follows that $T^1(K[\Delta]) = 0$ if and only if $T^1(K[\Delta])_{\mathbf{c}} = 0$ for all $\mathbf{c} \in \mathbb{Z}^n$.

We write $\mathbf{c} \in \mathbb{Z}^n$ as $\mathbf{a} - \mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{N}^n$ and supp $\mathbf{a} \cap \text{supp } \mathbf{b} = \emptyset$, and set $A = \text{supp } \mathbf{a}$ and $B = \text{supp } \mathbf{b}$. Here \mathbb{N} denotes the set of non-negative integers, and the support of a vector $\mathbf{a} \in \mathbb{N}^n$ is defined to be the set supp $\mathbf{a} = \{i \in [n] : a_i \neq 0\}$.

We write $\mathbf{c} \in \mathbb{Z}^n$ as $\mathbf{a} - \mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{N}^n$ and supp $\mathbf{a} \cap \text{supp } \mathbf{b} = \emptyset$, and set $A = \text{supp } \mathbf{a}$ and $B = \text{supp } \mathbf{b}$. Here \mathbb{N} denotes the set of non-negative integers, and the support of a vector $\mathbf{a} \in \mathbb{N}^n$ is defined to be the set supp $\mathbf{a} = \{i \in [n] : a_i \neq 0\}$.

Theorem. (Altmann, Christophersen) (a) $T^1(\Delta)_{\mathbf{a}-\mathbf{b}} = 0$ if $\mathbf{b} \notin \{0,1\}^n$.

We write $\mathbf{c} \in \mathbb{Z}^n$ as $\mathbf{a} - \mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{N}^n$ and supp $\mathbf{a} \cap \text{supp } \mathbf{b} = \emptyset$, and set $A = \text{supp } \mathbf{a}$ and $B = \text{supp } \mathbf{b}$. Here \mathbb{N} denotes the set of non-negative integers, and the support of a vector $\mathbf{a} \in \mathbb{N}^n$ is defined to be the set supp $\mathbf{a} = \{i \in [n] : a_i \neq 0\}$.

Theorem. (Altmann, Christophersen) (a) $T^1(\Delta)_{\mathbf{a}-\mathbf{b}} = 0$ if $\mathbf{b} \notin \{0,1\}^n$.

(b) Assuming $\mathbf{b} \in \{0,1\}^n$, then $\mathcal{T}^1(\Delta)_{\mathbf{a}-\mathbf{b}}$ depends only on A and B.

Recall that for a subset A of [n], the link of A is defined to be

$$\mathsf{link}_{\Delta} A = \{ F \in \Delta \ F \cap A = \emptyset, \ F \cup A \in \Delta \}$$

with vertex set $V(\operatorname{link}_{\Delta} A) = [n] \setminus A$.

Recall that for a subset A of [n], the link of A is defined to be

$$\mathsf{link}_{\Delta} A = \{ F \in \Delta \ F \cap A = \emptyset, \ F \cup A \in \Delta \}$$

with vertex set $V(\operatorname{link}_{\Delta} A) = [n] \setminus A$.

Theorem. (Altmann, Christophersen)

$$T^1(\Delta)_{\mathbf{a}-\mathbf{b}} = T^1(\operatorname{link}_{\Delta} A)_{-\mathbf{b}}$$

Recall that for a subset A of [n], the link of A is defined to be

$$\mathsf{link}_{\Delta} A = \{ F \in \Delta \ F \cap A = \emptyset, \ F \cup A \in \Delta \}$$

with vertex set $V(\operatorname{link}_{\Delta} A) = [n] \setminus A$.

Theorem. (Altmann, Christophersen)

$$T^1(\Delta)_{\mathbf{a}-\mathbf{b}} = T^1(\operatorname{link}_{\Delta} A)_{-\mathbf{b}}$$

.

We say that Δ is \emptyset -rigid, if $T^1(\Delta)_{-\mathbf{b}} = 0$ for all $\mathbf{b} \in \{0,1\}^n$. Thus, Δ is rigid, if and only if all its links are \emptyset -rigid.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_1} \subseteq K[x_1, \dots, x_n]$ and $I_{\Delta_2} \subseteq K[y_1, \dots, y_m]$. Then

$$\mathcal{T}^1(\Delta_1 * \Delta_2) = \mathcal{T}^1(\Delta_1)[y_1, \ldots, y_m] \oplus \mathcal{T}^1(\Delta_2)[x_1, \ldots, x_n].$$

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_1} \subseteq K[x_1, \ldots, x_n]$ and $I_{\Delta_2} \subseteq K[y_1, \ldots, y_m]$. Then

$$\mathcal{T}^1(\Delta_1 * \Delta_2) = \mathcal{T}^1(\Delta_1)[y_1, \ldots, y_m] \oplus \mathcal{T}^1(\Delta_2)[x_1, \ldots, x_n].$$

In particular $\Delta_1 * \Delta_2$ is rigid if and only if Δ_1 and Δ_2 are rigid.

(b) Let $\Delta_1 \neq \{\emptyset\}$ and $\Delta_2 \neq \{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\ \{j\}\in\Delta_i$ for all $j\in V(\Delta_i)$. Then the following conditions are equivalent:

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_1} \subseteq K[x_1, \dots, x_n]$ and $I_{\Delta_2} \subseteq K[y_1, \dots, y_m]$. Then

$$\mathcal{T}^1(\Delta_1 * \Delta_2) = \mathcal{T}^1(\Delta_1)[y_1, \ldots, y_m] \oplus \mathcal{T}^1(\Delta_2)[x_1, \ldots, x_n].$$

- (b) Let $\Delta_1 \neq \{\emptyset\}$ and $\Delta_2 \neq \{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\ \{j\}\in\Delta_i$ for all $j\in V(\Delta_i)$. Then the following conditions are equivalent:
 - (1) $\Delta_1 \cup \Delta_2$ is rigid;

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_1} \subseteq K[x_1, \ldots, x_n]$ and $I_{\Delta_2} \subseteq K[y_1, \ldots, y_m]$. Then

$$T^1(\Delta_1 * \Delta_2) = T^1(\Delta_1)[y_1, \ldots, y_m] \oplus T^1(\Delta_2)[x_1, \ldots, x_n].$$

- (b) Let $\Delta_1 \neq \{\emptyset\}$ and $\Delta_2 \neq \{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\ \{j\}\in\Delta_i$ for all $j\in V(\Delta_i)$. Then the following conditions are equivalent:
 - (1) $\Delta_1 \cup \Delta_2$ is rigid;
 - (2) $\Delta_1 \cup \Delta_2$ is \emptyset -rigid;

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_1} \subseteq K[x_1, \ldots, x_n]$ and $I_{\Delta_2} \subseteq K[y_1, \ldots, y_m]$. Then

$$T^1(\Delta_1 * \Delta_2) = T^1(\Delta_1)[y_1, \ldots, y_m] \oplus T^1(\Delta_2)[x_1, \ldots, x_n].$$

- (b) Let $\Delta_1 \neq \{\emptyset\}$ and $\Delta_2 \neq \{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i = 1, 2, \{j\} \in \Delta_i$ for all $j \in V(\Delta_i)$. Then the following conditions are equivalent:
 - (1) $\Delta_1 \cup \Delta_2$ is rigid;
 - (2) $\Delta_1 \cup \Delta_2$ is \emptyset -rigid;
 - (3) Δ_1 and Δ_2 are simplices with dim $\Delta_1 + \dim \Delta_2 > 0$.

The previous theorem implies that Δ must be connected if it is rigid, unless dim $\Delta=0$.

The previous theorem implies that Δ must be connected if it is rigid, unless dim $\Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

The previous theorem implies that Δ must be connected if it is rigid, unless dim $\Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta = \Delta(G)$ where G is a graph on [n] and $\Delta(G)$ is the simplicial complex of independent sets of G.

The previous theorem implies that Δ must be connected if it is rigid, unless dim $\Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta = \Delta(G)$ where G is a graph on [n] and $\Delta(G)$ is the simplicial complex of independent sets of G.

Thus if I(G) is the edge ideal of G, then $I_{\Delta(G)} = I(G)$.

The previous theorem implies that Δ must be connected if it is rigid, unless dim $\Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta = \Delta(G)$ where G is a graph on [n] and $\Delta(G)$ is the simplicial complex of independent sets of G.

Thus if I(G) is the edge ideal of G, then $I_{\Delta(G)} = I(G)$.

We call G rigid, if $K[\Delta(G)](=S/I(G))$ is rigid.

The previous theorem implies that Δ must be connected if it is rigid, unless dim $\Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta = \Delta(G)$ where G is a graph on [n] and $\Delta(G)$ is the simplicial complex of independent sets of G.

Thus if I(G) is the edge ideal of G, then $I_{\Delta(G)} = I(G)$.

We call G rigid, if $K[\Delta(G)](=S/I(G))$ is rigid.

For $i \in G$ we defined in Lecture 4, the neighborhood $N(i) = \{j : \{i,j\} \in E(G)\}$, and denoted by $G^{(i)}$ the complementary graph of the restriction $G_{N(i)}$ of G to N(i).

We also define the sets

$$N(A) = \bigcup_{i \in A} N(i)$$

is called the neighborhood of A (in G), and the set

$$N[A] = A \cup N(A)$$

is called the closed neighborhood of A (in G).

We also define the sets

$$N(A) = \bigcup_{i \in A} N(i)$$

is called the neighborhood of A (in G), and the set

$$N[A] = A \cup N(A)$$

is called the closed neighborhood of A (in G).

We have the following criterion of rigidity of G.

Theorem. G is rigid if and only if for all independent sets $A \subseteq V(G)$ one has:

- (α) $(G \setminus N[A])^{(i)}$ is connected for all $i \in [n] \setminus N[A]$;
- (β) $G \setminus N[A]$ contains no isolated edge.

Proposition. Let G be a Cohen–Macaulay bipartite graph. Then G is not rigid.

Proposition. Let G be a Cohen–Macaulay bipartite graph. Then G is not rigid.

Proof. If G is not connected, then $\Delta(G)$ is a join. Thus G is rigid (resp. CM) if and only if each connected component is rigid (resp. CM). Thus we assume that G is connected.

Proposition. Let G be a Cohen–Macaulay bipartite graph. Then G is not rigid.

Proof. If G is not connected, then $\Delta(G)$ is a join. Thus G is rigid (resp. CM) if and only if each connected component is rigid (resp. CM). Thus we assume that G is connected. Since G is Cohen–Macaulay, after a suitable relabeling of its vertices, G arises from a finite poset $P = \{p_1, \ldots, p_n\}$ as follows: $V(G) = \{p_1, \ldots, p_n, q_1, \ldots, q_n\}$ and $E(G) = \{\{p_i, q_j\} \mid p_i \leq p_j\}$. We may assume that G is a minimal element in G. Let G is a minimal element in G is not rigid. G is not rigid. G

A vertex v of G is called a free vertex if $\deg v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e' with $e'\neq e$ such that $e\cap e'\neq\emptyset$.

A vertex v of G is called a free vertex if $\deg v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e' with $e' \neq e$ such that $e \cap e' \neq \emptyset$.

Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph on the vertex set [n] such that G does not contain any induced cycle of length 4, 5 or 6. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

A vertex v of G is called a free vertex if $\deg v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e' with $e' \neq e$ such that $e \cap e' \neq \emptyset$.

Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph on the vertex set [n] such that G does not contain any induced cycle of length 4, 5 or 6. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

Corollary. Let G be a chordal graph. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

A vertex v of G is called a free vertex if $\deg v = 1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e' with $e' \neq e$ such that $e \cap e' \neq \emptyset$.

Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph on the vertex set [n] such that G does not contain any induced cycle of length 4, 5 or 6. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

Corollary. Let G be a chordal graph. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

Corollary. Suppose that all cycles of G have length ≥ 7 (which for example is the case when G is a forest). Then G is rigid if and only if each edge of G is a branch.

T^1 for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^m for some m > 0. Let h_1, \ldots, h_n be the minimal generators of H, and fix a field K.

T^1 for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^m for some m > 0. Let h_1, \ldots, h_n be the minimal generators of H, and fix a field K.

The toric ring K[H] associated with H is the K-subalgebra of the ring $K[t_1^{\pm 1},\ldots,t_m^{\pm 1}]$ of Laurent polynomials generated by the monomials t^{h_1},\ldots,t^{h_n} . Here $t^a=t_1^{a(1)}\cdots t_m^{a(m)}$ for $a=(a(1),\ldots,a(m))\in\mathbb{Z}^m$.

T^1 for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^m for some m > 0. Let h_1, \ldots, h_n be the minimal generators of H, and fix a field K.

The toric ring K[H] associated with H is the K-subalgebra of the ring $K[t_1^{\pm 1},\ldots,t_m^{\pm 1}]$ of Laurent polynomials generated by the monomials t^{h_1},\ldots,t^{h_n} . Here $t^a=t_1^{a(1)}\cdots t_m^{a(m)}$ for $a=(a(1),\ldots,a(m))\in\mathbb{Z}^m$.

Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring over K in the variables x_1, \ldots, x_n . The K-algebra R = K[H] has a presentation $S \to R$ with $x_i \mapsto t^{h_i}$ for $i = 1, \ldots, n$.

T^1 for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^m for some m > 0. Let h_1, \ldots, h_n be the minimal generators of H, and fix a field K.

The toric ring K[H] associated with H is the K-subalgebra of the ring $K[t_1^{\pm 1},\ldots,t_m^{\pm 1}]$ of Laurent polynomials generated by the monomials t^{h_1},\ldots,t^{h_n} . Here $t^a=t_1^{a(1)}\cdots t_m^{a(m)}$ for $a=(a(1),\ldots,a(m))\in\mathbb{Z}^m$.

Let $S = K[x_1, \dots, x_n]$ be the polynomial ring over K in the variables x_1, \dots, x_n . The K-algebra R = K[H] has a presentation $S \to R$ with $x_i \mapsto t^{h_i}$ for $i = 1, \dots, n$.

The kernel $I_H \subset S$ of this map is the toric ideal attached to H. Corresponding to this presentation of K[H] there is a presentation $\mathbb{N}^n \to H$ of H which can be extended to the group homomorphism $\mathbb{Z}^n \to \mathbb{Z}^m$ with $\epsilon_i \mapsto h_i$ for $i=1,\ldots,n$, where $\epsilon_1,\ldots,\epsilon_n$ denotes the canonical basis of \mathbb{Z}^n .

Let $L \subset \mathbb{Z}^n$ be the kernel of this group homomorphism. The lattice L is called the relation lattice of H. As we know, L is a free abelian group and \mathbb{Z}^n/L is torsion-free.

Let $L \subset \mathbb{Z}^n$ be the kernel of this group homomorphism. The lattice L is called the relation lattice of H. As we know, L is a free abelian group and \mathbb{Z}^n/L is torsion-free.

Moreover, I_H is generated by the binomials f_v with $v \in L$, where $f_v = x^{v_+} - x^{v_-}$.

Let $L \subset \mathbb{Z}^n$ be the kernel of this group homomorphism. The lattice L is called the relation lattice of H. As we know, L is a free abelian group and \mathbb{Z}^n/L is torsion-free.

Moreover, I_H is generated by the binomials f_v with $v \in L$, where $f_v = x^{v+} - x^{v-}$.

We define an H-grading on S by setting $\deg x_i = h_i$. Then I_H is a graded ideal with $\deg f_v = h(v)$, where

$$h(v) = \sum_{i, \ v(i) \geq 0} v(i)h_i \ (= \sum_{i, \ v(i) \leq 0} -v(i)h_i).$$

$$I_HS_{I_H}=(f_{v_1},\ldots,f_{v_r})S_{I_H}.$$

$$I_H S_{I_H} = (f_{v_1}, \ldots, f_{v_r}) S_{I_H}.$$

In particular, we see that

height
$$I_H = \operatorname{rank} L$$
.

$$I_H S_{I_H} = (f_{v_1}, \ldots, f_{v_r}) S_{I_H}.$$

In particular, we see that

height
$$I_H = \operatorname{rank} L$$
.

We let R = K[H], and let $\mathbb{Z}H$ denote the associated group of H, that is, the smallest subgroup of \mathbb{Z}^m containing H.

$$I_H S_{I_H} = (f_{v_1}, \ldots, f_{v_r}) S_{I_H}.$$

In particular, we see that

height
$$I_H = \operatorname{rank} L$$
.

We let R = K[H], and let $\mathbb{Z}H$ denote the associated group of H, that is, the smallest subgroup of \mathbb{Z}^m containing H.

The cotangent module T(K[H]) admits a natural $\mathbb{Z}H$ -grading.

The module of differentials has a presentation

$$\Omega_{R/K}=(\bigoplus_{i=1}^n Rdx_i)/U,$$

where U is the submodule of the free R-module $\bigoplus_{i=1}^{n} Rdx_i$ generated by the elements df_v with $v \in L$, where

$$df_{v} = \sum_{i=1}^{n} \overline{\partial_{i} f_{v}} dx_{i}.$$

The module of differentials has a presentation

$$\Omega_{R/K} = (\bigoplus_{i=1}^n Rdx_i)/U,$$

where U is the submodule of the free R-module $\bigoplus_{i=1}^{n} R dx_i$ generated by the elements df_v with $v \in L$, where

$$df_{v} = \sum_{i=1}^{n} \overline{\partial_{i} f_{v}} dx_{i}.$$

One verifies at once that

$$df_{v} = \sum_{i=1}^{n} v(i)t^{h(v)-h_{i}}dx_{i}.$$

The module of differentials has a presentation

$$\Omega_{R/K} = (\bigoplus_{i=1}^n Rdx_i)/U,$$

where U is the submodule of the free R-module $\bigoplus_{i=1}^{n} R dx_i$ generated by the elements df_v with $v \in L$, where

$$df_{v} = \sum_{i=1}^{n} \overline{\partial_{i} f_{v}} dx_{i}.$$

One verifies at once that

$$df_{v} = \sum_{i=1}^{n} v(i)t^{h(v)-h_{i}}dx_{i}.$$

We claim that R is rigid, if and only if n = 1, that is, if and only if R is regular.

We claim that R is rigid, if and only if n = 1, that is, if and only if R is regular.

There is an epimorphism $\chi: \Omega_{R/K} \to \mathfrak{m}$ with $\chi(dx_i) \mapsto h_i t^{h_i}$ where $\mathfrak{m} = (t^{h_1}, \dots, t^{h_n})$ is the graded maximal ideal of R.

We claim that R is rigid, if and only if n = 1, that is, if and only if R is regular.

There is an epimorphism $\chi: \Omega_{R/K} \to \mathfrak{m}$ with $\chi(dx_i) \mapsto h_i t^{h_i}$ where $\mathfrak{m} = (t^{h_1}, \dots, t^{h_n})$ is the graded maximal ideal of R.

Since $\operatorname{rank}\Omega_{R/K}=\operatorname{rank}\mathfrak{m}=1$, it follows that $C=\operatorname{Ker}\chi$ is a torsion module. Thus we obtain the following exact sequence

$$0 \to C \to \Omega_{R/K} \to \mathfrak{m} \to 0$$
,

which induces the long exact sequence

$$\operatorname{\mathsf{Hom}}_R(C,R) o \operatorname{\mathsf{Ext}}^1_R(\mathfrak{m},R) o \operatorname{\mathsf{Ext}}^1_R(\Omega_{R/K},R).$$

Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus $\operatorname{Hom}_R(C,R)=0$ and $\operatorname{Ext}^1_R(\mathfrak{m},R)\simeq\mathfrak{m}^{-1}/R\neq 0$. It follows that $\operatorname{Ext}^1_R(\Omega_{R/K},R)\neq 0$.

Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus $\operatorname{Hom}_R(C,R)=0$ and $\operatorname{Ext}^1_R(\mathfrak{m},R)\simeq\mathfrak{m}^{-1}/R\neq 0$. It follows that $\operatorname{Ext}^1_R(\Omega_{R/K},R)\neq 0$.

It is a big open conjecture whether a K-subalgebra $R \subset K[t]$ is rigid if and only if R is regular.

Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus $\operatorname{Hom}_R(C,R)=0$ and $\operatorname{Ext}^1_R(\mathfrak{m},R)\simeq\mathfrak{m}^{-1}/R\neq 0$. It follows that $\operatorname{Ext}^1_R(\Omega_{R/K},R)\neq 0$.

It is a big open conjecture whether a K-subalgebra $R \subset K[t]$ is rigid if and only if R is regular.

The conjecture is known to be correct if the embedding dimension of R is 3, or R is Gorenstein of embedding dimension 4. The proof uses Hilbert-Burch and the Buchsbaum-Eisenbud structure theorem.

The cotangent module $T^1(R)$ is defined via the exact sequence

$$(\Omega_{S/K} \otimes_S R)^* \xrightarrow{\delta^*} U^* \to T^1(R) \to 0$$

of $\mathbb{Z}H$ -graded modules, where M^* denotes the R-dual of the $\mathbb{Z}H$ -graded R-module M.

The cotangent module $T^1(R)$ is defined via the exact sequence

$$(\Omega_{S/K} \otimes_S R)^* \xrightarrow{\delta^*} U^* o T^1(R) o 0$$

of $\mathbb{Z}H$ -graded modules, where M^* denotes the R-dual of the $\mathbb{Z}H$ -graded R-module M.

Let f_{v_1}, \ldots, f_{v_s} be a system of generators of I_H . Observe that the elements $df_{v_1}, \ldots, df_{v_s}$ form a system of generators of U.

The cotangent module $T^1(R)$ is defined via the exact sequence

$$(\Omega_{S/K} \otimes_S R)^* \xrightarrow{\delta^*} U^* \to T^1(R) \to 0$$

of $\mathbb{Z}H$ -graded modules, where M^* denotes the R-dual of the $\mathbb{Z}H$ -graded R-module M.

Let f_{v_1}, \ldots, f_{v_s} be a system of generators of I_H . Observe that the elements $df_{v_1}, \ldots, df_{v_s}$ form a system of generators of U.

Let $a \in \mathbb{Z}H$. We denote by KL the K-subspace of K^n spanned by v_1, \ldots, v_s and by KL_a the K-subspace of KL spanned by the set of vectors $\{v_i: a+h(v_i) \notin H\}$.

The cotangent module $T^1(R)$ is defined via the exact sequence

$$(\Omega_{S/K} \otimes_S R)^* \xrightarrow{\delta^*} U^* o T^1(R) o 0$$

of $\mathbb{Z}H$ -graded modules, where M^* denotes the R-dual of the $\mathbb{Z}H$ -graded R-module M.

Let f_{v_1}, \ldots, f_{v_s} be a system of generators of I_H . Observe that the elements $df_{v_1}, \ldots, df_{v_s}$ form a system of generators of U.

Let $a \in \mathbb{Z}H$. We denote by KL the K-subspace of K^n spanned by v_1, \ldots, v_s and by KL_a the K-subspace of KL spanned by the set of vectors $\{v_i: a + h(v_i) \notin H\}$.

Then one shows that $\dim_K (U^*)_a = \dim_K KL - \dim_K KL_a$. for all $a \in \mathbb{Z}H$.

In conclusion one sees that all information which is needed to compute $\dim_K T^1(R)_a$ can be obtained from the $(s \times n)$ -matrix

$$A_{H} = \begin{pmatrix} v_{1}(1) & v_{1}(2) & \dots & v_{1}(n) \\ v_{2}(1) & v_{2}(2) & \dots & v_{2}(n) \\ \vdots & \vdots & & \vdots \\ v_{s}(1) & v_{s}(2) & \dots & v_{s}(n) \end{pmatrix}.$$

In conclusion one sees that all information which is needed to compute $\dim_K T^1(R)_a$ can be obtained from the $(s \times n)$ -matrix

$$A_{H} = \begin{pmatrix} v_{1}(1) & v_{1}(2) & \dots & v_{1}(n) \\ v_{2}(1) & v_{2}(2) & \dots & v_{2}(n) \\ \vdots & \vdots & & \vdots \\ v_{s}(1) & v_{s}(2) & \dots & v_{s}(n) \end{pmatrix}.$$

Indeed, $\dim_K T^1(K[H])_a$ can be computed as follows: let $I = \operatorname{rank} A_H$, I_a the rank of the submatrix of A_H whose rows are the ith rows of A_H for which $a + h(v_i) \not\in H$, and let d_a be the rank of the submatrix of A_H whose columns are the jth columns of A_H for which $a + h_i \in H$.

In conclusion one sees that all information which is needed to compute $\dim_K T^1(R)_a$ can be obtained from the $(s \times n)$ -matrix

$$A_{H} = \begin{pmatrix} v_{1}(1) & v_{1}(2) & \dots & v_{1}(n) \\ v_{2}(1) & v_{2}(2) & \dots & v_{2}(n) \\ \vdots & \vdots & & \vdots \\ v_{s}(1) & v_{s}(2) & \dots & v_{s}(n) \end{pmatrix}.$$

Indeed, $\dim_K T^1(K[H])_a$ can be computed as follows: let $I=\operatorname{rank} A_H$, I_a the rank of the submatrix of A_H whose rows are the ith rows of A_H for which $a+h(v_i)\not\in H$, and let d_a be the rank of the submatrix of A_H whose columns are the jth columns of A_H for which $a+h_j\in H$. Then

$$\dim_K T^1(K[H])_a = I - I_a - d_a.$$

In conclusion one sees that all information which is needed to compute $\dim_K T^1(R)_a$ can be obtained from the $(s \times n)$ -matrix

$$A_{H} = \begin{pmatrix} v_{1}(1) & v_{1}(2) & \dots & v_{1}(n) \\ v_{2}(1) & v_{2}(2) & \dots & v_{2}(n) \\ \vdots & \vdots & & \vdots \\ v_{s}(1) & v_{s}(2) & \dots & v_{s}(n) \end{pmatrix}.$$

Indeed, $\dim_K T^1(K[H])_a$ can be computed as follows: let $I = \operatorname{rank} A_H$, I_a the rank of the submatrix of A_H whose rows are the ith rows of A_H for which $a + h(v_i) \not\in H$, and let d_a be the rank of the submatrix of A_H whose columns are the jth columns of A_H for which $a + h_i \in H$. Then

$$\dim_K T^1(K[H])_a = I - I_a - d_a.$$

Separated saturated lattices

Which affine semigroup ring K[H] is obtained from another affine semigroup ring K[H'] by specialization, that is, by reduction modulo a regular element?

Separated saturated lattices

Which affine semigroup ring K[H] is obtained from another affine semigroup ring K[H'] by specialization, that is, by reduction modulo a regular element?

Of course we can always choose $H' = H \times \mathbb{N}$ in which case K[H'] is isomorphic to the polynomial ring K[H][y] over K[H] in the variable y, and K[H] is obtained from K[H'] by reduction modulo the regular element y.

Separated saturated lattices

Which affine semigroup ring K[H] is obtained from another affine semigroup ring K[H'] by specialization, that is, by reduction modulo a regular element?

Of course we can always choose $H' = H \times \mathbb{N}$ in which case K[H'] is isomorphic to the polynomial ring K[H][y] over K[H] in the variable y, and K[H] is obtained from K[H'] by reduction modulo the regular element y.

This trivial case we do not consider as a proper solution of finding an K[H'] that specializes to K[H]. If no non-trivial K[H'] exists, which specializes to K[H], then H will be called inseparable and otherwise separable.

For convenience we denote again by π_i the K-algebra homomorphism $S[x_{n+1}] \to S$ with $\pi_i(x_j) = x_j$ for $j = 1, \ldots, n$ and $\pi_i(x_{n+1}) = x_i$.

For convenience we denote again by π_i the K-algebra homomorphism $S[x_{n+1}] \to S$ with $\pi_i(x_j) = x_j$ for $j = 1, \ldots, n$ and $\pi_i(x_{n+1}) = x_i$.

Let $L \subset \mathbb{Z}^n$ be a saturated lattice. We say that L is *i*-separable for some $i \in [n]$, if there exists a saturated lattice $L' \subset \mathbb{Z}^{n+1}$ such that (i) rank $L' = \operatorname{rank} L$;

For convenience we denote again by π_i the K-algebra homomorphism $S[x_{n+1}] \to S$ with $\pi_i(x_j) = x_j$ for $j = 1, \ldots, n$ and $\pi_i(x_{n+1}) = x_i$.

Let $L \subset \mathbb{Z}^n$ be a saturated lattice. We say that L is *i*-separable for some $i \in [n]$, if there exists a saturated lattice $L' \subset \mathbb{Z}^{n+1}$ such that

- (i) $\operatorname{rank} L' = \operatorname{rank} L;$
- (ii) $\pi_i(I_{L'}) = I_L$;

For convenience we denote again by π_i the K-algebra homomorphism $S[x_{n+1}] \to S$ with $\pi_i(x_j) = x_j$ for $j = 1, \ldots, n$ and $\pi_i(x_{n+1}) = x_i$.

Let $L \subset \mathbb{Z}^n$ be a saturated lattice. We say that L is *i*-separable for some $i \in [n]$, if there exists a saturated lattice $L' \subset \mathbb{Z}^{n+1}$ such that

- (i) $\operatorname{rank} L' = \operatorname{rank} L$;
- (ii) $\pi_i(I_{L'}) = I_L$;
- (iii) there exists a minimal system of generators f_{w_1}, \ldots, f_{w_s} of $I_{L'}$ such that the vectors $(w_1(n+1), \ldots, w_s(n+1))$ and $(w_1(i), \ldots, w_s(i))$ are linearly independent.

The lattice L' satisfying (i)-(iii) is called an *i*-separation lattice for L.

The lattice L' satisfying (i)-(iii) is called an *i*-separation lattice for L.

If L' is an *i*-separation lattice of L, then $x_{n+1} - x_i$ is a non-zerodivisor on $S[x_{n+1}]/I_{L'}$ and

$$(S[x_{n+1}]/I_{L'})/(x_{n+1}-x_i)(S[x_{n+1}]/I_{L'}) \simeq S/I_L.$$

The lattice L' satisfying (i)-(iii) is called an *i*-separation lattice for L.

If L' is an *i*-separation lattice of L, then $x_{n+1} - x_i$ is a non-zerodivisor on $S[x_{n+1}]/I_{L'}$ and

$$(S[x_{n+1}]/I_{L'})/(x_{n+1}-x_i)(S[x_{n+1}]/I_{L'}) \simeq S/I_L.$$

Theorem. Let H be a positive affine semigroup which is minimally generated by h_1, \ldots, h_n , $L \subset \mathbb{Z}^n$ the relation lattice of H. Suppose that L is i-separable. Then $T^1(K[H])_{-h_i} \neq 0$. In particular, if K[H] is standard graded, then H is inseparable, if $T^1(K[H])_{-1} = 0$.

Is the same result true for any numerical semigroup?

Is the same result true for any numerical semigroup?

Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph with edge set $\{e_1, \ldots, e_n\}$, and let R = K[G] be the edge ring of G. Then the following conditions are equivalent:

- (a) The relation lattice of H(G) is *i*-separable.
- (b) $T^1(R)_{-h_i} \neq 0$.
- (c) There exists a cycle C of G for which e_i is a chord, and there is no crossing path chord P of C with respect to e_i .

Is the same result true for any numerical semigroup?

Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph with edge set $\{e_1, \ldots, e_n\}$, and let R = K[G] be the edge ring of G. Then the following conditions are equivalent:

- (a) The relation lattice of H(G) is *i*-separable.
- (b) $T^1(R)_{-h_i} \neq 0$.
- (c) There exists a cycle C of G for which e_i is a chord, and there is no crossing path chord P of C with respect to e_i .

It is widely open for which graphs G, the edge ring K[G] is rigid.

- **Problem 1**. Let \mathfrak{m} be the graded maximal ideal of $S = K[x_1, \dots, x_n]$. Compute the module $T^1(S/\mathfrak{m}^2)$.
- **Problem 2**. Let $I \subset \mathfrak{m}^2$ be a graded ideal with dim S/I = 0. Do we always have that $T^1(R) \neq 0$?
- **Problem 3**. Let R = K[H] be a numerical semigroup ring. Show that $T^1(R)$ is module of finite length.
- **Problem 4**. Compute the length of $T^1(R)$ when $R = K[t^{h_1}, t^{h_2}]$.