
WHAT IS A MARKOV BASIS AND WHAT IS IT GOOD FOR?

THOMAS KAHLE

Let k be a field and R = k[x1, . . . , xn] the polynomial ring in n indeterminates.

Definition 1. Let A ⊆ Zd×n be an integer matrix. The toric ideal for A is

IA := 〈xu − xv : u− v ∈ kerZA〉 ⊆ R.

Find a minimal (or just finite) generating set of IA. As you have seen in other lectures,
a lattice basis of kerZ(A) is usually not sufficient. Generating sets have interesting
applications to random walks on discrete objects and because Markov chains are used
in these applications, there came about the name Markov basis (which is typically used
for the exponents of generators).

Hypothesis testing in statistics. Think of two random variables that take only
finitely many values. These could for example be traits of the individuals in a population,
such as their gender, color of their hair, or the number of hours they watch sports on
TV every week. For maximum simplicity, let X = (X1, X2) be a vector of only two
random variables, taking values in [r]× [s]. In a population, such as the population of
Romania, or Europe, there is a true distribution of X and we want to learn something
about this true distribution from a small sample (this is statistics!).

Now, the simplest question about this data is to ask: Is there evidence against the
hypothesis that X1 is independent of X2? In statistics we never prove things, we just
statistically disprove things using an argument like: If the the hypothesis was true, what
would typical data look like? If, under the hypothesis, it is very unlikely to get the
data that looks like the data we got, then this presents evidence against the hypothesis
(although it could be the case that we just got unlucky.)

We can’t argue the other way around, because if we get data that confirms the
hypothesis, then maybe the hypothesis was just a very weak hypothesis so that no data
would actually refute it. There is no systematic way to rule this out, so we don’t argue
in this way.

Let’s assume independence of X1 and X2. This defines a statistical model, a subset
of all joint distributions for X. It turns out that this subset is defined by 2-minors and
equals the non-negative real part of the Segre embedding, but this is a different story.
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We then determine the best explanation of the data within the model of independence
using the maximum likelihood method. The best explanation is the disitribution under
which our given data has the highest probability. When you analyze this, it turns out
that the determination of the maximum likelihood estimate does not actually depend
on the entries of the table, but only on the marginals defined as follows. The sample
data is given in form of a contingency table

U =

u11 . . . u1s
...

...
ur1 . . . urs


containing counts uij which give the number of observations X1 = i,X2 = j. The
marginals of U are the row sums and column sums:

u11 . . . u1s u1+
...

...
...

ur1 . . . urs ur+
u+1 . . . u+s u++

That is, there is a linear map Au = (u+1, u+2, u1+, u2+). If X1 is independent of X2,
then the count in position ij should be proportional to the product ui+u+j just as the
distribution factorizes. Now the big question is: How good is the maximum likelihood
estimate? It explains the data best among the distributions in the model, but how
good is that really? We can clearly measure the distance of the actual data to the
estimate using an appropriate norm (it’s called the X2-statistics, a variant of L2). Now
assume you get a distance of 5. How big is 5? As a reference measure, Fisher proposed
to compare this 5 with the values gotten for other fake data that would lead to the
same estimate. To carry out this test, we therefore need to generate fake data tables v
that have the same marginals, that is, such that Au = Av. We need points from

Definition 2. Let b ∈ Zd. The fiber of b is

A−1[b] := {v ∈ Nn : Av = b}

Note that the fiber is the set of interger points in a polytope. Fisher did this test for
very small Au, such that he could enumerate all tables v with Av = Au. The story is
told in the popular book “ The Lady Tasting Tea” by David Salsburg.

To conclude the method, if we could enumerate the fiber of b = Au, and then
compare the value of X2(u) to that of X2(v) for all other tables v. We reject the
hypothesis if the probability of observing an X2(u) as high as ours is very low. This
probability is the p-value that is given in EVERY SCIENTIFIC STUDY. (You can
google “p-value hacking” at this point).
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In reality, this is hard, and this is why mainstream statistics studies the asymptotics
of X2(u) as the sample size grows u++ →∞. Then the distribution of X2(u) converges
to a χ2-distribution (a certain mixture of Gaussians). The assessment is then done by
replacing X2 by its asymptotic distribution.

But algebra wants to be exact! Diaconis and Sturmels idea: Use a Markov chain to
sample from the fiber. Starting from u, if we have a sufficiently large set of “moves” to
connect the fiber, then we can run a random walk to sample from it.

Definition 3. Let M ⊆ kerZA be a finite set, and A−1[b]M the graph that has the
fiber as its set of vertices and u∼v ⇔ (u− v) ∈ ±M as its edges.
M is a Markov subbasis for b if A−1[b]M is connected and a Markov basis of A if it

is a subbasis for all b.

Why should a finite Markov basis exist? The answer is the Noetherianity of polynomial
rings, as we will demonstrate now. Let us abstract the situation a bit. Considering any
finite set M⊆ Zn that spans a saturated lattice (that is, one that is equal to kerZ(A)
for some matrix A ∈ Zd×n). Given two integer points u, v ∈ Nn, we can ask if there
exists a walk

(1) u = u0, u1, . . . , us = v, ui ∈ Nn, ui−1 − ui ∈ ±M.

Clearly, a necessary condition of the existence of such a walk is that u−v ∈ kerZ(A) =
ZM. Proposition 4 (probably originally due to [MM82]) gives an algebraic sufficient
condition. To see it, we construct an ideal out ofM as follows. Decompose each m ∈M
into its positive and negative parts (m±)i = max{±mi, 0} such that m = m+ −m−.
Then we can define a binomial xm

+ − xm−
in a polynoimal ring with n indeterminates.

To the set M corresponds an ideal

IM := 〈xm+ − xm−
: m ∈M〉.

Proposition 4. There exists a nonnegative walk (1) between u, v ∈ Nn if and only if
xu − xv ∈ IM.

Proof. If there exists a nonnegative walk as in (1), then

xu − xv = xu − xu1 + xu1 − xu2 + . . . xus−1 + xv.

Now each step xul−1 − xul = xw(x(ul−1−ul)
+ − x(ul−1−ul)

−
) is contained in I, so the

conclusion follows. In the other direction, if xu − xv ∈ I, then it can be written in
terms of the generators as

xu − xv =
∑
i

xwi(xm
+
i − xm

+
i ) Ex.: Why are monomial coefficients enough?
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Comparing coefficients, there must be an index i0 such that xu = xwi0
+m+

i0 . We use the
corresponding binomial as the first step in the walk: u = wi0 +m+

i0
→ wi0 +m−i0 . Now

−xwi0
+m−

i0 either equals −xv, or it is cancelled in the sum by a term xwi1
+m+

i1 . So either
we are done, or we use wi0 + m−i0 → wi0 + m−i0 = wi1 + m+

i1
as the second step in the

walk. The result now follows after finitely many applications of this step. �

The whole situation can be interpreted in terms of multigradings. Let S = k[x1, . . . , xn]
be a shorthand for our polynomial ring. The matrix A defines a (multi-)grading on
S where deg(xu) = Au ∈ Zd. This means in particular that deg(xi) equals the i-th
column of A. The A-graded Hilbert function of the quotient S/〈xu − xv : Au = Av〉
takes values only zero and one—the quotient is finely graded. We have

Theorem 5 (Fundamental Theorem of Markov bases). The following are equivalent
for finite a set M⊆ kerZ(A):

(1) M is a Markov basis for A.

(2) IA = IM = 〈xm+ − xm−
: m ∈M〉.

(3) IM = IM : (
∏n

i=1 xi)
∞ = {f ∈ R : xwf ∈ IM for some monomial xw}.

Proof. According to Proposition 4, if M ⊆ Zn is a Markov basis, then xu − xv ∈ IA
whenever Au = Av. This means that IA ⊆ IM. The other direction is clear since
M⊆ kerZ(A). The equivalence of 3 follows from the more general fact that IA = IM :
(
∏

i xi)
∞ whenever M spans kerZ(A). �

From here you can to into a few different directions. For example:

• Efficient computation of Markov bases → [4ti207].

• Theoretical computation of Markov bases, e.g. toric fiber products [Sul07, RS16,
EKS14].

• Convergence of random walks using Markov bases ([Win16] and Tobias’ thesis).

• Non-Markov bases, decompositions, connectivity analsys.

Exercise 6. Compute the Markov basis for independent matrices.
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